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Abstract

I use Bayesian tools to dynamically test conditional factor pricing models from the point of view of an

investor who recognizes that parameters are uncertain, time-varying, and predictors are an imperfect

proxy for macroeconomic and firms-specific news. Time-varying alphas, betas and idiosyncratic risks

are jointly estimated in a single-step together with no-arbitrage restrictions. The test can be applied for

a single asset or jointly across portfolios. As empirical application, I estimate over fifty years of post-

war monthly data a conditional version of the CAPM and multi-factor models on size, book-to-market

and momentum deciles portfolios. I show that once the dynamic and uncertain nature of the portfolios

returns generating process is fully acknowledged, the null that conditional factor models hold is not

sensibly rejected both in the time series and in the cross-section.
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1 Introduction

Traditional empirical methodologies to test mean-variance efficiency in factor asset pricing mod-

els assume either factor loadings are constant, parameters are observable, or eventual time vari-

ation in risk exposures can be exactly characterized by a set of known predictors. However, a

long history of evidence shows that factor loadings are not constant over time, parameters are

uncertain, and risk exposures respond to macroeconomic and firm-specific news which are, at

least for the most part, unpredictable.1

I introduce a methodology to jointly estimate time-varying alphas, betas, idiosyncratic risks

and factors risk premia. Such a joint estimation scheme sidesteps the crucial issues of tra-

ditional two-steps regression-based methods (see e.g., Petersen 2009 and Kan, Robotti, and

Shanken 2013). I develop estimators condition on available information about portfolios re-

turns, but realizing knowledge is limited in two key aspects. First, the true parameters of

the returns generating process are not observable. While acknowledging that betas and id-

iosyncratic risks vary considerably over time, such uncertainty on structural parameters indeed

persists even after observing 50 years of portfolios returns. Second, observable predictors used

to forecast the betas and the factors risk premia deliver only an imperfect proxy for macroeco-

nomic and company-specific news, implying a stochastic dynamics. I use Bayesian tools, which,

by construction, helps generate posterior distributions of virtually any function of the structural

parameters/statistics of factor models.

Based on such estimation procedure, I propose a methodology to dynamically test con-

ditional factor models both in the time series and in the cross-section. Under the null of a

correctly specified factor model, an asset’s unexplained return should not be statistically signif-

icant over time after controlling for the asset’s exposures to sources of systematic risks. Such

null hypothesis can be seen as a linear restriction on the dynamics of a more general factor

pricing model. I develop a method to compute the dynamic posterior probabilities of linear

restrictions on assets’ excess return using the output of the joint estimation scheme and the

principle of the Savage-Dickey density (SDD) ratio (see Verdinelli and Wasserman 1995 and

1See among others, Fama and French (1997), Harvey (2001), Jostova and Philipov (2005), Lewellen and
Nagel (2006), Ang and Chen (2007), Nardari and Scruggs (2007), Adrian and Franzoni (2009), Petersen (2009),
Ang and Kristensen (2012) and Bianchi, Guidolin, and Ravazzolo (2014).
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Koop, Leon-Gonzalez, and Strachan 2010). Major advantages of this methodology are that;

(1) fully integrates parameter uncertainty, (2) can be applied to both single assets and across

portfolios, and (3) is recursive in nature as built conditional upon the information available at a

given time t. More prominently, the dynamic nature of the test allows to compute the posterior

probability that the null of a factor model holds at time t, but does not necessarily holds at

other times.

Traditional empirical methodology to test factor pricing models implement rolling window

estimates of asset betas from time series regressions, and use them to estimate risk premia

via cross-sectional regressions (e.g. Fama and MacBeth 1973). Unless additional assumptions

are introduced, time-varying factor loadings can distort standard tests which makes most of

the inferential statements commonly made invalid (see Pagan 1984, Ang and Chen 2007, Pe-

tersen 2009 and Kan et al. 2013). Even though asymptotic adjustments can be introduced, it

remains unclear if such bias-corrected inference is indeed reliable in finite samples, especially

given the sample size commonly used in testing conditional factor pricing models. I take im-

portant steps beyond this approach by developing an exact finite-sample testing framework for

conditional factor pricing models.

This paper builds on a literature advocating the use of Bayesian methods to estimate time-

varying risk exposures and risk premia, and more generally test asset pricing models, such as

McCulloch and Rossi (1991), Geweke and Zhou (1996), Jostova and Philipov (2005), Ang and

Chen (2007) and Nardari and Scruggs (2007). In particular, Geweke and Zhou (1996) show how

to obtain exact posterior distributions for functions of interest in factor pricing models, while

Ang and Chen (2007) show that under the null of time-varying betas, standard OLS inference

produces inconsistent estimates. In the spirit of McCulloch and Rossi (1991) and Geweke and

Zhou (1996), I provide an exact finite-sample testing framework for APT-like factor models.

My work extends this literature in several important ways. I provide a joint estimation

framework for time-varying betas, idiosyncratic risks and risk premia without having to in-

strument risk exposures and premia with observable predictors. For example, Geweke and

Zhou (1996) provide a single-step Bayesian estimation setting to sidestep the drawbacks of tra-

ditional regression-based tests on factor pricing models. This turns out to be a special case in

this paper where betas and idiosyncratic risks are considered constant over time. The economet-
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ric framework parallels that in Bianchi et al. (2014), who focus on macro-based factor pricing

models and investigate the effect of having discrete breaks in the dynamics of structural pa-

rameters. In addition, I provide a dynamic method to recursively test the null of a conditional

factor model both in the time series and in the cross-section in a unified setting, which the

earlier literature did not provide.

Empirically, the paper is focused on conditional versions of some of the most common factor

pricing models. These are tested both in the time series and in the cross-section, both on single

portfolios and jointly across assets. In addition to the basic conditional CAPM, I study the

well-known three-factor model of Fama and French (1993), together with the four-factor model

proposed in Charhart (1997). In general, their size, value and momentum factors are assumed

to capture investors’ expectations on business cycle effects (see e.g. Liew and Vassalou 2000,

Cochrane 2001, Vassalou 2003 and Campbell and Diebold 2009). The main empirical analysis

uses the standard 25 size and book-to-market portfolios of Fama and French (1993) and ten

momentum deciles portfolios as test assets. Momentum portfolios are included to mitigate the

strong common structure which arguably characterize the Fama-French portfolios (see Lewellen,

Nagel, and Shanken 2010 for a detailed discussion). I show that, once the dynamic and uncertain

nature of the portfolios returns generating process is fully acknowledged, time series test do no

reject the null of factor pricing models. Interestingly, the results on the recursive cross-sectional

test highlights the outperformance of the three-factor Fama-French model. Indeed, conditional

specifications of both the CAPM and the four-factor model reject the null of no pricing error

in the cross-section across the period 2001/2002 (i.e. 9/11, Financial scandals, Iraq war) and

across the recent great financial crisis.

Consistent with previous literature, I show that conditional betas do vary considerably over

time and differ across different portfolios. Time series averages exhibit the usual cross-sectional

pattern. Small-cap stocks are riskier than large-cap stocks, stocks with high book-to-market

ratios are riskier than those with low ratios, and past losers are on average riskier than past

winners. The exposures of momentum-sorted portfolios to both size and value factors are not

systematically different from zero across the sample. Idiosyncratic risks also vary considerably

over time, and peaks around the period 2001/2002 (dot.com bubble burst, financial scandals,

Gulf War II, 9/11 attacks), and across the recent financial crisis.
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The remainder of the paper proceeds as follows. Section 2 lays out the empirical framework.

Section 3 reports the data, prior calibration and reports the main empirical results. Section 4

discusses sources of instability in the betas and the role of idiosyncratic risks. Next, Section 5

presents further assessment of models performances, then Section 6 concludes. I leave to the

appendix derivation details.

2 A Bayesian Framework for Conditional Factor Models

Conditional factor pricing models posit a linear relationship between excess returns on N assets

and a set of K << N common tradeable factors. In general, these factors are assumed to

capture investors’ expectations on business cycle effects (see e.g. Liew and Vassalou 2000,

Cochrane 2001, Vassalou 2003 and Campbell and Diebold 2009). If we call the process for the

risk factors Ft = [F1,t, ..., FK,t]
′ and yi,t the period excess return on asset or portfolio i = 1, ..., N ,

computed as yi,t = [(Pi,t−Pi,t−1+Di,t)/Pi,t−1]−rf,t where Pi,t denotes the price of any asset or

portfolio, Di,t any dividend or cash flow paid out by the asset, and rf,t the one-period interest

rate, a typical conditional factor model can be written as:

yi,t = βi0,t + F ′
tβi,t + σi,tǫi,t ǫi,t ∼ N(0, 1) i = 1, ..., N (1)

where βi,t = [βi1,t, ..., βiK,t]
′ the K-dimensional vector of asset specific exposures to risk factors.

The conditional alphas β0i,t is often interpreted as pricing error in the time series of the ith

portfolio return. Indeed, if Ft = 0, then (1) implies that yi,t = β0i,t + σi,tǫi,t. This violates

mean-variance efficiency stating that in absence of any risk factor, the risk premium for the

ith portfolio turns out to be different from zero. In the conditional version of Ross’ (1976)

APT, or in Merton (1973) inter-temporal CAPM (ICAPM), the pricing kernel, Mt+1, must be

linearly dependent on the K-dimensional vector of risk factors. As such, under no-arbitrage

opportunities, the fundamental pricing equation Et [Mt+1yi,t+1] = 0 implies that

Et[yi,t+1] ≈ V art [Ft+1]×

(

Covt [yi,t+1, Ft+1]

V art [Ft+1]

)

= γ′tβi,t (2)
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namely, the expected excess returns of the ith asset/portfolio over the interval [t, t+1], Et[yi,t+1],

is related to its “current” betas, βi,t, and the factors risk premia, γ′t = [γ1,t, γ2,t, ..., γK,t] (see

Cochrane 2001 for more details). This no-arbitrage restriction is known to hold under a variety

of alternative assumptions, and conditional on the information publicly available at time t (see

Bossaerts and Green 1989 and Ferson and Harvey 1991). The equilibrium condition (2) does

not imply any statistical significant intercept γ0,t 6= 0. Indeed, in the absence of arbitrage all

zero-beta assets should command a rate of return that equals the short-term rate, which is zero

if no risk-less investable assets are considered.

2.1 Bayesian Estimation with Pricing Restrictions

The asset pricing theory leaves unspecified the exact nature of conditioning information under-

neath the dynamics of alphas, betas and idiosyncratic risks. Early approaches describe alphas

and betas as linearly dependent in a set of observable state variables aimed at capturing broad

economic conditions. These require the investors to exactly know the right state variables

(e.g. Shanken 1990, Jagannathan and Wang 1996, Lettau and Ludvigson 2001 and Adrian and

Franzoni 2009). Other approaches, such as French, Schwert, and Stambaugh (1987), Campbell

and Voulteenaho (2004), Fama and French (2005), Lewellen and Nagel (2006) and Ang and

Kristensen (2012), rely on a series of constant parameter models in the spirit of Fama and

MacBeth (1973).

By assuming that a small set of instrumental variables approximate a potentially large

amount of both macroeconomic and company-specific news might lead to misleading inference,

as the factors betas become very sensitive to the choice of instruments (see e.g. Harvey 2001).

