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Introduction

Motivation

The covariance matrix is the central part of many financial
theories and models:

X Portfolio optimization;
X Credit risk models;
X Asset pricing.

Adequate models for covariance dynamics are still lacking:

X The covariance matrix is normally assumed constant or to
follow a linear process;

X Observed covariances are, on the other hand, often time
varying and show nonlinear behavior, especially under extreme
economic conditions.
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Introduction

Motivation

Two fundamental problems arising in modeling and estimation
of covariance dynamics models are:

X Preserving positive definiteness;
X Curse of dimensionality.

Earlier treatments of these problems are rather ad hoc:

X None of them seem to achieve parsimoniousness and positive
definiteness in a formal way;

X The parameters often lack intuitive meaning;

These problems can be traced to the fact that earlier models
fail to respect the geometric properties of the covariance
matrix.
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A Geometric Framework for Covariance Dynamics

Importance of Geometry: An Illustrative Example

Let P0,P1 ∈ P(2) be two symmetric, positive definite 2× 2 real
matrices:

P0 =

(
a0 b0

b0 c0

)
, P1 =

(
a1 b1

b1 c1

)
(1)

with aici − b2
i > 0 and ai > 0.

Suppose we want to construct a straight line connecting P0 and P1.
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A Geometric Framework for Covariance Dynamics

Importance of Geometry: An Illustrative Example

A Naive Way:
P(t) = (1− t)P0 + tP1 (2)

X A problem with this approach is the straight line may not
remain within the space P(2).
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A Geometric Framework for Covariance Dynamics

Importance of Geometry: An Illustrative Example

A Better Way:

X If we define a proper metric on P(2), the minimal geodesic
(the shortest distance path) can be obtained.

X The minimal geodesic always lies within P(2).
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A Geometric Framework for Covariance Dynamics

Geometry of P(n)

The covariance space P(n) is defined as

P(n) =
{
P ∈ Rn×n | P = P>,P > 0

}
. (3)

P(n) is a differentiable manifold whose tangent space at a
point P ∈ P(n) can be identified with n × n symmetric
matrices S(n).

A Riemannian structure can be constructed via the
Riemannian metric given by 〈X ,Y 〉P = tr(P−1XP−1Y ).

In terms of this metric, the length of a curve P(t) ∈ P(n),
a ≤ t ≤ b, is given by

L(P) =

∫ b

a

√
tr
(

(P−1(t)Ṗ(t))2
)
dt. (4)
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A Geometric Framework for Covariance Dynamics

Geometry of P(n)

The Minimal Geodesic γ(t) : [0, 1]→ [A,B], A,B ∈ P(n)

γ(t) = G
(
G−1BG−>

)t
G> (5)

where GG> = A, G ∈ GL+(n).

Riemannian Log Map
The tangent vector of the geodesic at A:

LogA(B) = G log
(
G−1BG−>

)
G>. (6)

Riemannian Exponential Map
The minimal geodesic emanating from A ∈ P(n) in the
direction X :

ExpA(X ) = G exp
(
G−1XG−>

)
G>. (7)
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A Geometric Framework for Covariance Dynamics

Geometry of P(n)

Distance
Defining the distance between A and B in the usual way by
the length of the above minimal geodesic, we have

d(A,B) =

(
n∑

i=1

log2 λi

)1/2

, (8)

where λ1, . . . , λn are the eigenvalues of the matrix AB−1.

Intrinsic mean

arg min
P̄∈P(n)

N∑
i=1

d(P̄,Pi )
2. (9)
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A Geometric Framework for Covariance Dynamics

Principal Geodesic Analysis

While principal component analysis (PCA) seeks the principal
axes of variation in Euclidean space, principal geodesic
analysis (PGA) seeks a submanifold that best represents the
variability of the data in a Riemannian manifold.

It can be shown that the PGA can be performed by applying
the PCA to the tangent space of the manifold, TµM.

Given principal directions, Vk , a point in P(n) can be
generated by the formula

P = ExpP̄

(
K∑

k=1

αkVk

)
,

for some αk and K ≤ n(n + 1)/2.
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Geometrically Well Defined Volatility Models

Covariance Dynamics

System Equation

yt = µ+ et , et ∼ N(0,Ht), (10)

Dynamics of Ht

dHt = Ftdt (11)

where Ft is a time-varying n × n symmetric matrix which
depends on the information set at t.

The minimal geodesics provide a natural way of discretizing
general differential equations on P(n).

