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Abstract—It is well established that passive frequency standards
operated in pulsed mode may suffer a degradation of their fre-
quency stability due to the frequency (FM) noise of the Local Os-
cillator (LO).

In continuously operated frequency standards, it has been
shown that a similar degradation of the frequency stability may
arise, depending on the used modulation-demodulation scheme.
In this paper, we report a theoretical analysis on the possible
degradations of the frequency stability of a continuous fountain
due to the LO FM noise. A simple model is developed to evaluate
whether or not aliasing persists. This model is based on a con-
tinuous frequency control loop of a frequency standard using a
Ramsey resonator.

From this model, we derive a general formula, valid for all usual
modulation-demodulation schemes, for the LO frequency fluctua-
tions due to aliasing in closed loop operation. We demonstrate that
in an ideal situation and for all usual modulation waveforms, no
aliasing occurs if the half-period of modulation equals the transit
time of atoms in the Ramsey resonator. We also deduce that in
the same conditions, square-wave phase modulation provides the
strongest cancellation of the LO instabilities in closed loop opera-
tion. Finally, we show that the “Dick formula” for the specific case
of the pulsed fountain can be recovered from the model by a sam-
pling operation.

Index Terms—Dick effect, frequency standards, laser cooling.

I. INTRODUCTION

I N PASSIVE frequency standards operated in pulsed mode,
like ion traps or cold atom fountains, it has been theoretically

[1]–[3] and experimentally [4] demonstrated that this particular
mode of operation may lead to a degradation of the frequency
stability. In these kinds of devices, the frequency (FM) noise of
the Local Oscillator (LO) around harmonics of the pulse rate is
downconverted by aliasing into the bandpass of the frequency
control loop. This mechanism, called “Dick effect” in the lit-
erature because it was first predicted and described by Dick at
JPL [2], limits the achievable stability even with state-of-the-art
quartz local oscillators.

In continuously operated frequency standards, a similar
degradation of the frequency stability may arise. It depends on
the scheme of modulation-demodulation used to generate the
error signal which controls the LO frequency and on the value
of the modulation frequency. This mechanism, the so-called
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“intermodulation effect” was first pointed out by Kramer [1],
then described in detail by Audoin [5] in the case of a passive
cell standard in the quasi-static approximation (modulation
frequency much smaller than atomic resonance linewidth).

We are interested here in possible degradations, due to the LO
FM noise, of the frequency stability of a Ramsey resonator fed
by a continuous beam of atoms showing a constant intensity. In
this type of standards, atoms are continuously interrogated and
any LO phase step will be detected and will produce an error
signal. It is expected that this absence of dead times will con-
stitute a significant advantage over the pulsed fountains, where
aliasing is unavoidable.

A generalization of the Dick formalism for pulsed Ramsey
resonators to the continuous case was proposed in [6], [7], and
briefly addressed in [8]. Our approach is complementary to [7],
[8] in that we start out with the error signal generated in the
continuous case and derive the “Dick formula” as a particular
case where the continuous error signal is sampled.

To evaluate whether aliasing nevertheless persists, we con-
sider a simple model, described in Section II, of a continuously
operated frequency standard using a Ramsey resonator. In Sec-
tion III, the error signal of the frequency control loop is derived
in a general case involving any modulation-demodulation wave-
form. Then, we calculate in Section IV the frequency spectrum
of the Locked Local Oscillator (LLO) when the loop is closed
from the knowledge of the power spectral density of
fractional frequency fluctuations of the unlocked LO. Finally,
we deduce the LLO power spectral density of frac-
tional frequency fluctuations due to aliasing. The result consti-
tutes a formula valid for continuous fountain Ramsey resonators
and similar to the “Dick formula” which was derived specifi-
cally for pulsed resonators. Then, we discuss its main features
in Section V as well as the limitations of the model. Finally, we
show in the last section that it is possible to recover the “Dick
formula” for the specific case of the pulsed fountain by a sam-
pling operation.

II. M ODEL OF FREQUENCYCONTROL LOOP

In the present derivation of the LLO frequency stability lim-
itation, we focus our attention on passive fountain frequency
standards using a continuous Ramsey interrogation scheme [9],
[10]. A sketch of the considered continuous fountain frequency
standard is represented in Fig. 1.

We assume a conventional quartz crystal oscillator charac-
terized by its power spectral density of fractional FM noise

. The atomic resonator is supposed to be an ideal
Ramsey resonator with two infinitely short Rabi pulses. The
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Fig. 1. Block-diagram of the continuous fountain frequency standard.

signal at the output of the resonator is synchronously detected
at a modulation frequency . Then, after integration, it
generates the continuous error signal used to control the
LO frequency. In order to evaluate the specific contribution
of the Dick effect to the frequency instability, we do not take
into account the shot noise in the atomic beam and we also
assume that the Ramsey resonator, the frequency synthesizer,
the synchronous detector, and the modulation generator add no
noise to the error signal.