Also, Ang and Chen (2007) show that constant parameter models induce to biased inference

under the null of time varying alphas and betas. Even using high-frequency returns to approx-

imate the dynamics of factors risk exposures, it is not clear how we can link those estimates

to test for the cross-sectional implications implied by the beta representation in (2). Indeed,

two-steps procedures such as the Fama and MacBeth (1973) are quite inefficient (see e.g. Pe-

tersen 2009 and Bianchi et al. 2014). In this paper, I characterize the relationship between

excess returns, factors and risk premia, as well as the time-varying dynamics in factor loadings

and idiosyncratic volatility as a state-space model where the linear factor model (1) and the
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non-linear no-arbitrage restriction (2) are jointly considered;

yi,t = βi0,t + F ′
tβi,t + σi,tǫi,t ǫi,t ∼ N(0, 1) (3)

yi,t = γ0,t + γ′1:K,tβi,t−1 + ei,t ei,t ∼ N(0, ω2) (4)

where E[ǫi,t] = E[ǫi,tFj,t] = E [ei,tβij,t−1] = 0 for all i = 1, ..., N and j = 1, ...,K. The error

term ei,t is due to the fact that (4) represents a statistical approximation of the equilibrium

condition (2). Time varying parameters βij,t and σit are described as latent states without

specifying ad-hoc conditioning information. The implicit assumption is that macroeconomic

and company-specific news that affect risk exposures either cannot be exactly anticipated or

arrive randomly (e.g. Jostova and Philipov 2005). Therefore, alphas, betas and idiosyncratic

risks evolve for each i = 1, ..., N and j = 0, ...,K as

βij,t = (1− δij)βij + δijβij,t−1 + τijηij,t ηij,t ∼ N(0, 1) (5)

ln
(

σ2
i,t

)

= (1− δiσ) lnσ2
i + δiσ ln

(

σ2
i,t−1

)

+ τiσηiσ,t ηiσ,t ∼ N(0, 1) (6)

where · indicates the unconditional mean, and δij the persistence of the exogenous shocks

ηij,t, for j = 0, ...,K, σ. This dynamics is sufficiently general to include a variety of existing

specifications and capture a wide set of economic scenarios. Frequent shocks, such as changing

firm characteristics, can be captured through quickly mean-reverting betas, while a high level of

persistence δij captures those shocks at low frequencies, (e.g. changes in the level of leverage).

2.2 Prior Specification

For parameter inference in (3)-(6) I opt for a Bayesian approach. Such an approach allows to

characterize virtually any function of the model structural parameters (e.g. cross-sectional R2,

variance ratios, long-run time series pricing errors, etc.). For each asset/portfolio the model

parameters are θi =
(

δij , βij , τ
2
ij , δiσ, lnσ

2
i , τ

2
iσ

)

. As the model is linear in both states and

parameters I consider conjugate priors. For the parameters of the alphas and risk exposures
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βij,t, I use a Normal-Inverse-Gamma prior structure (see West and Harrison 1997);

(

δij , βij , τ
2
ij

)

∼ NIG
(

mij
β , B

ij
β , ν

ij
β /2, ν

ij
β s

ij
β /2

)

i = 1, ..., N (7)

where mij
β , B

ij
β represent the location and scale hyper-parameters of the normal distribution, νijβ

the initial degrees of freedom and νijβ s
ij
β the scale parameter of an inverse-gamma distribution.

I assume the same conjugate Normal-Inverse-Gamma prior for idiosyncratic risks;

(

δiσ, lnσ2
i , τ

2
iσ

)

∼ NIG
(

mi
σ, B

i
σ, ν

i
σ/2, ν

i
σs

i
σ/2
)

i = 1, ..., N (8)

The cross-sectional pricing error and the set of risk premia γt =
(

γ0,t, γ
′
1:K,t

)

are not dynamic

in nature. Indeed, time-variation is inherited from the instability of the factors risk exposures.

Thus, the estimation of the no-arbitrage restriction can be simplified as a multi-variate linear

regression, conditional on the betas. Given the independence structure of the error term ei,t in

(4), I assume again a conjugate prior structure of the form

(

γ, ω2
)

∼ NIG
(

γ,Γ, ω/2, ωn/2
)

(9)

with γ, Γ, ω and ωn the priors location and scale hyper-parameters.

2.3 Posterior Simulation

Posterior results are obtained through the Gibbs sampler algorithm developed in Geman and Ge-

man (1984) in combination with the data augmentation technique by Tanner and Wong (1987)

and Frühwirth-Schnatter (1994). The latent variables B = {βi,t}
N T
i=1,t=1 and Σ =

{

σ2
i,t

}N T

i=1,t=1
,

are simulated alongside the model parameters θ = {θi}
N
i=1 and the risk premia γ =

{

γ0t, γ
′
1:K,t

}T

t=1
.

The initial step of the Gibbs sampler is to characterize the complete likelihood function, namely,

the joint density of the data and the state variables.

p(Y,B,Σ|θ, γ, F ) =
T
∏

t=1

(

N
∏

i=1

p(yit|Ft, βi,t, σ
2
i,t, γ)p(σ

2
i,t|σ

2
i,t−1, δiσ, σ

2
i , τ

2
iσ) (10)

×
K
∏

j=0

p(βij,t|βij,t−1, δij , βij , τ
2
ij)



 ,
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where F = {Ft}
T
t=1, and Y = {yt}

T
t=1 with yt = (y1,t, y2,t, ..., yN,t) the vector of assets/portfolios

excess returns. Combining the priors with the complete likelihood, we obtain the posterior

density p(θ,B,Σ, γ|R,F ) ∝ p(θ, γ)p(R,B,Σ|θ, γ, F ). The Gibbs sampler is a combination of

the Forward Filtering Backward Sampling (FFBS) of Carter and Kohn (1994) and Omori, Chib,

Shepard, and Nakajima (2007). At each iteration of the sampler we sequentially cycle through

the following steps:

1. Draw B conditional on Σ, θ, R and F .

2. Draw θβ conditional on B, R and F .

3. Draw Σ conditional on B, θ, R and F .

4. Draw θσ conditional on B, R and F .

5. Draw γ conditional on B and θ.

I use a burn-in period of 2,000 and draw 10,000 observations storing every other of them

to simulate the posterior distribution of parameters and latent variables. The resulting auto-

correlations of the draws are very low.2 A more detailed description of the Gibbs sampler and

the corresponding convergence properties are given in Appendix D.

2.4 Testing Pricing Restrictions

Tests of conditional factor models boil down to answer questions like: “What is the probability

that the pricing error is null at time t, given the in-sample information available up to time t?”.

Existing methods mostly rely on unconditional moments, biased-corrected asymptotic properties

of estimators, and treat parameter estimates as the true values in the returns generating process.

Given the sample size commonly used in testing factor pricing models, it remains unclear if such

asymptotic inference is reliable in finite-samples. This is true even if we correct for error-in-

measurement, heteroskedasticity, selection biases, etc. Yet, the assumption that parameters are

observable is objectively restrictive. Indeed, in a classical setting, inference on pricing errors is to

be read as contingent on the econometrician having full confidence in his parameters estimates,

which is, of course, rarely the case.

2In order to gain a rough idea of how well the chain mixes in our algorithm we follow Primiceri (2005) and
check the autocorrelation function of the draws.
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In this paper, I develop an exact finite sample methodology to dynamically test conditional

factor models fully acknowledging uncertainty on the structural parameters of the returns gen-

erating process. Such testing methodology can be applied both on single assets and jointly

across portfolios. Yet, I develop the method to test conditional factor models both in the time

series and in the cross-section. More specifically, I test the hypothesis that (3) holds at a par-

ticular point in time t, without requiring the restriction to be imposed at any other time. In

the time series, I test the null that the pricing errors are not statistically significant, both on

single portfolios in isolation, H0 : βi0,t 6= 0 against the alternative H1 : βi0,t 6= 0, and jointly

across assets H0 : β10,t = β20,t = ... = βN0,t = 0. These can be written more compactly as

H0 : Hβt = q, with H an R ×N(K + 1) selection matrix, q an R-dimensional vector of zeros,

R the number of restrictions, βt =
(

β′
0,t, β

′
1,t, ..., β

′
K,t

)

and β′
j,t = (β1j,t, β2j,t, ..., βNj,t) the risk

exposures on the jth factor across assets/portfolios.

Hypothesis testing can be handled by computing standard Bayes factors. A convenient way

to calculate Bayes factors comparing a restricted, H0, to an unrestricted model, H1, is the

so-called Savage-Dickey density (SDD) ratio (see Verdinelli and Wasserman 1995). The SDD

ratio represents the ratio of the posterior p
(

β10,t = β20,t = ... = βN0,t = 0|Zt,H1

)

and prior

p (β10,t = β20,t = ... = βN0,t = 0|H1) marginal probabilities. Posterior probabilities are com-

puted condition on information available up to time t, Zt =
(

Y t, F t
)

, with Y t = (y1, ..., yt) and

F t = (F1, ..., Ft) the recursive information about portfolios returns and risk factors, respectively.

The main advantage of the SDD ratio is that involves only manipulation of priors and posteriors

for the conditional factor pricing model. These are readily available from the estimation output.

If the prior structure is common for both the model under the null H0, and the alternative H1,

the following relationship is satisfied;

p (βt|Hβt = q,H1) = p (βt|H0)

then the Bayes factor comparing the null H0 and the alternative H1 can be computed as;

BF t
0,1 =

p
(

Hβt = q|Zt,H1

)

p (Hβt = q|H1)
(11)

Both the numerator and the denominator can be conveniently sampled from the output of the
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MCMC scheme. The marginal posterior and prior probabilities in (11) are defined as

p
(

Hβt = q|Zt,H1

)

=

∫

p
(

Hβt = q|Zt,H1, θ
)

p
(

θ|ZT
)

dθ (12)

p (Hβt = q|H1) =

∫

p (Hβt = q|H1, θ) p
(

θ|ZT
)

dθ (13)

Conditional on idiosyncratic risks and the N(K + 1)−dimensional vector of parameters θ, it

can be shown that

p
(

Hβt = q|Zt,H1, θ
)

= N
(

Hmt, HCtH
′
)

(14)

p (Hβt = q|H1, θ) = N
(

Hβ
t
, HV tH

′
)

(15)

wheremt = E
[

βt|Z
t, θ
]

, and Ct = V ar
[

βt|Z
t, θ
]

the mean and variance of factors risk exposures

conditioned on the information available upto time t, while for the prior

β
t
= β + δtm0 (16)

V t = δtC0

(

δt
)′
+

t−1
∑

j=0

δjτ
(

δjτ
)′

(17)

for initial values m0 and C0 (see Appendix B for more details). Under the assumption of correct

specification of conditional factor models, the intercept γ0,t should not be statistically different

from zero. Therefore, a cross-sectional test involves to investigate the null H0 : Hγt = q, against

the alternative H1 : Hγt 6= q, where H is a R × (K + 1) selection matrix, q an R-dimensional

vector of zeros, R the number of restrictions (i.e. R = 1 in this case). Again, hypothesis testing

can be handled by computing a Bayes factor comparing the unrestricted, H1, to the restricted

H0 cross-sectional regression at time t;

BF t
0,1 =

p (Hγt = q|βt,H1)

p (Hγt = q|H1)
(18)

Given the independence of γt estimates across time, both the numerator and the denominator

can be conveniently sampled from the output of the MCMC scheme. The marginal posterior
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and prior probabilities in (18) are defined as

p (Hγt = q|βt,H1) =

∫

p (Hγt = q|βt,H1, θ) p
(

θ|ZT
)

dθ (19)

p (Hγt = q|H1) =

∫

p (Hγt = q|H1, θ) p
(

θ|ZT
)

dθ (20)

where θ = ω2. From the conjugate prior structure showed above it is easy to see that

p (Hγt = q|βt,H1, θ) = N
(

Hγ,H
(

ω2Γ
)

H ′
)

(21)

p (Hγt = q|H1, θ) = N
(

Hγ,H
(

ω2Γ
)

H ′
)