Ht = ExpHt−1
(Ft). (12)

Another class of dynamics we consider.

Ht = ExpH∞(Ft). (13)
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Geometrically Well Defined Volatility Models

A Geometric GARCH Model

Ft can be defined as a function of lagged terms of covariance and
residuals.

Ft =
P∑

p=1

(ApHt−p + Ht−pA
>
p )

+
Q∑

q=1

(Bqet−qe
>
t−q + et−qqe

>
t−qB

>
q )

+
R∑

r=1

(Drηt−rη
>
t−r + ηt−rη

>
t−rD

>
r ).

where ηt = |et | − et .
We call this specification of time varying volatilities the geometric
GARCH or simply GGARCH model.
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Geometrically Well Defined Volatility Models

PCA Based Specifications

The PCA can be applied in two ways:

Usual PCA to the tangent vectors connecting Ht−1 and Ht .

PGA to the tangent vectors connecting H∞ and Ht .

Ft can be written in the form

Ft =
K∑

k=1

αktVk

αkt(Ht−1, et−1, ηt−1) = a>k vech(Ht−1) + b>k vech(et−1e
>
t−1)

+c>k vech(ηt−1η
>
t−1)

Or

αkt(Ht−1, et−1, ηt−1) = d(fk(Ht−1, et−1, ηt−1),Ht−1)

fk(Ht−1, et−1, ηt−1) = akHt−1 + bket−1e
>
t−1 + ckηt−1η

>
t−1
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Geometrically Well Defined Volatility Models

Parsimonious Representations

While BEKK and DCC models retain n2 term regardless of the
simplicity of the model, diagonal or simpler representations of the
GGARCH models have parameter numbers of O(n) or a constant.

Model Parameters Description

GGARCH PCA DIST 3K αkt is defined by the distance function.
GGARCH PCA DIAG 3nK Off-diagonal elements are ignored.
GGARCH PCA FULL (1.5n2 + n)K All elements are considered.
GGARCH SCALAR 3 Coefficient matrices are scalar.
GGARCH DIAG 3n Coefficient matrices are diagonal.

GGARCH LINEAR 1.5n2 + 1.5n
Coefficient matrices are symmetric
and the matrix products are element-
wise.

GGARCH FULL 3n2 Coefficient matrices are arbitrary n×n.
BEKK SCALAR 0.5n2 + 0.5n + 3 BEKK model with scalar coefficients.

BEKK DIAGONAL 0.5n2 + 3.5n
BEKK model with diagonal coeffi-
cients.

BEKK FULL 3.5n2 + 0.5n
BEKK model with arbitrary n× n co-
efficients.

DCC 3-STAGE n2 + 4n + 3 DCC model.
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Empirical Studies

The Shortest Path

Consider the trajectory between two covariance matrices

H0 =

[
1 0
0 1

]
and H1 =

[
1 0.5

0.5 1

]
.
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(b) Distance (H(t − 0.1),H(t))

In (a), trajectory of variance at the top and trajectory of covariance at
the bottom. Solid lines: geodesic, dotted lines: linear interpolation.
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Empirical Studies

The Shortest Path

The trajectory of the variance is convex and that of the
covariance is slightly concave, contrary to the naive linear
interpolation that yields straight lines.

Under the Riemmanian metric, distance between two
covariance matrices increases exponentially as one matrix
approaches singularity, i.e., perfect correlation. This is a
desirable property as one would consider correlation increase
from 0.0 to 0.5 more probable than increase from 0.5 to 1.0.

The distance between two intermediate points on the geodesic
is constant, while that on the linearly interpolated line
increases as t increases, eventually resulting in a longer
distance between H0 and H1.
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Empirical Studies

The Shortest Path
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Distance between H0 and H1. h11 and h22 are variances of H1.

The minimum distance is achieved when the variances are
about 1.275: A conventional metric would have the minimum
distance when the variances are 1.
An economic explanation: When the correlation between two
variables increases, the variances are also likely to increase due
to positive feedback.

Chulwoo Han 18/34



Empirical Studies

Riemmanian Exponential Map

Initial covariance matrix

H =

[
1 0
0 1

]
and

[
1 0.5

0.5 1

]
.

Tangent vector

H = ExpH(F ), F =

[
f11 f12

f12 f11

]
with f11 = {−1,−0.9, . . . , 1}, f22 = {−1,−0.9, . . . , 1}, f12 =
{−1, 0, 1}.
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Empirical Studies

Riemmanian Exponential Map

H =

[
1 0
0 1

]
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Variances increase exponentially with fii : can be related to
rapid market destabilization.