III. ERRORSIGNAL OF THE FREQUENCYCONTROL LOOP

We suppose that the Ramsey resonator is fed by a signal of
the form

(1)

The atoms are then subjected to two oscillatory magnetic fields
of constant amplitude and of angular frequency, the first with
phase and the second with phase . is the transit
time between the two Rabi pulses andis the mean angular fre-
quency of the interrogation signal which is a multiple of the LO
angular frequency . The time-dependent phase con-
tains several terms

(2)

The first one, , is a general phase modulation wave-
form needed to generate the error signal which will allow the
frequency control loop to keep the angular frequencyas close
as possible to that of the cesium atom.is the multiplying factor
of the frequency synthesizer and represents the instan-
taneous LO phase fluctuations. is an arbitrary constant phase.

In the limit of infinitely short Rabi pulses, the phase of the
interrogation microwave field is constant during the interaction.
Therefore, the time-dependent probability that a transition oc-
curs inside the Ramsey resonator between the hyperfine states

and of the cesium atom is
given in a good approximation, valid for the central fringe of the
Ramsey pattern, by [11]:

(3)

for monokinetic atoms and optimum Rabi pulses (). is
the hyperfine transition angular frequency of the cesium atom
and is the instantaneous apparent phase difference ex-
perienced by the atoms between the two Rabi pulses, resulting
from the effect of the phase modulation, the LO phase fluctua-
tions and the motion of cesium atoms inside the resonator. It is
given by

(4)

Inserting (2) into (4) leads to the following expression:

(5)

The first term is due to the generated phase modulation

(6)

where and are the instantaneous modula-
tion phase in the first, respectively the second Rabi pulse. For the
modulation waveforms generally used in frequency standards,

is assumed to be an odd and periodic function of pe-
riod whose spectrum contains only odd harmonics of the
modulation frequency . As a result,
can be written as

(7)

where is a periodic function of period whose spec-
trum contains odd harmonics only and such that the maximum
of is unity. is the phase modulation depth of the
modulation waveform .
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The second term in (5) is a random component due to the LO
phase fluctuations

(8)

where and are the instantaneous LO phase
in the first, respectively the second Rabi pulse. This term can be
directly expressed as a function of frequency fluctuations

(9)

where is a random function representing the LO an-
gular frequency fluctuations.

The third term in (5) is a constant phase difference

(10)

where and are the arbitrary constant LO phase in the first,
respectively, the second Rabi pulse.

In the following, we restrict our analysis to the case where
the resonance condition is fulfilled, i.e., we assume that the fre-
quency control loop keeps the mean detuning equal to
zero. The remaining small time-dependent detuning is then only
due to the LO frequency fluctuations around. We also assume
that there is no frequency independent background atom flux
in the resonator. Therefore, the time-dependent response of the
resonator to the phase modulation, which is proportional to the
time-dependent Ramsey probability (3), is given by the signal of
a photodetector at the output of the resonator and may be written
as

(11)

where is the signal at resonance if . Inserting (5)
and (7) into (11) and assuming that no permanent phase differ-
ence exists between the two Rabi pulses ( ), we have

(12)

The standard deviation of is much smaller than
which is usually of the order of radian

(13)

We then can expand (12) limited to the first order of the ratio
to get

(14)

This signal is then synchronously detected at and low-
pass filtered with cutoff frequency . Since the
spectrum of the periodic function contains only odd
harmonics, it follows that the spectrum of
and of contains only even and odd harmonics
respectively. Therefore, only the third term of (14) will provide
the error signal.

If denotes the demodulation waveform of the syn-
chronous detector, the signal at its output is given by

(15)

where is a constant which depends on the synchronous de-
tector gain. The error signal applied to the LO is obtained
after passing through the integrator

(16)

where is the time constant of the integrator. Equations (15)
and (16) are the basic relationships of our simple model and will
be analyzed below in order to find the power spectral density of
the LLO frequency fluctuations.

IV. FREQUENCYSPECTRUM OF THELLO

We are now interested to calculate the spectrum of the error
signal defined by (15) and (16). The signal at the output of
the synchronous detector is composed of two parts:

• a random part depending on the LO angular
frequency fluctuations . We assume in the fol-
lowing that the process is stationary and of zero
mean value;

• a deterministic part which depends
on the modulation-demodulation scheme.

Let us start by calculating the two-sided power spectral den-
sity of the random part given by

(17)

where the symbol stands for convolution and is a rectan-
gular impulse equal to 1 for and 0 elsewhere. The
autocorrelation function of reads then

(18)

where is the autocorrelation function of .
The two-sided power spectral density is obtained by taking the
Fourier transform of . We get

(19)

where is the transfer function of and is the
two-sided power spectral density of the LO angular frequency
fluctuations.

Let be the deterministic part of the error signal:

(20)

As the spectrum of the demodulation waveform is assumed
to contain only odd harmonics of the modulation frequency,
the spectrum of will contain even harmonics only. Let us
define the Fourier series development of

(21)
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where the coefficients are in principle calculable from the
knowledge of the modulation and demodulation waveforms. Its
autocorrelation function is then the following:

(22)

The two-sided power spectral density follows immediately:

(23)
with the Dirac impulse function.