(22)

where

Γ =
(

Γ−1 +X ′
γXγ

)−1
with Xγ = [ι, β1:N,t]

γ = Γ
(

Γ−1γ +X ′
γyt
)

with yt = (y1,t, ..., yN,t), and β1:N,t the (N × K) matrix of betas of each portfolio on each

factor, except the Jensen’s alpha βi0,t. From the Bayes factors, (11) and (18), we can compute

posterior probabilities of the null hypothesis p
(

H0|Z
t
)

. Assuming equal prior over the null and

the alternative hypothesis, p (H0) = p (H1), we can compute (see Robert 2007, Ch.5);

p
(

H0|Z
t
)

=

[

1 +
1

BF t
0,1

]−1

=
BF t

0,1

1 + BF t
0,1

(23)

Note p
(

H0|Z
t
)

might be interpreted as a p-value. Unlike standard p-value, however, the poste-

rior probability naturally penalizes for the complexity of the model, being a direct function of

the Bayes factor BF t
0,1. Same this applies for p (H0|βt). This addresses the so-called Lindleys

paradox which is the apparent conflict between standard frequentist and Bayesian hypothesis

testing. The conflict arises since standard t-statistics and corresponding p-values tend to go in

favour of the null as the sample size increases.
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3 Empirical Analysis

Following McCulloch and Rossi (1991), Geweke and Zhou (1996) and Bianchi et al. (2014), I

jointly estimate pricing errors, risk exposures and premia in a single step, then overcome the

issues of standard two-step methodologies. The system (3)-(6) is estimated via Bayesian single-

step estimation scheme detailed in Appendix A. As application, I consider three main factor

models common in the empirical finance literature. The first model is a conditional version of the

Sharpe-Lintner CAPM. The CAPM performed well in early tests but has fared poorly since (see

e.g. Fama and MacBeth 1973). The second model, which extends the CAPM by including two

others risk factors, is the Fama and French (1993) three-factor model (FF3 henceforth) which

includes two additional risk factors, beyond market risk, to proxy for size and value effects.

The third model is the four-factor model (FF4 henceforth) proposed in Charhart (1997), which

extends the three-factor model of Fama and French (1993) by including a portfolio to capture

momentum effects on stock returns.

3.1 Data

The empirical analysis focuses on a set of standard test portfolios sorted by size, book-to-

market ratio and momentum. I use the twenty-five portfolios constructed by double-sorting the

stocks of NYSE/AMEX/NASDAQ along size and book-to-market dimensions. The portfolios

are constructed at the end of each June using the corresponding market equity and NYSE

breakpoints. Size is the market value of equity at the end of each June, and Book-to-Market

(BM) is the ratio of book equity for the last fiscal year to market equity at December of the

same year. In addition, I use deciles portfolios sorted on past performances. These momentum

portfolios are constructed sorting every month into deciles stocks based on past six-month

realized returns, as in Jegadeesh and Titman (1993). The portfolio returns are value-weighted

averages in each group.3 The aggregate market portfolio is represented by the value-weighted

NYSE/AMEX/NASDAQ index, taken from the Center for Research in Security Prices (CRSP).

I use monthly returns in excess of the 1-month T-bill rate. The SMB, HML and UMD are taken

from Kenneth French’s website. SMB represents the return spread between portfolios of stocks

3The data are obtained from the Kenneth French’s website
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with small and large market capitalization, while HML is the return difference between “value”

and “growth” stocks, namely portfolios of stocks with high and low book-to-market ratios.

Finally, UMD is a zero-cost portfolio that is long previous 12-month return winners and short

previous 12-month loser stocks. The sample period is 1963:07-2013:12. For the sake of exposition

the deciles momentum portfolios are clustered in quintiles. The first ten years of monthly

observations (1963-1973) are used to calibrate the hyper-parameters of the prior distributions.

Given that these portfolios are widely used in the literature, I omit providing summary statistics

for their returns. Table 1 reports usual OLS estimates of unconditional alphas across factor

models. Standard errors are corrected for both heteroskedasticity and autocorrelation. Bold-

faced numbers denote estimates statistically significant at the 5% confidence level. Panel A

shows the pricing error for the CAPM.

[Insert Table 1 about here]

After adjusting for market risk, small stocks tend to show strong unexplained excess returns.

Interestingly, large stocks do not show statistical significant unconditional pricing error. The

alpha of past loser stocks change in sign turning negative. Panel B shows the same unconditional

pricing errors according to the three-factor Fama-French model. As we would expect from

previous literature, the amount of unexplained returns sensibly drops. However, both growth

stocks and momentum-sorted portfolios do not seem to be sensibly priced. Third panel shows

the results of the four-factor model FF4. Again, the amount unexplained returns sensibly

reduces, albeit statistically significant for 6 out 30 portfolios.

3.2 Prior Choices and Parameters Estimates

Realistic values for the different prior distributions obviously depend on the problem at hand.

The prior belief on δij are such that changes in βij,ts are highly persistent and the impact of

unexpected news ηij,t can potentially be large. This view is consistent with both economic theory

and previous empirical studies. Gomes, Kogan, and Zhang (2003) suggest that risk exposures

are mainly a function of productivity shocks which take place at a business cycle frequency.

Santos and Veronesi (2006) argue that stock betas are driven by the ratio of labor income
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to total consumption, which is also highly persistent. Petkova and Zhang (2005) confirmed

empirically that the market beta reverts to its long-term mean over a period of time consistent

with the business cycle. Ang and Chen (2007) show that conditional betas are quite persistent

once investors uncertainty is taken into account. Finally, Adrian and Franzoni (2009) suggest

that low frequency fluctuations in the ex-ante market risk exposure can effectively support the

conditional CAPM for value portfolios. Since portfolios returns are linearly dependent on the

betas, to ensure stationarity the persistence parameter should be less than one in absolute value,

|δij | < 1, for j = 0, 1, ...,K. Note, (5) nests a model with perfect mean reversion (i.e. δij = 0).

A non-parametric dynamics as in Campbell and Voulteenaho (2004), Fama and French (2005),

and Lewellen and Nagel (2006), can then be seen as a special case of the model (3)-(6) with

δij = 0 for j = 0, 1, ...,K and i = 1, ..., N .

In order to reduce the sensitivity of posterior estimates to the prior specification, I use the

initial ten years of monthly observations on portfolios and factor to train the hyper-parameters

of weakly information priors. Table 2 reports the posterior estimates of the parameters from the

three-factor Fama-French model. In order to keep the results readable, I report the results for

only six portfolios: Small-Growth, Small-Value, Large-Growth, Large-Value, Loser and Winner.

Top panel shows that the news ηi0,t do not have a strong persistent effect on βi0,t, meaning

the Jensen’s alphas shows a strong mean-reverting path across the sample. Interestingly, the

unconditional alphas βi0 are statistically significant for just two out six portfolios. Despite their

low duration, news on the time series pricing error have a strong short-term effect as the scale

parameters τi0 are large, spanning from 1.745 for Small-Value to 1.544 for the Small-Growth

portfolio.

[Insert Table 2 about here]

Second panel shows that deviations of market risk exposures to their unconditional mean are

much more persistent. The monthly autocorrelation of the market betas ranges from 0.93 for the

Large-Growth portfolio, to 0.96 for the Small-Value stocks. The impact of the news τi1 is sensibly

lower, on average, than for the conditional alphas. The high persistence of the betas is consistent

with both economic theory and previous empirical studies (e.g. Gomes et al. 2003, Petkova and

Zhang 2005, Jostova and Philipov 2005, Santos and Veronesi 2006, Ang and Chen 2007, and

Adrian and Franzoni 2009). Third and fourth panels show the results for conditional betas on
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size and value risk factors, respectively. In general, both SMB and HML show highly persistent

betas, with a marginally higher effect of unexpected news on both. Finally, bottom panel shows

that idiosyncratic risks are highly persistent as well. The parameters estimates in Table 2, show

that conditional alphas are likely affected by frequent and sizable events, such as short-lived

changing economic conditions or firm’s characteristics. On the other hand, risk exposures and

idiosyncratic risks are more likely to be affected by smaller and less transitory events, such as

permanent changes in productivity, leverage or cash flows.

3.3 Pricing Errors

3.3.1 Jensen’s Alpha. A first direct evaluation on conditional factor models is to test the

null that the joint alphas are not statistically different from zero conditioning on the information

available upto time t. I test this restriction across both the CAPM, the three-factor Fama-

French model and the FF4 specification. Figure 1 reports the posterior probability of the

null H0 computed from (11) and (23), for each of the factor models and across the sample

1973:08-2013:01. Top panel shows the results for the CAPM. Except occasional nuances, the

null hypothesis that the CAPM explain the time series of portfolios returns can not be sensibly

rejected. The posterior probability of the null hypothesis p
(

H0|Z
t
)

is indeed well above the

standard 5% threshold value.

[Insert Figure 1 about here]

Mid panel shows the results from the Fama-French three-factor model. The FF3 safely shows

absence of systematic mispricing across the time series of test portfolios. The results from the

four-factor model FF4 reported in the bottom panel, confirm the performance of the CAPM and

the FF3. The overall evidence is that multi-factor models provide a fairly accurate description

of the in-sample time-series variation across the test portfolios. A further inspection of assets

specific Jensen’s alphas confirm this conclusion. Figures 2-4 report the posterior probabilities

of the no-pricing error null hypothesis for each of the portfolios under investigation. For the

sake of exposition, I report the results for only six portfolios: Small-Growth, Small-Value,
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Large-Growth, Large-Value, Loser and Winner. Figure 2 shows the results for the CAPM.

[Insert Figure 2 about here]

Except for occasional nuances, the null hypothesis that the CAPM explain the time series

of portfolios returns cannot be systematically rejected. In other words, there are no sensible

evidences of systematic deviations of test portfolios to mean-variance efficiency in a conditional

sense. However, the performance of the CAPM tends to deteriorate across the recent financial

crisis, and around 2004 for the Small-Value portfolio. Figure 3 and 4 show the results for the

three- and four-factor model, respectively.

[Insert Figure 3 and 4 about here]

Both of the conditional factor models considered perform remarkably well. The null hypothesis

of no-pricing error is practically never rejected at the 1% confidence level across the sample.

As a whole, multi-factor models such as FF3 and FF4 do show explanatory power on the in-

sample variation of test portfolios, at least in the time series. Table 3 confirms these results.

Top panel shows the results for the CAPM. The average alphas across the test portfolios is

never statistically different from zero. The in-sample variability of conditional estimates, as

shown by the standard errors, is quite high. This means that, despite pricing error might be

significant in terms of magnitude, its inherent uncertainty does not allow to claim any clearly

detectable mispricing. The in-sample variation of conditional alphas is particularly important

for the conditional CAPM, while for the conditional three- and four-factor models standard

errors sensibly drop.

[Insert Table 3 about here]

Despite a lower variability, however, the uncertainty of the Jensen’s alphas estimates is still way

too high to sensibly detect (average) mispricing in the time series of the test portfolios. The

four-factor model (bottom panel) draws the same conclusion of the FF3 model. Such higher

volatility in the Jensen’s alphas is consistent with previous empirical evidence such as Ang and

Chen (2007), Ang and Kristensen (2012), and Bali and Engle (2014). Figures 2-4 suggest that

conditional factor model in its specification (3)-(6) are consistent with mean-variance efficiency.
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Although informative, these evidences are not exhaustive as other terms are involved in the

observationally equivalent unconditional alpha (see Lewellen and Nagel (2006) and Lewellen

et al. (2010)). As far as the dynamics of risk exposures is stationary, and under the null that

the model is correct, the long-run pricing error coincides with the unconditional means of the

alphas, βi0. Table 4 reports the estimation results.

