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Abstract

We provide an axiomatic characterization of a family of criteria for
ranking completely uncertain and/or ambiguous decisions. A completely
uncertain decision is described by the set of all its consequences (assumed
to be finite). An ambiguous decision is described as a finite set of possible
probability distributions over a finite set of prices. Every criterion in the
family compares sets on the basis of their conditional expected utility, for
some probability function taking strictly positive values and some utility
function both having the universe of alternatives as their domain.
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2 The Model

2.1 Notation

The sets of integers, non-negative integers, real numbers and non-negative real
numbers are denoted respectively by N, N, R and R,. If v is a vector in R*
for some strictly positive integer k£ and « is a real number, we denote by «.v the
scalar product of a and v. Our notation for vectors inequalities is =, > and >.
By a binary relation - on a set €2, we mean a subset of Q x Q. Following the
convention in economics, we write « 2~ y instead of (z,y) € R. Given a binary
relation 22, we define its symmetric factor ~ by © ~ y <=z =~ y and y 7Z x and
its asymmetric factor > by x > y <= = 7~ y and not (y 2Z x). A binary relation
= on € is reflexive if the statement x 2~ x holds for every z in Q, is transitive
if x = z always follows  Z y and y = z for any z,y,z € Q and is complete if
x 7y or y =~ x holds for every distinct z and y in . An equivalence class C' of
a binary relation - on 2 is a subset of € such that ¢ ~ ¢ for all ¢, ¢ € C and
it is not the case that ¢ ~ ¢’ if ¢ € C and ¢ € Q\C. A reflexive, transitive and
complete binary relation is called an ordering. An ordering is trivial if it has
only one equivalence class.

2.2 Basic concepts

Let X be the set of consequences. While we do not make any specific assump-
tions on X, it will be clear subsequently that the axioms that we impose makes
it natural to regard this set as infinite. As an example, one could think of X as
being R, interpreted as the set of all conceivable financial returns (either nega-
tive or positive) of some investment decision in a highly uncertain environment,
even though we will see that this setting has rather specific implication on the
ranking of uncertain decisions that it allows. As another example, one could
think of X as the set of all conceivable probability distributions on a basic set
of k different prices.

We denote by P(X) the set of all non-empty finite subsets of X (with generic
elements A, B, C, etc.). Any such a subset is interpreted as a description of
all consequences of an uncertain decision or, for short, as a decision. A certain
decision with consequence x € X is identified by the singleton {z}.

Let 7 (with asymmetric and symmetric factors > and ~ respectively) be an
ordering on P(X). We interpret the statement A 7, B as meaning “decision
with consequences in A is weakly preferred to decision with consequences in B”.
A similar interpretation is given to the statements A = B (“strictly preferred
to”) and A ~ B (“indifference”).

We want to identify the properties (axioms) of the ordering 7 that are
necessary and sufficient for the existence of a function v : X — R and a function
p: X — Ry, that are such that that, for every A and B in P(X):

2aeaP(@)ua) _ > pepp(b)u(b)
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We refer to any ordering numerically represented as per (1) for some functions
p and u as to a Conditional Expected Utility (CEU) criterion. Indeed, the func-
tion p is naturally interpreted as a "probability" function that assigns to each
consequence (or lottery in the objective ambiguity framework) a number that
reflects its a priori "likelihood", while the u function is interpreted as a con-
ventional utility function that evaluates the "desirability" of every consequence
from the subjective viewpoint of the decision maker. Hence an ordering rep-
resented by (1) can therefore be seen as comparing decisions under ambiguity
or ignorance on the basis of the expected utility of the consequences of these
decisions conditional upon the fact that they will materialize.

We notice that the family of Uniform Expected Utility criteria characterized
in [2] is, a priori, a subclass of this family, in which the function p is any constant
function. Yet, as we shall see later, the characterization that we provide of this
family is not complete as it does not cover all criteria that belong to the family
represented by (1). The reason for this is that we characterize this family by
assuming that both the universe X and the ordering - satisfies the following
"richness" condition (considerably stronger than the condition of the same name
used in [2]).

A 1 Richness. For every B/ ~ A < B < C ~ E, there exists D and D’
satisfying DN(AUCUE) =g =D'N(AUCUE') such that D ~C, D' ~ A
and DUA~ B~ D' UC.

The axioms that characterize this family of criteria (in an environment that
satisfies this richness) are the following.

A 2 Balancedness. Suppose A, B,C and D are such that (AUB)N(CUD) = &
and AUC 7z BUC. If A~ B> C,D, then AUD 7z BUD.

A 3 Averaging. Suppose A and B are disjoint. Then A - B iff AUB = B iff
Az AUB.

A 4 Archimedean. Suppose A ~ B~ C ~ D o« F, AUF = BUF and
Fn(CuUD)=0. If there exists two infinite sequences Ay, A1,...,A;,... and
By, B1,..., By, ..., w’ithAiﬂ(FUCUAj):@, BZ-O(FUDUBJ-):(Z), A~ A,
B ~B, AUF ~ AUF and BiUF ~ BUF foralli # j € N, then
CUFJ!,Ai Zz DUFU._,Bi for somen € N.

SOME COMMENTS MUST BE ADDED HERE TO EXPLAIN THE AX-
IOMS.
3 Main results

Lemma 1 Let 77 be a non-trivial ordering of P(X) satisfying Richness and
Averaging. Then, for every A,C € P(X), there exists B € P(X) such that
B~Aand BN(AUC) =0.



Proof. Because of non-triviality, we know that there is a set D such that
D < Aor A < D. We treat the case A < D (the other case is handled
symmetrically). We first prove that there are at least two equivalence classes
better than the one containing A, so that it will be possible to apply Richness.
We consider two cases: (1) AND = @&. Then Averaging yields A < AND < D
(and we are done). (2) AND # @. We consider three subcases: (a) AND ~ A.
Then, by Averaging, A\ D ~ Aand A\D < AUD < D. (b) AND < A. Then
Averaging implies D < D\ A. (c) AND > A. If AND o D, then we are done.
Otherwise, by Averaging, D\ A~ D and A< AU (D\ A) <D\ A.

A first application of Richness yields a set B; such that By ~ A and
BiNA=g. If By NnC = &, then the proof is done. If B; N C # &, then use
Richness again to find a set By such that By ~ AU By and BoN (AU B;) = @.
By Averaging, AU B; ~ A and, by transitivity, Bs ~ A. We are now sure that
B> does not contain any of the elements of By NC. If Bo N C = &, then the
proof is done. If BoNC # @, then use Richness again to find a set Bs such that
B3 ~ AUB1UBQ and Bgﬂ(AUBluBQ) =J. By 1AV€I‘8Jging7 AUBluBQ ~ A
and, by transitivity, Bs ~ A. Notice that (By U By) N C 2 B; N C We are now
sure that Bs does not contain any of the elements of (B;UB3)NC. If BsNC = @,
then the proof is done. If B3 N C # &, we iterate this construction and we find
By, Bs, ... At each iteration, (B1U...UB;)NC 2 (B1U...UB;_1)NC . Since
C'is finite, we are sure to reach some B; satisfying the same conditions as B in
the statement of the lemma. a

Let us define the sets m(X) and M (X) of minimal (resp. maximal) decisions
by m(X)={AeP(X):AZBVBePX)fand M(X)={AeP(X): Az
B VB € P(X)}. These sets can be empty. We define P.(X) by means of
Po(X) = P(X) \ (m(X) U M(X)).

Lemma 2 If 7 is a non-trivial ordering on P(X) satisfying Richness and Av-
eraging, then, for every set B € P.(X), there are A,C € P.(X) such that
A<B=<C.