No influence of f22 on h11 when uncorrelated.
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Empirical Studies

Riemmanian Exponential Map

H =

[
1 0.5

0.5 1

]

−1

0

1

−1

−0.5

0

0.5

1
0

1

2

3

4

f
11

Standard Deviation

f
22

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

f
11

Correlation

f
12

1

0

+1

0

−1

−1

H is more sensitive to F , especially when f12 = −1.

Shocks of opposite direction rapidly reduce correlation.
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Empirical Studies

Global Market Correlation

The GGARCH models are applied to S&P500 and FTSE100 daily
returns and compared with BEKK and DCC models. Sample
period is from October 1, 2003 to September 30, 2013.

Mean Covariance Correlation
S&P500 FTSE100 S&P500 FTSE100

S&P500 1.924E-04 1.600E-04 0.872E-04 1.000 0.578
FTSE100 1.680E-04 0.872E-04 1.425E-04 0.578 1.000
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Empirical Studies

Global Market Correlation: Test Models

rt = µ+ et , et ∼ N(0,Ht),

Ht = ExpHt−1
(Ft).

GGARCH SCALAR

Ft = AHt−1 + Bet−1e
>
t−1 + Cηt−1η

>
t−1

where A, B, and C are scalar.

GGARCH DIAG

Ft = AHt−1 + Ht−1A
> + Bet−1e

>
t−1 + et−1e

>
t−1B

>

+Cηt−1η
>
t−1 + ηt−1η

>
t−1C

>

where A, B, and C are diagonal.
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Empirical Studies

Global Market Correlation: Test Models

GGARCH LINEAR

Ft = A⊗ Ht−1 + B ⊗ et−1e
>
t−1 + C ⊗ ηt−1η

>
t−1

where A, B, and C are symmetric, and ⊗ is the element-wise
matrix product.

GGARCH FULL

Ft = AHt−1 + Ht−1A
> + Bet−1e

>
t−1 + et−1e

>
t−1B

>

+Cηt−1η
>
t−1 + ηt−1η

>
t−1C

>

where A, B, and C are arbitrary n × n matrices.
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Empirical Studies

Global Market Correlation: Test Models

GGARCH PCA DIAG

Ft =
K∑

k=1

αktVk

αkt = a>k diag(Ht−1) + b>k diag(et−1e
>
t−1) + c>k diag(ηt−1η

>
t−1)

where ak , bk , and ck are n × 1 vectors.

GGARCH PCA FULL

Ft =
K∑

k=1

αktVk

αkt = a>k vech(Ht−1) + b>k vech(et−1e
>
t−1) + c>k vech(ηt−1η

>
t−1)

where ak , bk , and ck are n(n + 1)/2× 1 vectors.
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Empirical Studies

Global Market Correlation: PCA

Covariance matrix time series for PCA-based GGARCH models are
generated from sample covariance of the minimum size (two)
subsample at each time t.

The first component is related to simultaneous change of the
variance and covariance;

The second component is related to independent change of
variances;

The third component is related to independent change of the
covariance.

1st component 2nd component 3rd component

Eigenvalue 1.703E-06 0.375E-06 0.092E-6
(78.479%) (17.281%) (4.240%)

0.6470 0.6938 0.3163
Eigenvector 0.4972 -0.0693 -0.8649

0.5781 -0.7168 0.3898
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Empirical Studies

Global Market Correlation: Estimation and Diagnosis

Log-Likelihood

GGARCH SCALAR 1.7353E+04
GGARCH DIAG 1.7356E+04
GGARCH LINEAR 1.7409E+04
GGARCH FULL 1.7371E+04
GGARCH PCA DIAG 1.7404E+04
GGARCH PCA FULL 1.7478E+04
BEKK SCALAR* 1.7479E+04
BEKK DIAGONAL** 1.7509E+04
DCC 3-STAGE*** 1.7554E+04

Table : Log-likelihood as a result of QMLE.
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Empirical Studies

Global Market Correlation: Estimation and Diagnosis

Q p-value

GGARCH SCALAR 76.8857 0.0000
GGARCH DIAG 71.4855 0.0004
GGARCH LINEAR 37.5462 0.0646
GGARCH FULL 65.4737 0.0012
GGARCH PCA DIAG 70.6275 0.0000
GGARCH PCA FULL 41.8565 0.0060
BEKK SCALAR* 21.7602 0.1427
BEKK DIAGONAL** 17.2584 0.2642
DCC 3-STAGE*** 14.5448 0.4504