[Insert Table 4 about here]

Top panel shows the results for the conditional CAPM. The unconditional pricing error turn out

to be statistically significant on 6 out 30 test portfolios at the 5% confidence level. Past loser

stocks as well as small-value stocks sensibly deviates from the unconditional mean-variance

frontier. Mid and bottom panels show the model-implied unconditional alphas for both the

FF3 and FF4, respectively. There is little evidence of significant unconditional pricing errors.

Indeed, 2 out of 30 portfolios show a significant pricing error. Interestingly, there is no longer

evidence of a value anomaly across the test portfolios.

3.4 Cross-Sectional Pricing Error

The K + 1-dimensional vector of pricing error and risk premia γt =
(

γ0,t, γ
′
1:K,t

)

is not time-

varying per se. Time variation is inherited from the stochastic nature of factor risks exposures.

Indeed, each of the risk premia is computed directly from the no-arbitrage restriction (2). As

an example, Figure 5 shows the no-arbitrage implied estimates of the conditional market risk

premium.

[Insert Figure 5 about here]

Top panel reports the posterior median of the market risk premium γMKT,t. Clusters of insta-

bility can be found around late 80s, the period 2001/2002 and the recent great financial crisis.

In fact, bottom panel shows that the conditional variance of the market risk premium spikes

around these periods. Interestingly, Figure 5 shows that no clear predictability path arises from

the no-arbitrage restriction. The model-implied conditional variance of the market risk pre-

mium is consistent with direct GARCH(1,1) estimates on the observable market excess returns,

as shown by the red line on the bottom panel. Figure 6 reports the posterior probability of the
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null H0 : Hγt = q computed from (18) and (23), across the sample 1973:08-2013:01. Top panel

shows the posterior probability that the conditional CAPM holds in the cross-section at time t.

The figure makes rather clear that the conditional CAPM does not explain the cross-sectional

in-sample variation of the test portfolios. This is particularly true across the early 80s, the

period 2001/2002 (i.e. 9/11, Financial scandals, Iraq war) and across the recent great financial

crisis.

[Insert Figure 6 about here]

As far as the three-factor model is concerned (mid panel), the null hypothesis that γ0,t = 0

is largely rejected. Expect for occasional nuances, the “p-value” is indeed well above the 5%

threshold. Remarkably, the performance of the FF3 model does not deteriorate during the recent

great financial crisis. Finally, the bottom panel shows the results for a conditional specification

of the four-factor FF4 model. Again, there is evidence of cross-sectional mispricing across the

sample, especially during the period 2001/2002. As a whole, while the CAPM does not provide

sensible results, the Fama-French model does not produce systematic and persistent deviation

from mean-variance efficiency. In fact, apart from occasional fluctuations, separate calculations

show that dynamic posterior probability imply the null is not rejected for more than 99% of

the sample.

4 Sources of Instability and the Role of Idiosyncratic Risk

Lewellen and Nagel (2006) argue that the co-movement between the betas and both the condi-

tional mean and variance of the market risk premium is not sufficient to justify unconditional

pricing errors. In fact, although alphas and betas tend to vary over time, their instability would

have to be implausibly large to explain unconditional asset pricing anomalies such as size, value

and momentum premia. This inference is based on conventional OLS estimates, which rely on

the assumption that market risk premium is stable enough and the market risk exposure is

constant within sub-periods. However, both of these assumptions are violated. Figure 8 shows

the median estimates of the conditional betas from the FF3 model, across six representative

portfolios, and over the sample 1973-2013, monthly. Shaded areas represent the 95% credibility
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regions.

[Insert Figure 7 about here]

Conditional betas can hardly be identified as stable over an annual/quarter horizon. Indeed,

the median conditional beta for Large-Value stocks largely drops around the period 2001/2002.

Losers and Winners portfolios tend to have quite a symmetric volatile exposure to aggregate

market risk. For instance, conditional betas for the Loser portfolios show dramatic changes,

climbing from 0.5 to 2 across the period 2001/2002 and the recent great financial crisis. These

results seem to support the view expressed in Ang and Chen (2007). Such kind of instability is

evident also for the SMB and HML betas. Figure 8 shows the results concerning the exposure

to the SMB size factor.

[Insert Figure 8 about here]

As we would expected the exposure to SMB heavily fluctuates over time, and is not statistically

significant for momentum-sorted portfolios. Interestingly, SMB turns out to have no effect

also on Large-Value stocks, while largely affect both Growth and Small stocks. Similarly,

momentum-sorted portfolios are not sensibly affected by the value risk proxy HML. In fact, the

betas on the HML mimicking portfolio is not significant across the sample for both Loser and

Winner stocks.

At the onset of the paper, I argue that conditional betas imperfectly reflects firm-specific

news and broad economic conditions (e.g. Lettau and Ludvigson 2001). A simple way to check

for such fundamental relation is to explore the correlation between the estimated betas and a

set of well-established, observable, state variables. Table 5 studies the joint explanatory power

of the standard predictors on the market betas. These state variables are the dividend yield

(dy), the earnings-to-price ratio (ep), the dividend-payout ratio (dpr), net equity expansion

(ntis), the default spread (def), log inflation (inf), industrial production (ip), the year-on-year

consumption growth (cons), the M2 monetary aggregate (m2), the lagged excess return on the

market (ret(−1)), and the term spread (term). The sample period is 1973-2013, monthly. Data

are from Goyal and Welch (2008) and the FREDII of the St. Louis Fed.

[Insert Table 5 about here]
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Interestingly, the slopes on the (subset of) test portfolios show that conditional betas might

reflect information on year-on-year consumption growth. In particular market risk exposure

of small stocks tend to be counter-cyclical, while the opposite holds for large stocks. Past

losers also show the well-established negative correlation with the business cycle. The impact

of inflation and net equity issuance confirm the negative opposite effect of economic conditions

on small vs. large stocks, as well as on past losers vs. past winners. Remarkably enough the

adjusted R2 span from 0.23 to 0.51, which means market betas effectively, although imperfectly,

reflect news/information on economic conditions.

Above and beyond economic conditions, a second source of instability in the conditional

betas comes from time variation in idiosyncratic risks. Intuitively, when portfolios returns are

noisy, they become less informative on their exposure to aggregate market risk.4 As such, during

high (low) volatility periods, recursive estimates of the betas tend to down-weight (over-weight)

information from portfolios returns. Figure 7 shows the median estimates of the (square root of)

idiosyncratic risks across six representative portfolios and over the sample 1973-2013, monthly.

Shaded areas represent the 95% credibility regions.

[Insert Figure 7 about here]

As we would expect idiosyncratic risks spike around financial turmoils occurred across the

period 2001/2002 and the recent great financial crisis. Surprisingly conditional variance is

relatively flat across 2008/2009, while instead σ2
i,t climbs for value stocks and past winners.

The relationship between the betas and idiosyncratic risks is particular evident for value and

momentum portfolios. For instance, a spike in conditional variance coincide with a drop in the

market risk exposure for large stocks and past winners. On the other hand, idiosyncratic risk

is positively correlated with small stocks and past losers.

4The easiest way to understand the impact of time-varying idiosyncratic risk on the data informativeness is
to consider the predictive likelihood

p
(

yi,t|βi,t, σ
2
i,t

)

=
1

√

2πσ2
i,t

exp

{

1

σ2
i,t

(

yi,t − βi0,t − F ′
tβi,t

)2

}

which is decreasing in the level of idiosyncratic risk σ2
t . In other words, when returns are noisy, the signal-to-noise

ratio falls and data are less informative. This problem may vanish asymptotically but can be important in this
setting due to small samples issues generated by the high persistence of βi,t and the relatively low signal-to-noise
ratio.
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5 Robustness Checks and Model Assessment

As a further model assessment of the in-sample explanatory power of different conditional factor

models, I run both a variance decomposition test and a (log)marginal comparison across models.

Under the hypothesis of a correct specification, conditional factor models should explain most of

the predictable variation in the excess returns of the test portfolios, and leaving the unexplained

portion as small as possible.5 I decompose at each time t the returns on test portfolios in a risk

related γ′tβi,t plus residual γ0,t + ei,t. From the output of the MCMC procedure I estimate the

posterior distribution of the variance ratios as

VR1,i =
V ar [P (γ′tβi,t|Zt−1)]

V ar[P (yi,t|Zt−1)]
> 0 VR2,i =

V ar [P (γ0,t + ei,t|Zt−1)]

V ar[P (yi,t|Zt−1)]
> 0. (24)

for i = 1, ..., N , where P (ξt|Zt−1) meaning linear projection of ξt onto the set of instrumental

variables Zt−1. The VR1,i should be equal to 1 if the conditional CAPM is correctly specified,

which means that all the predictable variation in excess returns is captured by variation in

market risk; at the same time, VR2,i should be as close as possible to zero. I follow earlier liter-

ature such as Karolyi and Sanders (1998), Ferson and Harvey (1991) and Bianchi et al. (2014),

and use a set of instrumental variables Zt−1 used to tease out the total predictable variation in

excess returns.6 Table 6 reports the results. For the sake of exposition, I report a representative

subset of the test portfolios. Further results are available upon request.

[Insert Table 6 about here]

Columns 3 and 6 present posterior medians of VR1,i and VR2,i obtained from the conditional

CAPM. The variance ratios are encouraging. On average, approximately 50% of the predictable

variation in excess returns is captured by aggregate market risk. Explained predictable variation

that however further increases for the three-factor Fama-French model (column 9). On average,

the FF3 model specification explains around 80% of the in-sample predictable variation across

5Although (4) refers to excess returns, it remains a statistical approximation of the theoretical framework
(2). This implies that in practice it may be naive to expect that market risk fully explain the cross-sectional
variation of risk premia. A more sensible goal then seems to be that γ′

tβi,t explain the predictable variation in
excess returns, rather the straight cross-sectional variance on itself.

6The set of instrumental variables consist of those detailed above. I also include a dummy variable to account
for the so-called January Effect (see Thaler 1987).
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portfolios. Column 15 reports the results for the four-factor model. Despite the increasing per-

formance compared to the CAPM, the FF4 still underperforms the three-factor model. Indeed

FF4, on average explains around 60% of the in-sample predictable variation across portfolios.

Notably, VR1,i varies considerably across portfolios. The ratios are relatively higher large stocks

and momentum portfolios.

Following McCulloch and Rossi (1991), I compute the marginal likelihood of the different

factor model specifications to investigate their overall in-sample statistical performance. Indeed,

the marginal likelihood of a model takes into account the latent nature of betas, idiosyncratic

risks, as well as uncertainty on structural parameters. Intuitively, marginal likelihoods measure

a model ability to explain the entire distribution of test portfolios. From the MCMC output

the marginal likelihood of each model is computed as

p(R|F ;Mi) =

∫

...

∫

p(R|B,Σ, θ;Mi)p(θ,B,Σ|R,F ;Mi)dBdΣdθdΣ, (25)

where Mi identifies the ith model and the joint posterior density p(θ,B,Σ|R,F ;Mi) is com-

puted through the Gibbs sampler (see Appendix A). As a direct function of marginal likelihoods

Bayes’ factors are used as model selection indicators that naturally penalizes the size/complexity

of different models (e.g. Kass and Raftery 1995). Table 7 reports the (log) marginal likelihoods

for different model specifications, as well as the (log) Bayes factors. Again, for the sake of

exposition, I report a representative subset of the test portfolios. Further results are available

upon request.