Proof. If - is not trivial, then there are D, E € P(X) such that D < E. By
Lemma 1, there is a set F' € P(X) such that F'~ D and FN(DUE) =@. By
Averaging and Transitivity, D < FU E < E. So, = has at least three equiva-
lence classes and, hence, P, (X) is not empty. Let B be a decision in P, (X) (we
have just proved that it exists). We will prove that there is A € P,(X) such that
A < B (the proof that there is C' € P,(X) such that B < C is similar). If m(X)
is empty, then the proof is immediate. So, we consider that m(X) is not empty.
Let G be a decision in m(X). By Lemma 1, there is a set H € P(X) such that
H ~ G and HN(GUB) = &. By Averaging and Transitivity, H < HUB < B. O

A consequence of this lemma is that P(X) is infinite and, hence, X is infinite.
For any E € P.(X), define PX(X) = {C € P(X) : C ~ E}. It is the equivalence
class of 7 containing the set E. Define then the binary relation =; on P¥(X)
by A =; B iff there exists C disjoint from A and B such that AUC = BUC and



C < E. Notice that we do not define 7;on a maximal (or minimal) equivalence
class.

ADD SOME COMMENTS ON THE INTUITIVE MEANING OF THE BI-
NARY RELATION 7;

Lemma 3 Assume that 7 is a non-trivial ordering on P(X) satisfying Bal-
ancedness and Averaging. Then the relation 72; is a weak order.

Proof. Let A, B,C be three sets in P¥(X) such that A -; B and B =, C.
By definition of 7;, this implies the existence of D, D’ respectively disjoint from
AUB and BUC such that E > D,D’, AUD = BUD and BUD' 7z CUD'.
Thanks to Lemma 1, we choose D" disjoint from AU B U C, with D ~ D”.
By Balancedness, AU D" = BU D" and BU D" = C U D". By transitivity,
AUD"” = CUD"” and, hence, A =; C. This proves the transitivity of ;. We
now turn to the completeness of =;.

Let A, B be two sets in P (X) such that A %7; B. By definition of =, either
(i) there is no set C disjoint from AU B such that E > C or (ii) there are such
sets but for none of them it is true that AUC 77 BUC. Case (i) can be ruled
out by Lemma 2. If case (ii) holds, then, since 7 is complete, we must have
AUC < BUC for all sets C disjoint from AU B such that £ > C. So, B A
and the relation ; is therefore complete. a

Lemma 4 Assume that 7, is an ordering on P(X) satisfying Richness, Bal-
ancedness and Averaging. Then, for all A,B,C € P(X) such that A~ B » C
and CN(AUB) =,

1. A= Bifand only if AUC - BUC.
2. A~y Bifand only if AUC ~ BUC.

Proof. 1,=. A»>; B implies B Z; A. So, either there is no D disjoint from
AU B with D < A (this is ruled out by Lemma 2) or BUD < AUD,VD < A.
In particular, AUC = BUC.

1, <. Suppose AUC = BUC. This implies A 7; B (by definition of ;).
Suppose A =; B does not hold. Since ; is complete, B *; A must hold so
that, by definition of »;, there exists a set D such that BU D z AU D, and
D < A. But this contradicts balancedness. Hence A =; B must hold.

2, =. A ~; B implies the existence of D, D’ < A such that (DUD")N (AU
B)=@, AUD 7 BUD and BUD' iz AUD'. By balancedness, AUC 7z BUC
and BUC 7 AUC and, so, AUC ~ BUC.

2, < Obvious. o

Lemma 5 Assume that 7 is a non-trivial ordering on P(X) satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. Then, for every
E € P.(X), there exists a mapping p¥ : PE(X) — Ry, such that, for all



A, B € PE(X), Az B iff pP(A) > p¥(B) and, for all disjoint A, B € PE(X),
pP(AU B) = pP(A) + p?(B). Furthermore, p¥ is unique up to a linear trans-
formation.

Proof. Define the binary operation o on P¥(X) as follows. If AN B = &,
then Ao B = AUB. Otherwise set Ao B = A’UB’ for some A’, B’ € PF(X)
such that ANB = @, AUC ~ AUC and B UD ~ BUD for some
C,D < E such that (AUA)NC = @ and (BU B’) N D = @. The existence
of such sets A’, B’ does not pose any difficulty, thanks to Richness. Indeed, by
Lemma 2 and Averaging, there exists a set C' € P(X) such that C < A ~ B. By
Averaging, C < CU A < A and, using Richness, there exists a set A’ such that
AUC~AUC, A~ Aand AN (CUA)=g. Using an analogous reasoning,
one can establish the existence of a set B’ such that B UC ~ BUC, B' ~ B
and BN(CUAUA) =@.

Hence o” is defined for every pair A, B € PF(X), and the choice of the sets
A’, B’ can be made by any rule whatsoever if there are several such sets for a
given pair A, B. Finally we note that o is closed in the set P¥(X) thanks to
Averaging.

For any F € P(X), we now show that the structure formed by the set
PE(X), the binary relation »7;and the binary operation o is what [3] (p. 73,
definition 1) call a closed extensive measurement structure. That is to say, we
establish that:

1. 7;is a weak order: see Lemma 3;

2. oFis weakly associative so that A of (B o¥ C) ~; (A o¥ B) of C for
every A, B and C € PF(X). The proof of this is obvious if A, B,C are
mutually disjoint. Consider now the case where AN BN C # &. Let
A", B',C" € P(X) be mutually disjoint sets such that A’UM ~ AU M,
B"UN~BUN,C'"UO ~ CUO for some M,N,0 < E with (AUA")N
M =(BUB)NN = (CUC")NO = @. They exist thanks to Richness
(the argument is similar to that employed in the definition of the binary
operation o). We have Bo” C' = B'UC’ and Ao¥ (BoF () = A/UB'UC".
We also have Ao B = A’UB’ and (Ao B)of C = A/UB'UC’, so that
Aol (Bo¥P C) = (Aof B)oF C. The reasoning is similar when some but
not all pairwise intersections between A, B, C are not empty.

3. monotonicity holds (that is: A x=; B iff Ao¥ C = BoF C iff C oF
A =, Co¥ B). Since o¥ is obviously commutative, we just need to prove
A7 Biff AoP C ) BoP C. Choose A’ and B’ in P¥(X) such that
ANC =9 =BnC,AUD ~ AUD and BBUD ~ BUD for
some D < FE and disjoint from C. Thanks to Richness, this is always
possible. Notice that C U D < E by averaging. We have A 7; B iff
AUF = BUF (by definition) iff AU D = B’ U D (by construction) iff
A'UCUD z B'UCUD (by Balancedness and because CUD < E thanks
to Averaging) iff A of C ) BoF C;



4. The Archimedean axiom:: if A =; B, then, for any C, D € P¥(X), there
exists a positive integer n such that nA of C =y nB of D, where nA is
defined inductively as: 1A = A, (n + 1)A = nA of A. It is immediate to
see that this condition is implied by the Archimedean axiom.

By Theorem 1 of [3] (p.74), for any E € P,.(X), there exists a mapping
pP : PE(X) — R such that, for all A, B € P¥(X), A - B iff pP(A4) > p¥(B)
and pF (A o B) = pF(A) + p¥(B). Furthermore, p¥ is unique up to a linear
transformation.

We now show that p¥(A4) > 0 for all A € P¥(X). For any A € PF(X),
we can find a set B € PF(X) such that AN B = @ (using Lemma 1). By
definition of P,(X), there is D’ < E. By Lemma 1, there is D ~ D’ < E such
that DN (AU B) = @. By Averaging, D < BUD < B ~ A. By Averaging
again, BUD < BUDU A < B. By definition of —;, B <; AU B. This implies
pP(B) < pP(AU B) and, since A and B are disjoint, p¥(B) < p¥(A) + p¥(B)
or, equivalently, p¥(A) > 0. O

MAKE SOME COMMENTS TO EXPLAIN THE RESULTS. The following
lemma is quite close in spirit to lemma 10 in [1].