Table : Ljung-Box autocorrelation test results. Q denotes Ljung-Box Q
statistic.
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Empirical Studies

Global Market Correlation: Estimation and Diagnosis

σr w1 w2

GGARCH SCALAR*** 0.0109 0.5079 0.4921
GGARCH DIAG 0.0110 0.5051 0.4949
GGARCH LINEAR 0.0110 0.5011 0.4989
GGARCH FULL 0.0110 0.5134 0.4866
GGARCH PCA DIAG 0.0110 0.5118 0.4882
GGARCH PCA FULL 0.0110 0.4861 0.5139
BEKK SCALAR 0.0110 0.5232 0.4768
BEKK DIAGONAL 0.0110 0.5335 0.4665
DCC 3-STAGE 0.0110 0.5268 0.4732

Table : Minimum variance portfolio. σr is the sample standard deviation
of the portfolio return, and w1 and w2 are average portfolio weights of
S&P500 and FTSE100, respectively.
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Empirical Studies

Global Market Correlation: Estimation and Diagnosis

20:80 50:50 80:20
0.05 0.01 0.001 0.05 0.01 0.001 0.05 0.01 0.001

GGARCH SCALAR* 0.0518 0.0180 0.0042 0.0541 0.0161 0.0050 0.0525 0.0188 0.0046
GGARCH DIAG 0.0525 0.0165 0.0042 0.0541 0.0165 0.0050 0.0521 0.0196 0.0050
GGARCH LINEAR 0.0548 0.0184 0.0046 0.0567 0.0180 0.0058 0.0579 0.0215 0.0050
GGARCH FULL 0.0529 0.0180 0.0042 0.0533 0.0176 0.0050 0.0560 0.0188 0.0042
GGARCH PCA DIAG*** 0.0514 0.0153 0.0035 0.0479 0.0138 0.0038 0.0502 0.0150 0.0023
GGARCH PCA FULL** 0.0548 0.0192 0.0046 0.0521 0.0207 0.0035 0.0506 0.0188 0.0035
BEKK SCALAR 0.0537 0.0176 0.0031 0.0556 0.0192 0.0038 0.0541 0.0199 0.0050
BEKK DIAGONAL 0.0571 0.0207 0.0042 0.0579 0.0215 0.0046 0.0560 0.0219 0.0050
DCC 3-STAGE 0.0602 0.0211 0.0042 0.0590 0.0226 0.0050 0.0575 0.0226 0.0054

Table : Value-at-Risk test. The first row indicates portfolio composition
between S&P500 and FTSE100, and the second row indicates probability
level. The figures are probability of loss exceeding VaR.
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Empirical Studies

Global Market Correlation: Summary

The results are mixed and do not consistently support any
particular model.

This could be a limitation of the specific model under
consideration, or evidence of fundamental limitation of our
geometric framework.

Positive side is that, while BEKK and DCC models perform
better in term of in-sample fitting, the GGARCH models are
better performers for future risk estimation.

Since the covariance matrix evolves in an exponential manner,
the covariance matrix more often than not becomes
numerically unstable, in which case we assign an arbitrary
large number of log-likelihood value. This interruption may
cause a sub-optimal estimation results.
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Conclusion

Summary

We have proposed a new framework for addressing the
covariance dynamics.

It preserves geometric structure of the covariance matrix
without any arbitrary restricions by respecting the inherent
geometric features of the covariance matrix.

It also seems to possess the desired nonlinear natures of the
covariance dynamics observed in the market.

Empirical studies reveal the potential for the growth of our
model by showing that our model does capture many
well-known features about volatility transmission between
markets.
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Conclusion

Directions for Future Research

More comprehensive empirical studies and comparison analysis
with other models are in order.

Numerous areas of application can be sought: credit risk
modeling, asset pricing, portfolio optimization, etc.

Econometric methods to address the significance of the
estimated parameters are yet to be established.

The framework can be extended to multivariate normal
distributions.

In a broad context, the framework presents a new approach to
treating nonlinear properties observed in the financial market
and can contribute to building a new paradigm for economic
modeling.

Chulwoo Han 33/34



Conclusion

Thank you for your attention.
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