[Insert Table 7 about here]

The three-factor Fama-French model shows the higher (log) marginal likelihood, both as a whole

(Global), and across the test portfolios. As pointed out in Kass and Raftery (1995), a log Bayes

factor higher than 3/4 shows a decisive evidence in favor of model i versus j. Columns 5 to

7 shows that MKT, SMB and HML may effectively fit better the in-sample properties of the

test portfolios. In fact, Bayes’ factors are anywhere high than 4 in the comparison against the

conditional CAPM, and, except for the S4B5 portfolio, highly significant in comparison to the

four-factor model FF4. In the light of these evidence, the ability to capture any predictable

variation and the (log) marginal likelihood are directly related and raise the same conclusion.
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6 Conclusion

I propose a methodology to jointly estimate time-varying factor loadings and premia in con-

ditional factor models, and fully acknowledges parameter uncertainty in the portfolios returns

generating process. I use Bayesian tools which helps generate posterior distributions of virtu-

ally any function of the structural parameters/statistics of the factor models. Joint estimates

for time-varying betas, idiosyncratic risks and risk premia are implemented without having to

instrument risk exposures and premia with observable predictors. I also provide a method to

dynamically test conditional factor models both in the time series and in the cross-section. This

allows to compute the posterior probability that the null of a factor model holds at time t, but

does not necessarily hold at other times, and can be applied to both single assets and jointly

across portfolios.

I apply the estimation and testing methodology to deciles portfolios sorted on size, book-

to-market and past returns. In addition to the basic conditional CAPM, I test the well-known

three-factor model of Fama and French (1993), together with the four-factor model proposed in

Charhart (1997). I show that, once the dynamic and uncertain nature of the returns generating

process is fully acknowledge, time series test do no reject the null/restriction of no pricing error

across test portfolios. However, a dynamic cross-sectional tests show a superior performance

of the three-factor Fama-French model. Indeed, conditional specifications of both the CAPM

and the four-factor model reject the null of a sensible fit across the period 2001/2002 (i.e.

9/11, Financial scandals, Iraq war) and across the recent great financial crisis. Finally, a model

comparison based on in-sample Bayes factor sensibly shows a better fit of the three-factor model

compared to the CAPM and the four-factor model.

This work suggests some avenues for future research. Other asset pricing models not consid-

ered here could, of course, be examined. In terms of the methodology, the fact that we have to

condition on latent stochastic volatility might represents a limitation which should be explored

further. However, including such non-linearity may required the use of different technologies,

such as, say, particle filters and I leave that for future developments. Finally, the estimation

and testing framework can equivalently be applied incorporating other assets classes such as

bonds and real estate (e.g. REITs).
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Appendix

A Gibbs Sampler

A.1 Step 1. Sampling the Conditional Alphas and Betas

The full conditional posterior density for the time-varying factor loadings is computed using a Forward Filtering

Backward Sampling (FFBS) approach as in Carter and Kohn (1994). The initial prior are sequentially updated via

the Kalman filtering recursion, and the parameters are drawn from the posterior distribution which is generated

by backward recursion (see Frühwirth-Schnatter 1994, Carter and Kohn 1994, and West and Harrison 1997).

A.2 Step 2. Sampling the Parameters θ
ij
β =

(

δij, βij , τ
2
ij

)

I consider a Normal-Inverse-Gamma prior structure (see West and Harrison 1997).

(

δij , βij , τ
2
ij

)

∼ NIG
(

mij
β , Bij

β , νij
β /2, νij

β sijβ /2
)

i = 1, ..., N (A.26)

where mij
β , Bij

β the location and scale hyper-parameters of the normal distribution, νij
β the initial degrees of

freedom and νij
β sijβ the scale parameter of an inverse-gamma distribution. Posterior estimates are obtained once

the factor loadings βij,t are sampled for each t = 1, ..., T . Given the conjugate prior structure the updating

scheme is easily derived as

(

δij , βij |τ
2
ij , βi,1:T

)

∼ N
(

mij
β , τ2

ijB
ij
β

)

(A.27)

(

τ2
ij |βi,1:T

)

∼ IG
(

νij
β /2, νij

β sijβ /2
)

(A.28)

for i = 1, ..., N , with

B
ij
β =

(

(

Bij
β

)−1

+X ′
βXβ

)−1

mij
β = B

ij
β

(

(

Bij
β

)−1

mij
β +X ′

βYβ

)

νij
β = νij

β + T

νij
β sijβ = νij

β sijβ +
(

mij
β

)′ (

Bij
β

)−1

mij
β + Y ′

βYβ −
(

mij
β

)′ (

B
ij
β

)−1

mi
β

where βi,1:T = (βi,1, ..., βi,T ), Xβ = [ι, βi,1:T−1], Yβ = βi,2:T and βi,t = (βi0,t, βi1,t, ..., βiK,t).

A.3 Step 3 and 4. Sampling the Idiosyncratic Risk and the Corresponding

Structural Parameters.

The conditional variances lnσ2
it preserves the standard properties of state space models. From (??) the log of

squared residuals for the ith asset can be defined as

ln
(

yi,t − βi0,t − F ′
tβi,t

)2
= lnσ2

i,t + ut (A.29)

where ut = ln ε2t has a lnχ2(1). As in Omori et al. (2007), I approximate the lnχ2(1) distribution with a finite

mixture of ten normal distributions, such that the density of ut is given by

p(ut) =
10
∑

l=1

ϕl
1

√

̟2
l 2π

exp

(

−
(ut − µl)

2

2̟l

)

(A.30)
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with
∑10

l=1 ϕl = 1. The appropriate values for µl, ϕl and ̟2
l can be found in Omori et al. (2007). At each step

of the algorithm I simulate a component of the mixture at each time t. Given the mixture component I apply

a Kalman filter method, such that idiosyncratic risk can be sampled as the betas. The initial prior of the log

idiosyncratic volatility lnσ2
i,0 is normal with mean -1 and conditional variance equal to 10. To sample θiσ =

(

δiσ, lnσ2
i , τ

2
iσ

)

from its joint posterior p
(

δiσ, lnσ2
i , τ

2
iσ| lnΣi

)

I proceed as in Step 2, with lnΣi =
{

lnσ2
it

}T

t=1
.

The same updating scheme is adopted by defining Xσ =
[

ι, ln
(

σ2
1:T−1

)]

and Yσ = ln
(

σ2
2:T

)

.

A.4 Step 5. Sampling the Factors Risk Premia

Conditonal on the risk exposures, the estimate of the risk premia coincide with a multivariate linear model with

uncorrelated errors. I assume a conjugate prior structure of the form

(

γ, ω2) ∼ NIG
(

γ,Γ, ω/2, ωn/2
)

(A.31)

with γ, Γ, ω and ωn the priors location and scale hyper-parameters. Posterior estimates are then obtained by

updating the prior structure as

(

γ|ω2, βt

)

∼ N
(

γ, γ2Γ
)

(A.32)
(

γ2|βt

)

∼ IG (γ/2, γn/2) (A.33)

for t = 1, ..., T − 1, with

Γ =
(

Γ−1 +X ′
γXγ

)−1

γ = Γ
(

Γ−1γ +X ′
γYγ

)

ω = ω +N

ωn = ωn+ γ′Γ−1γ + Y ′
γYγ − γ′Γ

−1
γ

where βt = (β1,t, ..., βN,t) represents conditional estimates of the factors risks exposures at time t for each of the

N portfolios, Xγ = [ι, βt] and Yγ = yt.

B Dynamic Testing Methodology

Testing the conditional CAPM boils down to test a joint restriction of the form

H0 : Hβt = q

H1 : Hβt 6= q

where H is a R × N(K + 1) selection matrix, q an R-dimensional vector of zeros, R the number of restric-

tions, βt =
(

β′
0,t, β

′
1,t, ..., β

′
K,t

)

and β′
j,t = (β1j,t, β2j,t, ..., βNj,t) the risk exposures on the jth factor across

assets/portfolios. Hypothesis testing can be handled by computing standard Bayes factors. A convenient way to

calculate Bayes factors comparing a restricted, H0, to an unrestricted model, H1, is the so-called Savage-Dickey

density (SDD) ratio (see Verdinelli and Wasserman 1995). The main advantage of the SDD ratio is that involves

only manipulation of priors and posteriors for the conditional factor pricing model. These are readily available

from the estimation output. If the prior structure is common for both the model under the null H0, and the

alternative H1, the following relationship is satisfied;

p (βt|Hβt = q,H1) = p (βt|H0)

also the (marginal) likelihoods of the observed data are observationally equivalent (see Verdinelli and Wasser-

man 1995 for a more detailed discussion). Nested models allows to express the Bayes factor corresponding to
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test the restriction as a ratio of ordinates,

BF t
0,1 =

p
(

Hβt = q|Zt,H1

)

p (Hβt = q|H1)
(A.34)

where Zt = (Xt, Y t) and Xt = (X1, ..., Xt), Y
t = (Y1, ..., Yt) the sample information on risk factors and portfolios

returns, respectively. Following Koop et al. (2010) the prior and posterior in (A.34) can be sampled from

recursive filtering estimates of conditional moments E
(

βt|Z
t, θ

)

and V ar
(

βt|Z
t, θ

)

and the output of the MCMC

estimation scheme. Indeed, conditional on the idiosyncratic risks and risk premia, the state space model in (3)-(6)

can be written by stacking single equations as

yt = Xtβt + ǫt ǫt ∼ N(0,Σt) (A.35)

βt = (1− δ)β + δβt−1 + τηt ηt ∼ N(0, Ip×1) (A.36)

with p = N(K + 1), Xt = [1 F ′
t ] ⊗ IN , βt =

(

β′
0,t, β

′
1,t, ..., β

′
K,t

)

and β′
j,t = (β1j,t, β2j,t, ..., βNj,t) the risk ex-

posures on the jth factor across assets/portfolios. Given the independence of risk exposures across factors and

portfolios, the intercept (1−δ)β is an N(K+1)-dimensional vector with the ij element equal to (1−δij)βij . Like-

wise, δ = diag (δ10, ..., δN0, δ11, ..., δN1, ...., δ1K , ..., δNK), and τ = diag (τ10, ..., τN0, τ11, ..., τN1, ...., τ1K , ..., τNK).

Conditionally on idiosyncratic risk Σt and θ, and assuming an initial distribution β0|y0 ∼ N (m0, C0), it is

straightforward to show that the (see West and Harrison 1997 for more details)

βt|Y
t−1, Xt−1, θ ∼ N (at, Rt) Propagation Density

Yt|Y
t−1, Xt−1, θ ∼ N (ft, Qt) Predictive Density

βt|Y
t, Xt, θ ∼ N (mt, Ct) Filtering Density

with

at = (1− δ)β + δmt−1 Rt = δCt−1δ
′ + τ

ft = a′
tXt Qt = X ′

tRtXt +Σt

mt = at +Ktet Ct = Rt −KtQtK
′
t (A.37)

and Kt = RtXtQ
−1
t and et = yt−ft, the so-called Kalman gain and the investors’ forecasting error, respectively.