Lemma 6 Assume that 7 is a non-trivial ordering on P(X) satisfying Rich-
ness, Balancedness, Averaging and The Archimedean axiom. If E € P.(X),
there exists a mapping vF : P(X) — R such that (i) AN B = & implies
vE(AUB) = vP(A) +vE(B) and (ii) vP(A) > 0 iff A - E and vE(A) <0 iff
AZE.

Proof. For a fixed £ € Pu(X), let L ={a € X : {a} < E} and U =
{a € X : {a} = E}. These sets are not empty (this is an almost immediate
consequence of Lemma 2). Define M as an arbitrary set such that £ < M.

We first define v on P(L). Fix some L € L. By Richness, there is U € P(U)
such that U ~ M and UU L ~ E. Set v¥(L) = —p™(U). By construction,
v¥(L) does not depend on the choice of U. Indeed, suppose there are several
such U, say U and U’. Notice that U ~ M ~U', UUL ~ E and UUL ~ E.
So, UUL ~U'UL. Hence U ~; U" and p™ (U) = pM(U").

Select Ly, Ly € L, with L1 N Le = @. By Averaging, L1 U Ly € L. Using
Richness as above, we find two disjoint sets Uy, Uy € P(U) such that Uy ~ U ~
M, Ul ULl ~ FE and U2 ULQ ~ F. By Averaging, U1 UUQ ULl UL2 ~ E,
UyuU; ~ M and Uy U Ly ~ E. So,

VE(L1 U LQ) e —pM(Ul U Uz)
= () —p"(U2)
= V(L) +v5(La). 2)
This proves that v¥ is disjoint-additive over L.

We now define v¥ on P(U). Take any U € P(U). By Richness used in a
similar (but this time "downward") way as above, there is L € P(L) such that



UUL ~ E. Set vE(U) = —v¥(L). The mapping v* on P(U) does not depend on
the choice of L. Indeed, suppose there are several such L, say Ly and Ly in P(L).
We must prove that v¥(L1) = v¥(Lsy). Suppose first L1 N Ly = (). Let Uy, U, €
P(U) be such that U1 NU = 0= UsNU, U ~M ~ Uy, UyULy ~ E ~UyU Ls.
By Richness, such sets exist. We also have UUL; ~ E ~ UU Ls. By Averaging,
Uil UUULy ~FE ~UyULyUUUL;. Hence, Uy ~; Us, pM(Ul) :pM(UQ)
and v (L;) = v¥(Ly). Suppose now L; N Ly # (. By Richness used in the
same way as above, there is L3 € P(L) such that Ly N (L; U Ly) = 0 and
UU L3y ~ E. Define U3 by U3 ~ M and U3z U L3 ~ E. By richness, Uz can
be chosen disjoint from both U; and Us. Since Uy ULy ~ UU Ly ~ E ~
UsULsg ~UUL; and U, Uy and U; are disjoint as are Ly and Lo, it follows
from Averaging that Uy UL, UUUL3 ~ E ~ UsUL3UUUL;. Hence, Uy ~; Ug
and, therefore, pM (U;) = pM(Us). A similar reasoning can be performed for
U, and Us. We therefore have p™ (Uy) = pM(Us) = pM(Us) and, as a result,
I/E(Ll) = I/E(Lg) = I/E(LQ).

The mapping v* on P(U) is additive. Indeed, consider two sets Uy, Us €
PU), with Uy NU = (). Let us find two sets L1, Ly € P(L) such that Uy ULy ~
E ~ Uy U Ly. Since the choice of Ly and Ls is not important, we can choose
them disjoint (using Richness). By Averaging, U; UUs U Ly U Ly ~ E. So,
Z/E(Ul U UQ) = 7Z/E(L1 U LQ) = 7Z/E(L1) — VE(LQ) = Z/E(Ul) + Z/E(UQ).

We define then v¥ on P(X). Take any S € P(X). If {s} ~ E for all s € S,
set v (S9) = 0. Otherwise, we can express S as S = LUUUR with L=SNL,
U=SNUand R= S\ (LUU). By Averaging, S = Eiff LUU = E. Set
vE(S) = vP(L) + vF(U). Disjoint-additivity is inherited from v on P(U) and
v¥ on P(L).

We must now check whether v¥ satisfies (ii). Suppose S = E. Then (SNL)U
(SNU) = E. Using richness and averaging, one can find a superset L' of SN L
belonging to P (L) such that L'U(SNU) ~ E. As shown above, —v®(L'P(SNU).
Since SNL C L' C L, and , for every L € P(L), v¥(L) = —pM(U) < 0 for some
set U € P(U) we have that 0 > vE(SNL) > vF(L') by disjoint-additivity. Now,
by construction, v¥(S) =vE(SN L) +v¥(SNU) =vF(SNL)—vEL) > 0.

Suppose now S < E. Then (SN L)U(SNU) < E. Using Averaging
and Richness again, there is a superset U’ of SNU belonging to P(U) such that
U'U(SNL) ~ E. By definition of the mapping v, one has that v*(U'F(SNL) >
0. Moreover, since SNU C U’ C U and vF(U) > 0 for every U € P(U), one
has vE(U’) > VE(SNU) > 0 by disjoint-additivity. We have, by construction,
vE(S) =vE(SNL)+vE(SnU)=vE(SnU) - vEU") <.

Suppose finally S ~ E. Then (SN L) U (SNU) ~ E so that v¥(SN L)
—vE(SNU). We have, by construction, v¥(S) = vE(S N L)+ vE(SNU)
vE(Snu)—-vE(Snu) =0.

ol

Notice that v¥ is defined only for E € P,(X), but it maps every set A €
P(X) on v¥(A), even if A belongs to m(X) or M(X). We now prove a lemma
that is quite similar in spirit to lemma 12 in [1].



Lemma 7 Assume that 7 is a non-trivial ordering on P(X) satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. Then the family
{vP . E € P.(X)} is spanned by any two of its members v and vB (with v4
and vB linearly independent). That is, for any mapping v¥ in the family, there
are two real numbers o, BE such that vE = oFvA + gFUB.

Proof. Take any A, B € P.(X) such that A = B. We first show that
the mapping v” numerically represents the probability ordering = on P4(X).
That is to say we first establish that

vB(8) >vB(T) <= SUFZTUF. (3)

holds for every S and T such that S ~ T ~ A and every F' < A. Consider
indeed sets S and T with A ~ S ~ T. By lemma 6, v4(S) = 0 = v4(T).
By construction, ¥”(S) > 0. By richness and unboundedness, there is L;
such that L1 N (SUT) = &g and SU Ly ~ B. By Averaging L; < B. By
Lemma 6, v (S) + v (L) = vB(S U Ly) = 0. Suppose v2(T) > v?(S). Then,
vB(T U L) = vB(T) +vB(Ly) > 0. By Lemma 6, TUL; = B ~ SU L.
By Balancedness, TUF = SUF forany F : F < AFN(SUT) = @.
A similar argument shows that vZ(T) > v5(S) = TUF = SUF for any
F:F<AFN(SUT)=2.

Conversely, suppose TU F = SUF for some F': F < A/ FN(SUT) =
. By Richness, there is Lo such that Lo N (SUT) = @, SU Ly ~ B. By
Averaging, Ly < B. By Balancedness, T'U Ly 7, S U Ly ~ B. By Lemma 6,
vB(T) + vB(Ly) > 0. Since vP(8) + vB(Ly) = 0, we obtain v5(T) > vB(9).
The same argument holds if we suppose TUF = SUF, and this establishes (3).