From (A.37) we can see that the betas of the unrestricted model H1 are distributed as a multivariate Normal

distribution

p
(

βt|Z
t,H1, θ

)

= (2π)−N
∣

∣

∣
Ct

∣

∣

∣

−1/2

exp
{

−
1

2
(βt −mt)

′ C−1
t (βt −mt)

}

Using standard results on multivariate Gaussian distributions

p
(

Hβt|Z
t,H1, θ

)

= (2π)−N
∣

∣

∣
HCtH

′

∣

∣

∣

−1/2

exp
{

−
1

2
(Hβt −Hmi,t)

′
(

HCtH
′
)−1

(Hβt −Hmt)
}

therefore, the model restriction H0 : Hβt = 0 is distributed as

p
(

Hβt = q|Zt,H1, θ
)

= (2π)−N
∣

∣

∣
HCtH

′

∣

∣

∣

−1/2

exp
{

−
1

2
(q −Hmi,t)

′
(

HCtH
′
)−1

(q −Hmt)
}

Now given the output from the MCMC algorithm, the numerator in (A.34) can be numerically approximated as

p̂
(

Hβt = q|Zt,H1

)

=
1

G

G
∑

g=1

p
(

Hβt = q|Zt,H1, θ
(g)

)
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with g the number of draws from the MCMC algorithm.7 The same strategy can be applied to evaluate the prior

at the denominator in (A.34). The hierarchical prior can be derived from the initial distribution p (β0|Y0, Z0) =

N (m0, C0) and the recursion of the state equation βt in (A.36). As such,

βt = β + δtβ0 +

t−1
∑

j=0

δjτ1/2ηt−j

βt = β + δtm0 + δtC
1/2
0 z +

t−1
∑

j=0

δjτ1/2ηt−j (A.38)

with z ∼ N (0, Ip) with p = N(K + 1). The recursive prior has a location parameter equal to

βt = E (βt|H1, θ) = β + δtm0

and prior variance

Vt = V ar (βt|H1, θ) = δtC0

(

δt
)
′

+

t−1
∑

j=0

δjτ
(

δjτ
)

′

Therefore

p (βt|H1, θ) = (2π)−N
∣

∣

∣
Vt

∣

∣

∣

−1/2

exp
{

−
1

2

(

βt − βt

)′
Vt

−1 (βt − βt

)

}

such that

p (Hβt = q|H1, θ) = (2π)−N
∣

∣

∣
HVtH

′

∣

∣

∣

−1/2

exp
{

−
1

2

(

q − βt

)′
(

HVtH
′
)−1

(

q − βt

)

}

Again, given the output of the MCMC algorithm, I can approximate the marginal prior as

p̂ (Hβt = q|H1) =
1

G

G
∑

g=1

p
(

Hβt = q|H1, θ
(g)

)

Under the assumption of correct specification of conditional factor models, the cross-sectional intercept γ0,t

should not be statistically different from zero. Therefore, a cross-sectional test involves to investigate the null

H0 : Hγt = q, against the alternative H1 : Hγt 6= q, where H is a R×(K+1) selection matrix, q an R-dimensional

vector of zeros, R the number of restrictions (i.e. R = 1 in this case). As above, hypothesis testing can be handled

by computing a Bayes factor comparing the unrestricted, H1, to the restricted H0 cross-sectional regression at

time t;

BF t
0,1 =

p (Hγt = q|βt,H1)

p (Hγt = q|H1)
(A.39)

Given the independence of γt estimates across time, both the numerator and the denominator can be conve-

niently sampled from the output of the MCMC scheme. Conditional on the parameters θ = ω2 and the prior

hyperparameters Γ and γ, the posterior probability of the factors risk premia is equal to

p (γt|βt,H1, θ) = (2π)−(K+1)
∣

∣

∣
ω2Γ

∣

∣

∣

−1/2

exp
{

−
1

2
(γt − γ)′

(

ω2Γ
)−1

(γt − γ)
}

where the hyperparameters Γ and γ are defined as

Γ =
(

Γ−1 +X ′
γXγ

)−1
with Xγ =

[

ι, β[−0],t

]

γ = Γ
(

Γ−1γ +X ′
γyt

)

7As usual the number of draws can be chosen to optimize the accuracy of the approximation, and standard
diagnostics can be used to analyze convergence properties.
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with yt = (y1,t, ..., yN,t), and β[−0],t the (N × K) matrix of betas of each portfolio on each factor, except the

Jensen’s alpha βi0,t. From the properties of the multivariate normal distribution it can be shown that

p (Hγt|βt,H1, θ) = (2π)−(K+1)
∣

∣

∣
ω2HΓH′

∣

∣

∣

−1/2

exp
{

−
1

2
(Hγt −Hγ)′

(

ω2HΓH ′
)−1

(Hγt −Hγ)
}

such that the pricing restriction is distributed as

p (Hγt = q|βt,H1, θ) = (2π)−(K+1)
∣

∣

∣
ω2HΓH′

∣

∣

∣

−1/2

exp
{

−
1

2
(q −Hγ)′

(

ω2HΓH ′
)−1

(q −Hγ)
}

Given the output of the MCMC algorithm, I can approximate the marginal prior as

p̂ (Hγt = q|βt,H1) =
1

G

G
∑

g=1

p
(

Hγt = q|βt,H1, θ
(g)

)

The conditional prior p (Hβt = q|H1, θ) can be directly sampled from a multivariate normal distribution with

prior hyperparameters Γ and γ. Then its marginal p̂ (Hγt = q|H1) can be approximated as above from the output

of the MCMC scheme. Assuming equal prior over the null and the alternative hypothesis, p (H0) = p (H1), we

can compute (see Robert 2007, Ch.5);

p
(

H0|Z
t) =

[

1 +
1

BF t
0,1

]−1

=
BF t

0,1

1 + BF t
0,1

(A.40)

Note p
(

H0|Z
t
)

might be interpreted as a p-value. Unlike standard p-value, however, the posterior probability

naturally penalizes for the complexity of the model, being a direct function of the Bayes factor BF t
0,1. This

address the so-called Lindleys paradox which is the apparent conflict between standard frequentist and Bayesian

hypothesis testing. The conflict arises since standard t-statistics and corresponding p-values tend to go in favour

of the null as the sample size increases. The posterior probability (A.40) makes clear this is not the case under

the methodology I propose.

C Variance Decomposition Tests

We use the posterior densities of the time series of factor loadings and risk premia to perform a number of tests

that allow us to assess whether a posited asset pricing framework may explain an adequate percentage of excess

asset returns. (4) decomposes excess asset returns in a component related to risk, represented by the term γ′
tβi,t

plus a residual γ0,t+ei,t. In principle, a multi-factor model is as good as the implied percentage of total variation

in excess returns explained by its first component, γ′
tβi,t. However, here we should recall that even though (4)

refers to excess returns, it remains a statistical implementation of the framework in (3). This implies that in

practice it may be naive to expect that γ′
tβi,t be able to explain much of the variability in excess returns. A

more sensible goal seems to be thatγ′
tβi,t ought to at least explain the predictable variation in excess returns.

We therefore follow earlier literature, such as Karolyi and Sanders (1998), and adopt the following approach.

First, the excess return on each asset is regressed onto a set of M instrumental variables that proxy for available

information at time t− 1, Zt−1,

yi,t = λi0 +
M
∑

m=1

λimZm,t−1 + ξi,t, (A.41)

to compute the sample variance of fitted values,

V ar[P (yi,t|Zt−1)] ≡ V ar

[

λi0 +

M
∑

m=1

λimZm,t−1

]

, (A.42)

where the notation P (yi,t|Zt−1) means “linear projection” of xit on a set of instruments, Zt−1. Second, for each

asset i = 1, ..., N , a time series of fitted (posterior) risk compensations, γ′
tβi,t, is regressed onto the instrumental
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variables,

γ′
tβi,t = λ′

i0 +
M
∑

m=1

λ′
imZm,t−1 + ξ′i,t (A.43)

to compute the sample variance of fitted risk compensations:

V ar
[

P
(

γ′
tβi,t|Zt−1

)]

≡ V ar

[

λ′
i0 +

M
∑

m=1

λ′
imZm,t−1

]

. (A.44)

The predictable component of excess returns in (A.41) not captured by the model is then the sample variance of

the fitted values from the regression of the residuals γ0,t + ei,t on the instruments:

V ar [γ0,t + ei,t] = V ar [P (λ0,t + ei,t|Zt−1)] . (A.45)

At this point, it is informative to compute and report two variance ratios, commonly called V R1 and V R2, after

Ferson and Harvey (1991):

VR1 ≡
V ar [P (γ′

tβi,t|Zt−1)]

V ar[P (yi,t|Zt−1)]
> 0 (A.46)

VR2 ≡
V ar [P (γ0,t + ei,t|Zt−1)]

V ar[P (yi,t|Zt−1)]
> 0. (A.47)

VR1 should be equal to 1 if the multi-factor model is correctly specified, which means that all the predictable

variation in excess returns is captured by variation in risk compensations; at the same time, VR2 should be

equal to zero if the multi-factor model is correctly specified. Importantly, when these decomposition tests are

implemented using the estimation outputs obtained from the MCMC scheme, drawing from the joint posterior

densities of the factor loadings βi,t and the implied risk premia γt, i = 1, ..., N and t = 1, ..., T , and holding the

instruments fixed over time, it is possible to compute VR1 and VR2 in correspondence to each of such draws

and hence obtain their posterior distributions.8

8Notice that VR1 = 1 does not imply that VR2 = 0 and viceversa, because

V ar[P (yi,t|Zt−1)] 6= V ar
[

P
(

γ′
tβi,t|Zt−1

)]

+ V ar [P (γ0,t + ei,t|Zt−1)] .
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Table 1. Unconditional Alphas

The table reports the unconditional alphas computed from different factor models on monthly excess returns
of size, value, and momentum portfolios. Deciles momentum portfolios are clustered in quintiles for the sake of
exposition. Bold-faced numbers denote estimates statistically significant at the 5% confidence level. The standard
errors are corrected for autocorrelation and heteroschedasticity. The sample period is 1963:01-2013:12. The first
ten years are cut to be consistent with the training sample used for the estimation of the conditional CAPM in
section 3.

Mean St. Error

Panel A: CAPM

Size/BM 1 2 3 4 5 1 2 3 4 5

1 -0.488 0.258 0.375 0.560 0.635 0.237 0.193 0.183 0.188 0.205

2 -0.177 0.190 0.419 0.471 0.461 0.164 0.149 0.153 0.163 0.193

3 -0.134 0.267 0.334 0.389 0.637 0.128 0.123 0.139 0.155 0.187

4 0.013 0.122 0.225 0.338 0.362 0.125 0.121 0.149 0.147 0.167

5 -0.094 0.126 0.077 0.151 0.215 0.091 0.080 0.100 0.131 0.165

Mom -0.578 0.020 0.000 0.179 0.324 0.173 0.101 0.071 0.069 0.105

Panel B: FF3

Size/BM 1 2 3 4 5 1 2 3 4 5

1 -0.552 0.030 0.063 0.170 0.112 0.125 0.085 0.070 0.077 0.075

2 -0.157 -0.030 0.082 0.067 -0.093 0.076 0.074 0.066 0.072 0.066

3 -0.048 0.068 0.027 0.014 0.161 0.064 0.075 0.089 0.089 0.054

4 0.144 -0.031 -0.046 0.011 -0.063 0.082 0.087 0.080 0.081 0.074

5 0.125 0.113 -0.029 -0.113 -0.137 0.075 0.068 0.078 0.066 0.109

Mom -0.745 -0.109 -0.094 0.138 0.340 0.158 0.090 0.068 0.062 0.090

Panel B: FF4

Size/BM 1 2 3 4 5 1 2 3 4 5

1 -0.496 0.036 0.054 0.153 0.152 0.120 0.074 0.065 0.072 0.076

2 -0.103 0.002 0.095 0.068 -0.086 0.067 0.066 0.060 0.069 0.068

3 -0.005 0.096 0.040 0.025 0.195 0.065 0.076 0.078 0.086 0.862

4 0.143 -0.004 0.006 0.032 -0.015 0.076 0.075 0.078 0.077 0.075

5 0.147 0.096 -0.040 -0.087 -0.104 0.053 0.063 0.078 0.064 0.102

Mom -0.016 0.259 -0.003 0.001 -0.046 0.091 0.057 0.074 0.067 0.062
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Table 2. Parameters Estimates: Fama-French Model

The table reports posterior means and credibility intervals at the 95% level for a conditional version of the three
factors Fama-French model. Small-Growth and Small-Value represent the first and fifth portfolios of the 25
Fama-French double-sorted portfolios. Large-Growth and Large-Value represent the 21st and the 25th double-
sorted portfolios. Loser and Winner are the clustered portfolios in the lowest and highest quintiles sorted on
past realized returns. The parameters are estimated through the Markov Chain Monte Carlo (MCMC) scheme
described in the Appendix. The prior hyper-parameters are trained by using a ten-year pre-sample from 1963:07
to 1973:07. The testing sample is 1973:08-2013:01, monthly. Test portfolios and factors are described in the main
text.

Small-Growth Small-Value Large-Growth Large-Value Loser Winner

Conditional Alphas

δi0 0.530 0.671 0.529 0.648 0.419 0.558

[0.444 0.614] [0.614 0.724] [0.408 0.645] [0.583 0.713] [0.341 0.499] [0.458 0.657]

αi -0.295 0.113 -0.304 0.105 -0.077 0.181

[-0.494 -0.081] [-0.029 0.256] [-0.531 -0.075] [-0.054 0.283] [-0.243 0.074] [-0.008 0.355]

τi0 1.544 0.745 1.447 1.017 1.511 0.927

[1.395 1.742] [0.679 0.827] [1.235 1.747] [0.921 1.111] [1.378 1.654] [0.834 1.051]

Market Betas

δi1 0.956 0.963 0.932 0.963 0.951 0.942

[0.932 0.979] [0.947 0.981] [0.901 0.965] [0.941 0.984] [0.921 0.996] [0.917 0.969]

βi 1.070 0.926 1.149 0.909 1.036 1.036

[0.998 1.141] [0.863 0.985] [0.939 1.322] [0.859 0.951] [0.900 1.170] [0.916 1.148]

τi1 0.020 0.027 0.149 0.016 0.068 0.081

[0.019 0.043] [0.017 0.036] [0.108 0.219] [0.011 0.023] [0.056 0.117] [0.053 0.103]

SMB Betas

δi2 0.960 0.946 0.920 0.971 0.935 0.946

[0.935 0.981] [0.921 0.968] [0.879 0.957] [0.955 0.986] [0.894 0.969] [0.917 0.971]

βi2 1.226 -0.248 0.201 1.010 -0.103 0.274

[1.101 1.305] [-0.321 -0.183] [-0.021 0.441] [0.906 1.107] [-0.204 0.011] [0.139 0.409]

τi2 0.041 0.039 0.205 0.029 0.058 0.077

[0.023 0.068] [0.016 0.065] [0.131 0.271] [0.021 0.045] [0.033 0.088] [0.061 0.129]

HML Betas

δi3 0.924 0.946 0.828 0.937 0.948 0.864

[0.871 0.972] [0.921 0.970] [0.770 0.891] [0.904 0.967] [0.909 0.979] [0.817 0.910]

βi3 -0.207 -0.499 0.033 0.571 0.797 -0.051

[-0.311 -0.101] [-0.587 -0.429] [-0.168 0.256] [0.459 0.671] [0.672 0.924] [-0.239 0.131]

τi3 0.061 0.047 0.461 0.073 0.051 0.302

[0.039 0.118] [0.024 0.069] [0.369 0.617] [0.025 0.115] [0.041 0.078] [0.254 0.356]

Idiosyncratic Risks

δiσ 0.958 0.957 0.947 0.939 0.940 0.949

[0.852 0.992] 0.856 0.993] [0.832 0.992] [0.796 0.990] [0.825 0.993] [0.830 0.994]

σ2
i 0.594 1.286 0.803 0.288 0.642 0.438

[0.298 3.718] [0.712 6.427] [0.371 2.715] [0.116 0.551] [0.387 1.661] [0.123 2.611]

τ iσ 0.145 0.143 0.158 0.139 0.156 0.143

[0.114 0.233] [0.112 0.225] [0.122 0.253] [0.113 0.224] [0.119 0.246] [0.117 0.226]
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Table 3. Conditional Alphas

The table reports both the average and the in-sample (average) standard error of conditional alphas computed
from different factor models on monthly excess returns of size, value, and momentum portfolios. Conditional
estimates are made through a Markov Chain Monte Carlo (MCMC) scheme as described in the Appendix. The
prior hyper-parameters are trained by using a ten-year pre-sample from 1963:07 to 1973:07, and the testing
sample is 1973:08-2013:01. The test portfolios and factors are described in the main text. Top panel reports the
results from the conditional CAPM. Middle panel reports the results computed from a standard Fama-French
three factor model. Bottom panel reports the results from a four-factor model including momentum.

Mean St. Err

CAPM

Size/BM 1 2 3 4 5 1 2 3 4 5

1 -0.387 0.240 0.319 0.509 0.643 2.531 2.264 1.975 2.026 2.451

2 -0.083 0.173 0.386 0.431 0.441 1.997 1.655 1.544 1.657 2.055

3 -0.030 0.280 0.282 0.303 0.601 1.556 1.324 1.422 1.405 1.839

4 0.070 0.128 0.224 0.257 0.336 1.323 1.139 1.265 1.286 1.570

5 -0.095 0.082 0.022 0.054 0.146 1.074 0.889 1.157 1.059 1.705

Mom -0.471 -0.010 -0.013 0.111 0.276 1.912 1.079 0.744 0.687 1.261

Fama-French 3 Factor

Size/BM 1 2 3 4 5 1 2 3 4 5

1 -0.515 0.013 0.024 0.178 0.183 1.425 0.888 0.747 0.821 0.949

2 -0.123 -0.043 0.091 0.080 -0.061 0.876 0.761 0.698 0.820 0.838

3 0.007 0.105 0.029 -0.026 0.165 0.890 0.828 0.832 0.844 1.168

4 0.150 0.013 0.012 -0.028 0.008 0.823 0.900 0.930 0.951 1.120

5 0.171 0.099 -0.044 -0.115 -0.126 0.680 0.836 0.988 0.781 1.249

Mom -0.408 -0.026 -0.020 0.038 0.209 1.165 0.684 0.684 0.433 0.789

Four Factors Model

Size/BM 1 2 3 4 5 1 2 3 4 5

1 -0.532 -0.007 0.040 0.184 0.197 1.360 0.849 0.738 0.830 0.943

2 -0.112 -0.044 0.099 0.062 -0.070 0.811 0.746 0.697 0.809 0.841

3 -0.012 0.107 0.041 0.018 0.170 0.859 0.837 0.826 0.846 1.169

4 0.146 0.047 0.052 0.005 -0.004 0.814 0.885 0.879 0.919 1.114

5 0.190 0.101 -0.079 -0.110 -0.120 0.598 0.812 0.869 0.772 1.124

Mom 0.035 0.289 0.027 -0.109 -0.101 0.890 0.624 0.594 0.243 0.551
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Table 4. Model-Implied Unconditional Alphas

The table reports the unconditional alphas and betas implied by the model dynamics. Conditional estimates
are made through a Markov Chain Monte Carlo (MCMC) scheme as described in the Appendix. The prior
hyper-parameters are trained by using a ten-year pre-sample from 1963:07 to 1973:07, and the testing sample
is 1973:08-2013:01. The test portfolios and factors are described in the main text. op panel reports the results
from the conditional CAPM. Middle panel reports the results computed from a standard Fama-French three
factor model. Bottom panel reports the results from a four-factor model including momentum. Bold-faced values
denote estimates statistically significant at the 5% confidence level.

Mean St. Err

CAPM

Size/BM 1 2 3 4 5 1 2 3 4 5

1 -0.275 0.166 0.229 0.342 0.410 0.196 0.146 0.129 0.145 0.177

2 -0.060 0.116 0.244 0.256 0.260 0.127 0.113 0.108 0.122 0.151

3 -0.021 0.176 0.167 0.176 0.356 0.112 0.105 0.112 0.111 0.130

4 0.047 0.094 0.126 0.153 0.235 0.099 0.101 0.111 0.099 0.125

5 -0.055 0.052 0.020 0.034 0.083 0.094 0.091 0.093 0.088 0.113

Mom -0.264 -0.004 -0.014 0.071 0.194 0.135 0.096 0.091 0.092 0.102

Fama-French Model

Size/BM 1 2 3 4 5 1 2 3 4 5

1 -0.295 0.011 0.017 0.108 0.105 0.123 0.089 0.082 0.087 0.100

2 -0.092 -0.034 0.072 0.058 -0.044 0.083 0.073 0.078 0.087 0.082

3 0.003 0.073 0.025 -0.014 0.069 0.081 0.086 0.072 0.086 0.100

4 0.101 0.007 0.008 -0.022 0.006 0.083 0.081 0.088 0.084 0.087

5 0.113 0.054 -0.029 -0.076 -0.077 0.085 0.082 0.089 0.076 0.095

Mom -0.304 -0.023 -0.019 0.039 0.181 0.141 0.086 0.083 0.077 0.108

Four Factors

Size/BM 1 2 3 4 5 1 2 3 4 5

1 -0.348 -0.007 0.026 0.104 0.116 0.130 0.084 0.076 0.087 0.100

2 -0.088 -0.030 0.075 0.048 -0.051 0.076 0.081 0.073 0.088 0.081

3 -0.010 0.075 0.030 0.014 0.086 0.079 0.090 0.076 0.084 0.097

4 0.106 0.036 0.032 0.003 -0.005 0.085 0.082 0.083 0.077 0.083

5 0.139 0.052 -0.050 -0.084 -0.080 0.084 0.087 0.088 0.075 0.101

Mom 0.026 0.199 0.013 -0.092 -0.077 0.094 0.091 0.085 0.072 0.078
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Table 5. Market Betas and Standard Predictors

The table reports the slope estimates when the predictive betas are regressed on a set of standard state vari-
ables. The predictive market betas are computed integrating out both investors’ uncertainty on the structural
parameters of the three-factor Fama-French model. The sample is 1973:01-2013:12. The state variables are the
dividend yield (dy), the earnings-to-price ratio (ep), the dividend-payout ratio (dpr), net equity expansion (ntis),
the default spread (def), log inflation (inf), industrial production (ip), the year-on-year consumption growth
(cons), the M2 monetary aggregate (m2), the lagged excess return on the market (ret(−1)), and the term spread
(term). Bold-faced values denote estimates statistically significant at the 5% confidence level. Standard errors
are corrected for autocorrelation and heteroschedasticity. The test portfolios and factors are described in the
main text.

Small-Growth Small-Value Large-Growth Large-Value Loser Winner

Predictor

dy 0.885 0.205 -0.117 -0.191 -0.044 0.316

ep 0.890 0.750 -0.127 -0.995 0.302 -0.168

dpr -0.391 0.553 0.128 -0.441 -0.066 -0.205

def 0.016 -0.125 -0.206 -0.134 -0.073 0.049

ntis -0.023 0.237 -0.096 -0.274 -0.261 0.102

inf 0.061 -0.198 0.092 0.096 0.136 -0.030

ip 0.008 -0.119 -0.224 -0.004 0.093 0.162

cons -0.120 0.637 0.545 0.220 -0.859 0.231

m2 -0.115 0.142 -0.222 -0.202 -0.152 -0.342

ret(-1) -0.085 0.026 -0.075 -0.043 -0.018 0.060

term -0.194 0.040 0.038 0.183 0.270 -0.216

Adj R2 0.483 0.261 0.386 0.231 0.513 0.321
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Table 6. Variance Ratios

The table reports the results of variance decomposition test. VR1 is the ratio of the variance of a model predicted returns and the variance of expected returns estimated
from a projection on a set of instruments Zt. VR2 is the ratio of the variance of the predictable part of returns not explained by a model and the variance of projected
returns. The instrumental variables are the lagged monthly dividend yield on the NYSE/AMEX, the lagged yield of a Baa corporate bond, and the lagged spread of
long- vs. short-term government bond yields. Boldfaced numbers indicate the highest VR1 and the lowest VR2 respectively.