Choose now S, T € P4(X) and B, D < A with DN(SUT) = @. By Richness,
this is possible. Suppose without loss of generality that SUD =< T U D. By
iterative application of Richness, there exist sets S1, S5, ... such that, for every
Z#] eN, SN (UieNSi) =g = SiﬂSj =5,nND,S; ~S and VB(S) = UB(SZ').
Similarly, there exist 77,75, ... such that, for every i # j € N, TN (U, 1) =
@ =T,NT; =T, D, T; ~ T and vB(T) = vB(T).

For every positive integer n, there is a largest integer ¢(n) such that Ufi”l) S;U
D 2 Ui, T; U D because v? (| J_, S;) = pvP(S;) and is therefore unbounded
when p increases. Notice that q(n) > n because v (S) < vB(T). We thus have
Ugg) S;uD 2 UL, T;UD < U;?i’;)“ S;U D, for every positive integer n. Since
the sets Ugg) Si, Ui, T; and Ugi”l)ﬂ S; are all equivalent to A (by Averaging)
and thanks to (3), we have v3(JL") S;) < vB(U, 7)) < vB(ULY T 5;). The
mapping v? being additive, we may write q(n)v?(S) < nvB(T) < (q(n) +
1)vB(S) and

ieN

an) vB(S) <vB(T) < a(n) +1 vB(S), ¥n € Ny

n n

so that vB(T) = lim, @ vB(S). Following the same reasoning with any

C € P.(X) with C < A instead of B yields v“(T) = lim,, @ v9(S). So,



vB(T)/vB(S) = v (T)/v®(S). Since this holds for any S, T ~ A, this proves
that v5(S) = kv9(S) for some positive constant k and for all S such that
vA4(8) = 0.

Define v 4pc(S) = (v4(S), vB(S),v¢(9)) forall S € P(X)}. Then {z € R3:
z1 = 0} Nvape(P(X)) is contained in the ray {(0,kt,¢) : t > 0}. Since A €
P.(X), there is S such that S = A or S < A, whence the set {z € vapc(P(X)) :
w1 # 0} is not empty. We can therefore select vectors 2°, 2! € vapc(P(X))
such that 2§ = 0 and 2z} # 0. Let S and S! be such that v4pc(S°) = 2° and
Z/ABc(Sl) = $1.

We show that these two vectors, together, span vapc(P(X)). Let z €
vapc(P(X)), with vapc(S) = . We proceed by cases, assuming x1 > 0 (the
case 7} < 0 being symmetric).

1. Suppose z; = 0. Since {z € R® : 21 = 0} Nvapc(P(X)) is contained in
the ray {(0,kt,t) : t > 0}, we have x = ka°.

2. Suppose z; > 0. By Richness, there is T : T U S' ~ SY Hence,

vA(T) = —vA(S'). By Richness, there is R : RUT ~ S° R ~ S.
Hence, v*(R) = v*(S1). Since R ~ S = A, B,C, we know that v%(R) =
avd(R) and v°(S) = av?(S) for some o € R. For the same rea-

son, vB(R) = BrA(R) and vB(S) = BvA(S) for some B € R. So,
vC(R) /v (S) = vA(R)/vA(S) and vB(R)/vB(S) = vA(R)/vA(S). In
other words, vapc(R) and vapc(S) are in the same ray and vapc(S) =
Y apc(R) for some v € R.

Since T U S ~ S°, we know that v4pc(T U S1) is in the same ray as z°.

So, vapc(TUSY) = vapo(T) + 2t = Ax® for some A > 0. Similarly, since
TUR ~ S° we know that vapc(T U R) is in the same ray as x°. So,
VABC(T U R) = Z/ABc(T) + Z/ABc'(R) =X — 2zl + l/ABc(R) =\ for
some \' > 0. Whence vapc(R) = N — Xz® + 2'. We can therefore write
vapco(S) = y(\° — Az + 2'). This proves that = is spanned by z° and
xl.

3. Suppose x; < 0. By Richness, there is T : TU S ~ S° and, hence,
vapc(TUS) is in the same ray as 2°. So, vapc(TUS) = vapc(T)+2 =
Az for some A > 0. So, z = A2° — vapc(T). Put another way, z is
spanned by 2% and v4pc(T). We have seen in case 2 that vapc(T) is
spanned by z° and z'. So, actually, z is spanned by z° and z'.

So, there are two real numbers A,~y such that, for any S € P(X),
vapc(S) = MWapc(S®) +ywapc(Sh). (4)
In particular, v4(S) = AA(S°) + yvA(S!) = yvA(S') because v4(S°) =
0. So, v = vA(9)/vA(S1). From (4), we also derive v°(S) = I (S%) +

wC(SY) which yields A = (v¢(S) — yw©(S1))/v°(S°). From (4), we finally
derive vB(8) = AvB(S%) +qvB(S). Let us substitute A and v in this equation.
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‘We obtain

va(S) = wA(S)/vA(S)PUS) g
Z/C(SO)

v (S) = (8%) + v (S)rP(s1) /v (sh),
showing that ©? is a linear combination of »4 and v©.

So, for every A, B,C € P,(X), such that none of them are indifferent, there
are two real numbers «, 3 such that v4 = av® + fv°. Consider now A, B,C
such that B # C. We select D, D’ not indifferent to any of A, B,C and such
that D o D’. We can express each of v4, 15 ¢ as a linear combination of v?
and vP’. For instance,

vt = a4+ 80", ()
VP =ap? + Bp? (6)
v% = acr? + 6CVD/. (7)

From (6) and (7), we derive

D _ v“Bp —vPBe

12
acfp —apBe

and

I/COzB — I/BOlC

vp = —
Beap — Bgac

We substitute 2 and v?" in (5) and we obtain that v is a linear combination
of vB and v“. This suffices to show the entire space {v¥ : E € P,(X)} can be
spanned by any two of its members v, v¢ with B 4 C, since the selection of
A, B, C in the proof was arbitrary. O

Define span(v#, v?) as the set of all possible linear combinations of v and
vB. In light of Lemma 7, span(v?,v?) = span(v“,vP) for all A, B,C,D €
P.(X) such that v4 and vB (resp. v and v”) are linearly independent. Tt
therefore makes sense to define S = span(v4,v?) for some A, B € P,(X) with
v and v? linearly independent.

Lemma 8 Assume that 7 is a non-trivial ordering on P(X) satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. Let A, B, C' be three
sets in Pyx(X). It is impossible to have —v? = 6vB + (1 — §)v© for some
A€ R++ and 6 S [0, 1]

Proof. We consider two cases.

(1) vB = kv® for some k € R, ;. Then v* = —AvB. This is not possible
because, by Lemma 6, for any D < B, we have v (D) < 0 and v4(D) < 0. The
cases v = kv® and v = kvP are treated in the same way.

(2) A > B > C (the 5 other orderings are treated in the same way) .

By Lemma 7, v# and v® span {v¥ : E € P,(X)}. For every C € P.(X),
let a(C) and B(C) solve v¢ = a(C)v? + B(C)vB. Since C' < B, we must have
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a(C) < 0 or B(C) < 0, otherwise, for any S : C < S < B, it is impossible to
have v%(S) > 0. Simultaneously, we must also have 3(C) > 0 because v (A)
must be positive. So, we must have a(C') < 0 < 8(C). Assume for contradiction
that —\vA = B 4 (1 — §)v° for some A € R, , and 6 €]0, 1[. This implies
A 5
c_ pA L B

0—1 0—1

with §/(§ — 1) < 0. This is in contradiction with 0 < 3(C). O

Lemma 9 Let us assume Weak Order, Balancedness, Averaging, non-triviality
Richness and the Archimedean axziom. There exist then a disjoint-additive map-
ping p: P(X) — R such that u(C) > 0 for all C € P.(X) and p € S.

Proof. Let us choose some B,C € P,(X) with C < B. By Lemma 7, v?
and vY span {v¥ : E € P.(X)}. For every A € P.(X), let a(A) and B(A)
solve v4 = a(A)w? + B(AWC. If A < B,C, then we must have a(A) < 0
or B(A) < 0, otherwise, for any S : A < S < B,C, it is impossible to have
vA(S) > 0. Simultaneously, we must also have 3(A) > 0 because v*(B) must
be positive. So, we must have a(4) < 0 < S(A). Define p(4) = —G(A)/a(A).
We have p(A) > 0 for all A € P.(X) with A < C.

If A/ € P(X) and A" < A < C, then p(A’) < p(A). Suppose, on the
contrary, p(A’) > p(A). Since v4(A) = a(A)vE(A) + B(A)r(A) = 0, we have

-0 = o) = T < 28 = o).

VP (4)
VO (4)

Hence v5(A)a(AC(A)B(A") and vA (A) = vB(A)a(A'C(A)B(A’) < 0, which
implies A < A’. A contradiction. Notice that the converse is also true. So, for
all A, A" e P (X) with A, A" < C, A’ Z Aiff p(A) < p(A).

Similarly, it is easy to prove that, for all A, A" € P,(X) with A, A’ = B, we
have p(A) > 0 and A" 3 A iff p(A4") < p(A).

Define Q = {p(4) : A € P.(X),A < C}. This set has a greatest lower
bound p* > 0 (because we have proved that p(4) > 0 for all A € P(X) : A <
C). Actually, p* > 0. Indeed, assume for contradiction that p* = 0. Since
B € P.(X), there is D € P,(X) such that D > B. Because p* = 0, there is
F € P.(X) with p(F) close to zero and such that v, v? and v¥ are as v4, 5
and v in Lemma 8. Yet, this is not possible. So, p* > 0.

Furthermore p* ¢ @ because the set {A € P.(X) : A < C} has no minimal
element. Define y as one of the elements in the ray {z(—v® + p*v%) : 2 > 0}.
For instance, define y = —v® + p*v. By construction, i € span(v?, %)

IS THE NEXT PARAGRAPH INTERESTING ? IT DOES NOT SHOW THAT p IS
UNIQUE, BUT IT SHOWS INSTEAD THAT, IF WE USE A SPECIFIC TECHNIQUE TO
CONSTRUCT (4, THEN g DOES NOT DEPEND ON THE CHOICE OF B AND C.

We now show that the ray containing g is independent of the choice of
B and C. Suppose first that we use B’ instead of B, with C < B’. For
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every A € P.(X), let y(A) and §(A) solve v = v(A)vB + §(A)vC. Define
o(A) = —06(A)/v(A). Define o* as the greatest lower bound of the set {o(A) :
Ae P(X),A=<C}and /B + o*°. We want to show that z’ constructed
uslng B’ and C belongs to the same ray as u. By Lemma 7, we can write
VB = pvB 4+ @@ for some p,q € R. We have 5 (C) = pvB(C) + v (C) =
prB(C). Since vB'(C) < 0 and vB(C) < 0, we find p > 0. We have v4 =
Y(A)B + 6(AWC = y(A)(prP + ) + 6(A)UC. In particular, v4(A) = 0 =
+(A) (P (A)+ qvC (4))+6(A)wC (A). Hence, o(A) = —3(A)/7(A) = (pvP (A) +
qu©(A)) /v (A) = p(vB(A)/v°(A)) + q. Notice that v4(A) = 0 also implies
vB(A) /v (A) = —B(A)/a(A) = p(A). So, d(A) = pp(A) +q. This yields
o* = pp* + q. We now rewrite y’ as —vB 4 o0 = —pvB — q® + "¢ =
—pvB — qu® + (pp* + v = p(—vB + p*v°) = pu. This shows that the ray
containing p does not depend on B as long as C < B. A similar reasoning
shows that the ray containing p does not depend on C' as long as C < B. In
conclusion, p is unique up to a multiplicative constant.

We now prove that u(A) > 0 for all A € P.(X). Suppose, on the contrary,
w(A) < 0 for some A € P,.(X). By definition of P,(X), there are B,C' : A <
C < B. We can write u*(A) = —vB(A) + p*v®(A4) < 0. So, p*v°(A) < vB(A)
and p* > vB(A)/v%(A) because v°(A) < 0. Since v4(A) = a(A)wB(A) +
B(AWC(A) = 0, we have p* > —B(A)/a(A). This is impossible because p* ¢ Q.
This contradiction proves that u(A) > 0 for all A € P,(X).

DO WE NEED NEXT PARAGRAPH 7

We now show that a(A) > 0 for all A € P.(X). Suppose, on the contrary,
there is A : a(A) < 0. We easily find that a(A) < 0 because a(A) = 0 would
yield v4(A) = 0 = B(A)u(A). But p(A) > 0 and B(A) # 0 (otherwise v4 is
identically zero). So, it is not possible that v4(A) = 0 and, hence, a(A) # 0. By
unboundedness, there is D = C, A. So, v4(D) = a(A)v°(D) + B(A)u(D) > 0.
Since a(A) < 0, v(D) > 0 and p(D) > 0 we conclude 5(A) > 0. We also have
vA(C) = B(A)u(C). Since B(A) > 0 and u(C) > 0, we find v4(C) > 0 or, in
other words, C' = A. Let us now compute p(A4) = —B(A)/a(A) = v9(A)/u(A).
Since C' = A, we find v%(A) < 0 and, hence, p(A) < 0. But we have previously
seen that p(E) > 0 for every E < C. In particular, for A. This contradiction
proves that a(A4) > 0 for all A € P.(X).

The mapping p is additive for disjoint sets because it is the linear combina-
tion of two disjoint-additive mappings. It clearly belongs to S because it is the
linear combination of two independent elements of S. O

Lemma 10 Assume that 7 is a non-trivial ordering on P(X) satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. Choose any C €
P.(X) and definev = v°. Then, for all A, B € P.(X), v(A)/u(A) > v(B)/u(B)
iff Az B.

Proof.  Forevery A € P,(X), let a(A) and B(A) solve v = a(A)v+B(A)pu.
Such a(A) and S(A) necessarily exist because v and p belong to S and are
linearly independent.
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By construction, v4(A4) = 0 = a(A)r(A) + B(A)u(A) or, equivalently,

:Ef‘; = ;[EES). So, in order to show that v/u is a numerical representation

of 7 on P.(X), it suffices to show that —F/« represents - on P.(X). No-
tice first that —f/a is well-defined because —f(A)/a(A) = v(A)/u(A) and
p(A) > 0 for all A € P,(X). Pick any A, B € P.(X) with A = B. By con-
struction, v2(A4) > 0. From this, we derive a(B)v(A) + B(B)u ( ) > 0 and
v(A) > —B(B)u(A)/a(B). We also have a(A)v(A) + B(A)u(A) = 0 or, equiv-
ety () = ~IADJa(d). So —NA) o) > BB (B
)

e
or, after simplification, —5(A)/a(A) > —B(B)/a(B). So, we have proved that
A = B implies —3(A)/a(A) > —5(B )/a( . Proving the converse is done
following the inverse path. This concludes the proof that v/u is a numerical
representation of 7 on P, (X). O

Lemma 11 Let us assume Weak Order, Balancedness, Averaging, non-triviality
Richness and the Archimedean axiom. Then, for all A,B € P.(X), A~ B and
A ~; B implies v(A) = v(B) and p(A) = u(B).