CAPM Fama-French Four-Factor Model

VR1 VR2 VR1 VR2 VR1 VR2

2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%

S1B1 0.480 0.790 1.113 0.219 0.400 0.602 0.511 0.775 1.073 0.039 0.453 0.453 0.461 0.701 0.915 0.247 0.467 0.676

S1B2 0.311 0.545 0.789 0.382 0.552 0.762 0.431 0.645 0.904 0.089 0.467 0.467 0.403 0.587 0.757 0.219 0.404 0.599

S1B3 0.234 0.444 0.672 0.479 0.650 0.853 0.371 0.561 0.775 0.133 0.505 0.505 0.363 0.535 0.693 0.217 0.415 0.604

S1B4 0.156 0.367 0.569 0.398 0.539 0.721 0.329 0.495 0.682 0.061 0.360 0.360 0.340 0.508 0.658 0.065 0.224 0.377

S1B5 0.039 0.182 0.340 0.271 0.368 0.508 0.225 0.345 0.482 -0.017 0.194 0.194 0.227 0.330 0.423 -0.094 0.015 0.118

S2B1 0.529 0.846 1.167 0.265 0.434 0.655 0.554 0.833 1.166 0.002 0.398 0.398 0.525 0.793 1.027 0.184 0.404 0.611

S2B2 0.435 0.702 0.990 0.307 0.458 0.658 0.553 0.835 1.163 -0.027 0.358 0.358 0.548 0.805 1.047 0.098 0.314 0.518

S2B3 0.165 0.340 0.528 0.362 0.510 0.666 0.329 0.512 0.720 0.045 0.358 0.358 0.341 0.518 0.687 0.079 0.248 0.419

S2B4 0.192 0.373 0.575 0.353 0.502 0.678 0.395 0.597 0.831 0.032 0.333 0.333 0.403 0.585 0.767 0.009 0.176 0.339

S2B5 0.343 0.568 0.818 0.281 0.422 0.591 0.462 0.696 0.963 -0.020 0.271 0.271 0.456 0.671 0.860 -0.050 0.097 0.250

S4B1 0.257 0.449 0.643 0.206 0.329 0.480 0.468 0.701 0.957 -0.007 0.292 0.292 0.453 0.679 0.858 0.014 0.182 0.365

S4B2 0.328 0.563 0.812 0.280 0.434 0.624 0.590 0.898 1.269 0.019 0.391 0.391 0.568 0.860 1.134 0.092 0.326 0.575

S4B3 0.447 0.702 0.967 0.387 0.567 0.777 0.740 0.906 1.525 0.045 0.505 0.505 0.713 1.030 1.340 0.172 0.436 0.730

S4B4 0.269 0.469 0.663 0.285 0.423 0.577 0.592 0.896 1.231 0.087 0.487 0.487 0.601 0.884 1.142 0.083 0.320 0.557

S4B5 0.386 0.637 0.912 0.432 0.624 0.841 0.587 0.918 1.252 0.191 0.639 0.639 0.603 0.881 1.148 0.174 0.419 0.677

M1 0.722 1.119 1.547 0.480 0.710 0.992 0.709 0.852 1.418 0.166 0.281 0.481 0.578 0.839 1.097 0.604 0.900 1.180

M2 0.340 0.584 0.819 0.371 0.546 0.744 0.522 0.800 1.106 0.097 0.496 0.496 0.479 0.704 0.906 0.218 0.423 0.639

M3 0.338 0.556 0.773 0.400 0.542 0.721 0.505 0.789 1.119 0.056 0.462 0.462 0.522 0.782 1.021 0.085 0.292 0.508

M4 0.296 0.516 0.748 0.570 0.773 0.996 0.545 0.852 1.246 0.150 0.657 0.657 0.608 0.926 1.236 0.181 0.452 0.728

M5 0.252 0.479 0.734 0.320 0.500 0.700 0.442 0.759 1.086 -0.032 0.337 0.337 0.632 0.934 1.175 -0.120 0.078 0.259
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Table 7. Marginal Likelihoods and Bayes Factors

The table reports the values of the (log)marginal likelihoods and the relative (log of) Bayes Factors for different
factor model specifications. BF i,j is the Bayes Factor of the model Mi against Mj . Here M0 is the CAPM, M1

the three-factor Fama-French model, and M2 the four-factor model proposed in Charhart (1997). The values
reported are also disaggregated by computing the contributions from each of the portfolios under investigation.
The prior hyper-parameters are trained by using a ten-year pre-sample from 1963:07 to 1973:07. The testing
sample is 1973:08-2013:01, monthly. The test portfolios and factors are described in the main text. Bold-faced
values denote the model with the highest log-marginal likelihood.

M0 M1 M2 BF2,0 BF1,2 BF1,0

S1B1 -1382.30 -1001.00 -1066.49 631.62 130.97 762.59

S1B2 -1339.79 -852.35 -867.33 944.92 29.95 974.87

S1B3 -1267.31 -785.27 -798.78 937.06 27.01 964.06

S1B4 -1250.19 -812.80 -819.48 861.42 13.37 874.79

S1B5 -1297.61 -821.77 -849.59 896.04 55.65 951.69

S2B1 -1337.71 -831.16 -856.54 962.34 50.77 1013.11

S2B2 -1227.59 -785.30 -801.33 852.52 32.05 884.57

S2B3 -1169.87 -724.53 -763.21 813.31 77.37 890.68

S2B4 -1159.27 -781.80 -801.63 715.28 39.65 754.93

S2B5 -1226.42 -869.71 -870.37 712.10 1.33 713.43

S4B1 -1092.27 -833.91 -846.94 490.68 26.05 516.72

S4B2 -959.37 -871.26 -879.87 159.00 17.20 176.20

S4B3 -977.14 -829.26 -880.34 193.60 102.17 295.76

S4B4 -1067.15 -941.72 -957.14 220.01 30.84 250.85

S4B5 -1140.97 -1054.05 -1052.44 177.07 -3.22 173.85

S5B1 -962.18 -591.17 -669.27 585.82 156.19 742.01

S5B2 -883.01 -848.57 -865.00 36.01 32.86 68.87

S5B3 -1014.16 -851.39 -919.48 189.36 136.18 325.54

S5B4 -1036.92 -847.66 -859.51 354.82 23.71 378.52

S5B5 -1258.19 -1007.41 -1053.77 408.85 92.72 501.56

M1 -1236.60 -863.25 -1016.82 439.56 307.13 746.68

M2 -937.22 -652.03 -810.77 252.92 317.46 570.38

M3 -750.44 -605.64 -674.14 152.60 137.02 289.61

M4 -757.52 -443.96 -553.23 408.59 218.53 627.12

M5 -1066.18 -581.70 -786.76 558.84 410.14 968.97

Global -33478.44 -24564.93 -25851.30 15254.27 2572.74 17827.01
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Figure 1. Dynamic Hypothesis Testing: Joint Conditional Alphas

This figure plots the posterior probability of the null hypothesis that pricing errors are jointly not statistically different from zero at time t, given the whole sample
information. Estimates are based on the Markov Chain Monte Carlo (MCMC) scheme (see the appendix). Prior hyper-parameters are trained by using a ten-year
pre-sample from 1963:07 to 1973:07. The testing sample is 1973:08-2013:01, monthly. Factors and test portfolios are described in the main text.
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Figure 2. Dynamic Hypothesis Testing: Asset Specific Conditional Alphas (CAPM)

This figure plots the posterior probabilities of the null hypothesis that the conditional CAPM holds at time t, given the whole sample information. Estimates are based
on the Markov Chain Monte Carlo (MCMC) scheme (see the appendix). Prior hyper-parameters are trained by using a ten-year pre-sample from 1963:07 to 1973:07.
The testing sample is 1973:08-2013:01, monthly. The test portfolios are described in the main text.
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Figure 3. Dynamic Hypothesis Testing: Asset Specific Conditional Alphas (Three-Factor Model)

This figure plots the posterior probabilities of the null hypothesis that the three-factor Fama-French model holds at time t, given the whole sample information.
Estimates are based on the Markov Chain Monte Carlo (MCMC) scheme (see the appendix). Prior hyper-parameters are trained by using a ten-year pre-sample from
1963:07 to 1973:07. The testing sample is 1973:08-2013:01, monthly. The test portfolios are described in the main text.
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Figure 4. Dynamic Hypothesis Testing: Asset Specific Conditional Alphas (Four-Factor Model)

This figure plots the posterior probabilities of the null hypothesis that the four-factor model of Charhart (1997) holds at time t, given the whole sample information.
Estimates are based on the Markov Chain Monte Carlo (MCMC) scheme (see the appendix). Prior hyper-parameters are trained by using a ten-year pre-sample from
1963:07 to 1973:07. The testing sample is 1973:08-2013:01, monthly. The test portfolios are described in the main text.
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Figure 5. Market Risk Premium

This figure plots sequence of posterior distributions of the market risk premium and its conditional variance.
Estimates are made through a Markov Chain Monte Carlo (MCMC) scheme. Prior hyper-parameters are trained
by using a ten-year pre-sample from 1963:07 to 1973:07. The testing sample is 1973:08-2013:01, monthly. The
market risk premium is computed from no-arbitrage restrictions (4). The dark line represent the median value
while the shaded area is the 95% interval. The red line is the conditional volatility estimate from a GARCH(1,1)
fitted on historical returns on the CRSP value-weighted index.
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Figure 6. Dynamic Hypothesis Testing: Cross-Sectional Pricing Error

This figure plots the posterior probabilities of the null hypothesis that the cross-sectional pricing error is not statistically different from zero at time t. Estimates are
made through a Markov Chain Monte Carlo (MCMC) scheme (see the appendix). Prior hyper-parameters are trained by using a ten-year pre-sample from 1963:07 to
1973:07. The testing sample is 1973:08-2013:01, monthly. The test portfolios and factors are described in the main text.
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Figure 7. Conditional Market Betas

This figure plots sequence of posterior distributions of the market betas from the three-factor Fama-French model. Estimates are made through the Markov Chain
Monte Carlo (MCMC) scheme (i.e. the model with full uncertainty). The prior hyper-parameters are trained by using a ten-year pre-sample from 1963:07 to 1973:07.
The testing sample is 1973:08-2013:01, monthly. The test portfolios are described in the main text. The dark line represent the median value while the shaded area is
the 95% interval.
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Figure 8. Conditional SMB Betas

This figure plots sequence of posterior distributions of the betas on the SMB factor from the three-factor Fama-French model. Estimates are made through the Markov
Chain Monte Carlo (MCMC) scheme (i.e. the model with full uncertainty). The prior hyper-parameters are trained by using a ten-year pre-sample from 1963:07 to
1973:07. The testing sample is 1973:08-2013:01, monthly. The test portfolios are described in the main text. The dark line represent the median value while the shaded
area is the 95% interval.
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Figure 9. Idiosyncratic risks

This figure plots the sequence of posterior distributions of (the square root of) idiosyncratic risks σi,t. Estimates are made through the Markov Chain Monte Carlo
(MCMC) scheme (i.e. the model with full uncertainty). The prior hyper-parameters are trained by using a ten-year pre-sample from 1963:07 to 1973:07. The testing
sample is 1973:08-2013:01, monthly. The test portfolios are described in the main text. The dark line represent the median value while the shaded area is the 95%
interval.
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