Proof. A ~; B implies AUC ~ BUC for some C < A. So, v(A)/u(A4) =

v(B)/u(B) and
v(AUC)  v(BUC)

WAUC) ~ WBUC)
Using the disjoint-additivity of v and p,
v(A) +v(C) _ v(B) +v(C)
w(A) +pu(C)  w(B)+v(C)
Let us replace v(A) in this equation by v(B)u(A)/u(B). We obtain
v(B)A)/m(B) +v(C) _ v(B)+v(C)
pu(A) + p(C) w(B) +v(C)

V(B)(A)(B) + v(B)u(A)(C) + v(C)u(B)u(B) + v(C)u(B)u(C)
=v(B)u(A)u(B) + v(B)u(B)p(C) + v(C)pu(A)u(B) + v(C)u(B)u(C).
After some simplifications and reordering some terms, we find
v(B)u(C)(u(A) — u(B)) = v(C)u(B)(u(A) — u(B)).

If u(A) — p(B) =0, then v(B)/u(B) = v(C)/u(C) and B ~ C, which is im-
possible. So we conclude that pu(A) — u(B) # 0 and, hence, u(A) = u(B) and
v(A) = v(B). O

Lemma 12 Let us assume Weak Order, Balancedness, Averaging, non-triviality
Richness and the Archimedean axiom. Then, for any C € P.(X) and € > 0,
there is D ~ C such that p(D) < e
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Proof. Because C' € P.(X), there are A, B € P.(X) such that C = A >~
B. By Lemma 1, there is a set A’ such that A’ ~ A and A’ N B = &. By
Averaging, A = A’ U B > B. By Richness, there are sets A1, Ao, ... such that,
for i € {1,2,...}, A~ A;, Ain(AUZ] A;) = @ and 4;UB ~ A UB. By
Lemma 11, v(A;) = v(A) and u(A;) = p(A) for i € {1,2,...}. Some of the
sets A1, Ag, ... may intersect with C, but the number of such sets is necessarily
finite. So, if we drop them, we still have an infinite series of sets A7, As,... We
therefore assume hereafter that A;NC = @ for i € {1,2,...}.

By Averaging, C > CU?=1 A; = A, for any k € {1,2,...}. By Richness,
for any k € {1,2,...}, there is D such that DN (AUC) = &, D ~ C and
DUA ~ C'U?:1 Aj. By Lemma 10, v(C)/u(C) = v(D)/u(D) and, for all
i€ {1,2,.. .}, (A)/u(A) = v(A;)/p(A;) and

y(DUA) _r(CUj,4)
w(D U A) w(C Uézl Aj) '

Using the disjoint-additivity of v and p,

v(D)+1(4) _ V(C)+ i v(4) _ v(C) + ku(A)
pD) +u(A)  w(C)+ i w(Ay)  C) +kp(A)

Hence

(D) +v(A)) (W(C) + kp(A)) = W(C) + kv(A)) (WD) + p(A)).

If we replace in this equation v(D) by v(C)u(D)/u(C) and perform some ele-
mentary algebra (the same as in Lemma 11), we obtain

v(A)p(C)((C) = k(D)) = v(C)(A) (1(C) = kp(D)).

If u(C)—ku(D) =0, then v(A)/u(A) = v(C)/u(C) and a ~ C, which is impos-
sible. We therefore conclude that p(C)—kp(D) # 0 and, hence, u(D) = pu(C) / k.
If we choose k large enough, we can thus guarantee ,u(D) < €.

Lemma 13 Assume that 7 is a non-trivial ordering on P(X) satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. There exist then a
disjoint-additive mapping ., : P(X) — R such that 1, (S) > 0 for all S € P(X)
and ji, € S.

Proof. If u(S) > 0 for all S € P(X), we define u, = p and the proof is
done.

Otherwise, let us first prove that p(S) > 0 for all S € m(X). Assume for
contradiction that S € m(X) and u(S) < 0 and choose a set T' € P.(X) with
SNT =@, v(T) <0 and u(T) very small (thanks to Lemma 12). Consider the
set D =T US. Its numerical representation is

v(T) + v(S)
w(T) + u(S)
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The numerator is negative. If u(T) is small enough, we are sure that the de-
nominator is also negative. Hence v(D)/u(D) > 0 and D > T. Yet this is not
possible because, by Averaging, T' > D.

Using a similar argument, we can prove that p(S) > 0 for all S € M(X).

We now claim that it is not possible to have p(S) = 0 = p(7T") for some
S em(X), T € M(X). Assume for contradiction that u(S) = 0 = u(T) for
some S € m(X), T € M(X). By Averaging, SUT € P.(X). This implies
p(SUT) > 0. But, using the disjoint-additivity of u, we find that p(SUT) =0
although SUT € P.(X). This contradiction concludes the proof of the claim.

Suppose now that p(S) = 0 for some S € m(X). This implies p(7") > 0 for
all T € P.(X)U M(X). We know from Lemma 9 that p = —v® + p*v© for
some B,C € P,(X). If we choose p, < p* and we define p, = —vB 4 p+yc,
we are sure that p(S) > 0. If, in addition, we choose p, very close to p*, we
can guarantee that p(7") > 0 for all T' € P,(X). The mapping ., is clearly
disjoint-additive and it belongs to S. We still have to prove that . (7) > 0
forall T € m(X). If T # S and u(T) > 0, then the proof is obvious because
we have chosen p, very close to p*. If T'# S and p(T) = 0, the proof is not
difficult. Remember that u(T) = —vB(T) + p*v(T), where vB(T) < 0 and
v9(T) < 0. So, if we choose p, < p*, then p, (T) = —vB(T) + p, v°(T) is
necessarily larger that p(7) and, hence, positive.

The case where p(S) = 0 for some S € M(X) is handled in the same way.
O

IN THE PROOF OF LEMMA 13, IT IS CLEAR THAT f, IS NOT UNIQUE!

We now need to prove and equivalent of Lemma 10 with ., instead of f.

Lemma 14 Assume that 7 is a non-trivial ordering on P(X) satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. Choose any C €
P.(X) and define v = v°. Then, for all A,B € P.(X), v(A)/u,(A) >
v(B)/u (B) iff A 7 B.

Proof.  Forevery A € P.(X), let a(A) and B(A) solve v = a(A)v+B(A) ...
Such a(A) and B(A) necessarily exist because v and . belong to S and are
linearly independent.

By construction, v4(4) = 0 = a(A)v(A) + B(A)u,(A) or, equivalently,

v(A) _ —B(A) : . . . ] .
L (A) = alA) - So, in order to show that v/p, is a numerical representation of

7 on P,(X), it suffices to show that —3/« represents 7~ on P,(X). Notice first
that —3/a is well-defined because —3(A)/a(A) = v(A)/p, (A) and p (A) >0
for all A € P,(X). Pick any A,B € P,(X) with A 7z B. By construction,
vB(A) > 0. From this, we derive a(B)v(A) + B(B)uy(A) > 0 and v(A) >
—B(B)u, (A)/a(B). We also have a(A)v(A) + B(A)u, (A) = 0 or, equivalently,
V(A) = —B(A), (A)/a(A). So, —B(A)ju, (A)/a(A) > —A(B)p, (A)/a(B) or,
after simplification, —3(A4)/a(A) > —B(B)/a(B). So, we have proved that
A = B implies —3(A)/a(A) > —B(B)/a(B). Proving the converse is done

following the inverse path. This concludes the proof that v/u, is a numerical
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representation of 7 on P, (X). O

Theorem 1 Assume that 7 is an ordering of P(X) that satisfy Richness. Then
~ satisfies Balancedness, Averaging and the Archimedean axiom. iff there are
two mappings u: X — R and p: X — RYY such that (1) holds.

Proof. If 7 is trivial, then (1) trivially holds with u constant. We therefore
assume in the rest of the proof that 7~ is not trivial.

Define f: P(X) — R by f(A) = #:(ﬁ) for all A € P(X). Remember that v

and p, are disjoint-additive. Hence,

F(A) = 2acavad)  YacafHah)pi({a})

2 aca iy ({a}) Sacaby{a})
Define two mappings « : X — R and p : X — R*" by u(a) = f({a}) and
p(a) = py ({a}) and we obtain

2 aca U(a)p(a)
ZaeA p(a')
We already know (Lemma 14) that A = B iff f(A) > f(B) for all A, B € P.(X).

We now must prove that it also holds for A, B € P(X). We consider several
cases.

f(A) =

1. A€ M(X) and B € P.(X). By Lemma 1, there is B’ € P(X) such that
B'NA=@and B ~ B. By Lemma 14, v(B)/pu(B) = v(B")/p,(B').
By Averaging, A = AU B’ > B’ and, hence, AU B’ € P.(X). So,

v(AUDB') _ v(A) +v(B') S v(B') _ v(B)
py (AUB) (A +p (B) © py(B) py(B)
Since 1, is positive, this yields
L)
py(A) ~ py(B)
in line with the fact that A > B.

2. Aem(X) and B € P.(X). Similar to the previous case.

3. A,B € m(X). Choose some C € P.(X) so that CN (AU B) = @. By
Averaging, BU C = B and, so, by transitivity, BUC = A. By case 2,
v(BUC)/w(BUC) > v(A)/u(A) and

v(B) +v(C) o v(A)
w(B) +u(C) ~ u(A)

By Lemma 12, we can choose C' in a given equivalence class of -, with

~)

1(C) arbitrarily close to zero. Since all sets in a given equivalence class

(8)
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have the same ratio v/u, we can actually choose C' with p(C) and v(C)
arbitrarily close to zero. Assume now for contradiction that f(A) > f(B),
that is, v(A)/u(A) > v(B)/w(B). Then, if we choose C as described
above, we clearly have

in contradiction of (8).
4. A, B € M(X). Similar to the previous case.

5. A€ M(X) and B € m(X). Suppose ANB=@. Then A~ AUB >~ B
and, hence, AUB € P,(X). From A = AU B and case 1, we derive
f(A) > f(AUB). From AUB > B and case 2, we derive f(AUB) > f(B).
By Transitivity, f(A) > f(B) as required.

4 Some unresolved questions

4.1 Independence of the axioms

For the moment, given an environment we are not capable of showing the in-
dependence of the three axioms used in the characterization of the CEU family
of criteria. However, we are capable of finding orderings of P(X) that do not
belong to the CEU family but that satisfy averaging, balancedness and richness
(but that violate the Archimedean axiom). Here is the example.

Example 1 Let X = R% | x R%. For every A € P(X), define

Ui(A) = 72(164 s
ZaGA a1
and
Us(A) = DaeA @205
ZGEA a2

Define then -, on P(X) by

A~B <= U(A)=U(B) and Uy(A) = Uy(B);

Ul(A) > Ul(B)
A>B <= or
Ul(A) = Ul(B) and UQ(A) > UQ(B)

I first show that this ranking violates the Archimedean aziom. Let A = {(1,2,0,—1)},
B ={(1,1,0,-1)}, 4 = {(1,2,0,)}, B; = {(1,1,0,9)}, C = {(1,1,0,0)} and
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D ={(2,1,0,0)}. We clearly have A ~ A; ~ B ~ B; ~ C ~ D for all i € N.
Let F = {(0,0,—1,0)}. We have A = F, AUF - BUF, A;,UF ~ AUF
and BiUF ~ BUF foralli € N. Yet, CUFJ!_ A < DUFU._,B; for
alln € N. We now show that 7~ satisfies Averaging. Suppose first that A = B.
Using the definition of =, this is either equivalent to:

Ui1(A) > Uy(B)
—
Ui(A) > U1 (AU B) > Uy (B)
—
A-AUB>B

or to:

U1(A) = Uy(B) and Uy(A) > Ua(B)
—
Ui(A) = U1 (AU B) = Uy (B) and U3(A) > Us(AU B) > Ua(B)
—
A AUB > B.

A similar reasoning holds when A ~ B. To show that 7 satisfies Richness,
consider A, B,C € P(X) such that A > B > C. We will show that there exists
a set D = {d,e} such that DN(AUC) =0, D~ A and DUC ~ B. So, we
must have

dids + eres

A TAD Uy (A), 9
e =) )
d2d3+6263

=25 725 U, (A), 10
e =Dh(A) (10)

dldg +eres + ZCGC C1C3
di+er+ o

dods + eges + ZCGC CaC3
dy+ea+ ) coco

Set d3 = max(Uy(A),Uz(A))+1 and e3 = min(Uy (A),Ua(A)) —1. There clearly
exist dy,e; € Ry such that (9) holds. Notice that dyi, ey are not unique; they
can be scaled by any positive constant and we can choose this constant so that
(11) holds. Similarly, there clearly exist da,ea € Ryt such that (10) holds.
They are unique up to a multiplication by a positive constant, that we can choose
independently of the scaling constant for dy,e;. So, we can choose it so that (12)
holds. In order to guarantee that DN (AUC) = 0, we can freely manipulate dy
and ey. Hence Richness holds. Finally, to show that = satisfies Balancedness,

=Ui(B), (11)

= Us(B). (12)
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consider finite and non-empty subsets A, B,C, D of X such that A~ B = C,D
and (AUB)N(CUD) =0. We have AUC = BUC if and only if either:
Ul(AUC) >U1(BUC) ZﬁUl(AUD) >U1(BUD) Z‘ﬁAUDzBUD or
[U1(AUC) = U1(BUC) and Us(AUC) > Us(BUC)] iff [Ui(AUD) =
U(BUD) and Us(AUD) > U (BUD)] iff AUD zZ BUD.

We are also capable, as shown in the next example, of finding non CEU
orderings that satisfy balancedness, richness and the Archimedean axiom but
that violate averaging.

Example 2 Let X =Ry, x R?, p(x) = 21, u(z) = 22,
by = Seearlalula)

2
( aGAp )

and A B iff U(A) > U(B).

The ranking 7 clearly satisfies Richness and the Archimedean axiom. It violates
Averaging because A = {(3/4,2,0)} ~ B ={(3/4,2,1)} - AUB.

Let us prove that 7 satisfies Balancedness. A ~ B implies:

2 2
> pla)u(a) (ZW))) = (ZMCL)) > p(b)u(b). (13)

acA beB acA beB
while AU C 7, BUC implies:

(ZP(G)U(GHZP(C)U(C)) ((ZP@) + (ZP(C)) )
a€A ceC beB ceC
> <Zp(b)U(b)+Zp(6)U(C)> ((ZP(@)) + (ZP(C)) )
beB ceC a€A ceC

or, after distributing:

a€A beB ceC beB acA ceC

beB a€A ceC a€A beB ceC

Substituting (13) in (14) yields:

2 2
> ple)ule) (Z p(b)> + > plaju(a) (Z p(C))

ceC beB a€A ceC

2
> pleJu(e) (Z p(@)) + > p(byu(b) (Z p(C))

acA beB ceC
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> pla)u(a) (Z p(b)> +Y_ ple)u(e) (Z p(b)> +Y_ pla)u(a) <Z p(C))
> p(b)u(b) <Z p(@)) +Y_ ple)u(e) <Z p(@)) +>_ p(b)u(b) (Z p(@)) -
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or:

> ple)ule) ((Zp(b)> - (ZMG)) ) > (Zp(b)u(b)— Zp(a)u(a)> (Zp(c)) :
ceC beB acA beB acA ceC

Since (Zcecp(c))2 > 0, one obtains:

SecePOul0) | Thepp®uld) = Foeap@ule) _ Siepp®ul® o
(Ceec (@) (Tiepp®)’ = (Cuear(@)”  (Spepr®)’

2

if (Cpenp®)’ = (Caean(@)” >0 or

SeeopOue) _ Toepp0)uh) = Suear@ula) _ Tepp®ul®) o
(Cecep(©)” 7 (Toepp®)’ = (Tacar(@)®  (Chepp®)’

if (ZbeBp(b))z— (X:CLeAp(a))2 < 0. Inequality (15) is not possible because B +

C. We therefore conclude that (16) holds and (3",c p(b))Q— (Yaca p(a))2 <0.
We also know that D < B. This implies

ZdGD p(d)u(d) < ZbGB p(b)u(b) - ZaGA pla)u(a) _ ZbeBp(b)u(b).
(CaenP@)* 7~ (Dpepp®)’ = (Tacar@)”  (Spepp®)’

Hence:

2 2 2
> p(d)u(d) ((ZP(@) - (ZMG)) ) > (Zp(b)U(b) - ZMG)U(CL)) <Z p(d)> -
deD beB acA beB acA deD
and

2 2
> p(d)u(d) (Z(@) + Y pla)u(a) (Z p(d)>
deD beB a€A deD
2 2
> p(d)u(d) (Z p(G)) + Y p(b)u(b) (Z p(d)> :

deD acA beB deD

If we add (13) to this inequality, we obtain

> pla)u(a) (Z p(b)> +) pldyu(d) (Z p(b)> +Y  pa)u(a) (Z p(d)>

acA beB deD beB acA deD
>3 p(b)u(b) <Z p(@)) +Y p(d)u(d) <Z p(@)) +>_ p(b)u(b) (Z p(d)> :
beB acA deD acA beB deD
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Let us now add Y, p p(d)u(d) (3 4 p p(d))2 on both sides and factorize. We
obtain

(Z playu(a) + Y p(d)u<d>> (pr)) . (Z p<d>> 2

acA deD beB deD

> (Zp(b)U(b) + Zp(d)U(d)> (Z p(a)>2 + (Z p(d)>2

beB deD acA deD

which implies AU D 77 BU D. This concludes the proof that 7 satisfies Bal-
ancedness.

However, we were not able to find examples of orderings of P(X) that satisfy
the Archimedean axiom and Averaging but that violate Balancedness.

4.2 Some unpleasant implications of our richness condi-
tion

The richness condition that we use to provide our characterization is strong,
and seems to impose some additional condition on the functions p and u that
are used in the representation of any CEU criterion. Yet, we are not for the
moment capable to analytically identify what these conditions can be. We can
not either provide a topological interpretation of our characterization result in
the same spirit than the one we obtain in [2]. An example of the implication of
our richness condition is provided in the following proposition, where we show
that if X = R (for instance consequences of a decision under ignorance are
amounts of money), then it is impossible with our richness condition to have
both the functions p and the function u to be monotonic if the function w is
continuous.

Proposition 1 Suppose that X = R. Then if 7 is a CEU ranking satisfying
richness, then, if the function u in expression (1) is continuous, it can not be
monotonic if p is monotonic.

Proof: Suppose A, B, C are three finite and non-empty subsets of X such
that A = B = C or A < B < C. Richness implies the existence of a set D
disjoint from A and C such that A ~ D and DUC ~ B. For any set £ € P(X),

define U(FE) by
2eenPle)ule)
ZeeE p(e) .

_ ZdGD p(d)u(d)
ZdeD p(d)

U(E) =

Then

U(D) —U(A) (a7)
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and

(DU C) - SaepPDUd) + Soeer(Eule)

EdeD p(d) + ECEC p(c)

This last equation can be rewritten as

> p(@u(d) + ) p(e)ule) = U(B) <Z p(d) + ZP(C)) - (1)
deD ceC deD ceC

From (17), we obtain ) ;. p(d)u(d) = U(A) > ,cpp(d). By definition of

1C(i],dwe also have ) - p(c)u(c) = U(C) > cop(c). If we replace in (18), we

U(A) Y p(d) +U(C) Y ple) =U(B) <Z p(d) + ZMC)) :

deD ceC deD ceC

Put differently,

(U(A) = U(B)) (Z p(d)> = (U(B) - U(C)) (ZP(C))

ceC
or

U(A) —U(B) _ 2eec?(©)

U(B)-U(C) Yuepp(d)
Remember that this holds for any A, B,C. In particular, for any B = {b}.
Thanks to the continuity of u, we can choose b so that U(B) = u(b) is between
U(C) and U(A) and is as close as we want to U(A) or U(C'). We can therefore
make the ratio in the left-hand side of (19) as close to 0 or co as we wish. So,
with A and C' given, Richness implies the existence of a set D with >_ ., p(d)
arbitrary close to 0 or co.

Suppose p is non-decreasing. If we want to make ), ,p(d) arbitrary

close to 0, then maxgep p(d) must be arbitrary close to 0. This implies that
lim, —inf x p(z) = 0 and, hence, maxgep d must be arbitrary close to inf X.

(19)

e If u is non-decreasing, then U(D) < U(A) (if we have chosen A > C).
This contradicts (17) and proves that w continuous and non-decreasing is
not compatible with p non-decreasing.

e If u is non-increasing, then U(D) > U(A) (if we have chosen A < C).
This contradicts (17) and proves that u continuous and non-increasing is
not compatible with p non-decreasing.

Suppose p is non-increasing. If we want to make »,_, p(d) arbitrary close to
00, then minge p p(d) must be arbitrary large. This implies that lim,_,qup x p(x) =
oo and, hence, minge p d must be arbitrary close to sup X.

e If u is non-decreasing, then U(D) > U(A) (if we have chosen A < C).
This contradicts (17) and proves that « continuous and non-decreasing is
not compatible with p non-increasing.
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e If w is non-increasing, then U(D) < U(A) (if we have chosen A = C).
This contradicts (17) and proves that u continuous and non-increasing is
not compatible with p non-increasing. QED

In the next proposition, we establish that if X is a topological space (for in-
stance a separable one of the kind considered in [2]), then no Uniform Expected
Utility criterion in which u is a continuous utility function satisfies the richness
condition. This shows that the characterization of the CEU family of criteria
that we provide in this paper does not contain all members of that family be-
cause it excludes, at least in topological environment, the UEU subclass of that
family that is obtained by considering only constant functions p and continuous
functions u.

Proposition 2 Let X be a topological space, and let = is a non-trivial UEU
ranking with u continuous. Then - violates the Richness condition.

Proof: Since 7z is not trivial, there are A = {a},C = {¢} with a,c € X
such that u(a) > u(c). Let D be a set such that D ~ A. The set D can be
a singleton (D = {d} with u(d) = u(a)) or a set with several elements. If D
is a singleton, then (D U C) = (u(a) + u(c))/2. If D is not a singleton, then
(DUC) > (u(a) + u(c))/2. So, for all D ~ A, (DUC) > (u(a) + u(c))/2. The
continuity of v implies that, for any real number « between u(a) and u(c), there
exists B = {b} € P(X) such that u(b) = . If we choose « strictly smaller than
(u(a) + u(c))/2, then (DUC) > (B) and DUC > B, for any D with D ~ A.
Hence, Richness does not hold. QED.

4.3 Uniqueness of the functions « and p

To be provided

5 Comparative Ignorance or Ambiguity aversion

To be provided

6 Conclusion

To be provided
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