The autocorrelation function of the signal at the output
of the synchronous detector is given by

(24)

since and are two independent variables [12].
After filtering through an ideal lowpass filter (transfer function

for and 0 elsewhere), the two-sided power
spectral density of is then readily obtained

(25)

At the output of the integrator and overlooking any mathemat-
ical complications, the two-sided power spectral density
of the error signal may be written as

(26)

Inserting (19), (23), and (25) into (26), we obtain the following
expression:

(27)

This spectrum is composed of two parts. The first one which
contains corresponds to the error signal that actually
controls the LO frequency fluctuations. The second one, which
contains all the even multiples of , corresponds to a spurious
error signal generated by downconversion of LO frequency fluc-
tuations at higher harmonics of the modulation frequency, this
is the aliased part of the spectrum. From the loop equation in
time domain

(28)

and assuming that , which is usually the case in syn-
chronous detection, we can extract the LLO frequency spectrum

in closed loop operation. It is given, in the limit of high loop gain
and introducing one-sided power spectral densities of fractional
frequency, by

(29)

We are interested here only in the aliased part of the spectrum.
Introducing the expression of the transfer function , we ob-
tain finally the following expression for the power spectral den-
sity of the LLO fractional frequency fluctuations due to aliasing:

(30)

where and is the power spectral
density of the LO fractional frequency fluctuations. This for-
mula is the basic relationship to analyze the effect of any type
of modulation-demodulation scheme on the LLO frequency sta-
bility.

V. DISCUSSION

Without developing further (30), we can already point out
some general features of the result.

A. Modulation Frequency

Inspecting the term involving the ratio in (30), it fol-
lows in particular that for the condition , this term
will be equal to zero for any and as a result the power spectral
density will vanish. This property can be expressed
differently in saying that if the modulation frequency is equal to
the resonator linewidth, no frequency instability due to aliasing
will be added to the LLO frequency. Another remarkable fea-
ture is that this property is true forall usual modulation-demod-
ulation schemes, since the latter intervenes in the formula only
through the Fourier coefficients .

B. Interpretation of the Result

We can interpret this property as follows. In our model, the
operation of demodulation which takes place in the synchronous
detector is equivalent to multiplying the frequency fluctuations
at the output of the resonator by a waveform that contains only
even harmonics of the modulation frequency. As a result, all
fluctuations whose Fourier frequencies are an even multiple of
the modulation frequency will be downconverted into the band-
pass of the frequency loop, giving rise to a spurious error signal
introducing instabilities in the LLO frequency. The effect of the
Ramsey resonator is to filter out, by averaging over the transit
time, the LO fluctuations whose period is a submultiple of the
transit time as can be seen from (9). Then, if the half-period
of modulation corresponds to the transit time of the Ramsey
resonator, all LO fluctuations whose Fourier frequencies are an
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Fig. 2. Module of the normalized transfer functionH(f)=H(0) plotted versus
the Fourier frequencyf normalized to the resonator linewidthW . This curve
illustrates the filtering effect of the Ramsey resonator. The vertical lines show the
location of the downconverted harmonics (… forT =2 > T , - - for T =2 =
T ).

even multiple of the modulation frequency will be cancelled at
the output of the resonator as shown in Fig. 2.

It follows from what was said above that no downconversion
into the bandpass is possible in that case or, in other words, that
no frequency instability can be added to the LLO frequency by
aliasing.

C. Link with Previous Work

This property has previously been derived by Makdissi [7]
in a different manner, namely in the context of an extension of
the sensitivity function [2] from the pulsed to the continuously
operated resonator. The generalization proposed in [7] is inter-
esting since it starts from the well-known formalism developed
by Dick [2], [3] and extends it to the continuous case. This for-
malism uses the two following notions of: 1) “phase steps” to
describe an elementary phase fluctuation of the LO and 2) “sen-
sitivity function” , describing the time-dependent response
of the resonator to such “phase steps.” The ideal situation for a
frequency standard is to have a constant, that produces no
aliasing. In a Ramsey resonator, assumes nonzero values
over the duration of the atomic transit, which is, in the case of
a pulsed fountain, shorter than the interrogation cycle ( ).
With this formalism, the so-called “Dick effect” (aliasing pro-
duced by dead-times) may be seen as the consequence of the
fact that if a “phase-step” occurs at some times (during a dead
time), no error signal is produced ( ). Therefore, it is in-
tuitively understandable that in a continuous fountain [9], [10]
or a quasi-continuous fountain [13], [14] where atoms are al-
ways present in the resonator, no Dick effect will occur, while
pulsed standards are subject to it. The “intermodulation effect”
[5] has a similar origin but is slightly different, since it occurs
even if there are no dead-times [15]. In the Dick formalism, this
effect may be described mathematically by saying that is
not constant and physically by saying that the magnitude of the
response of the resonator depends on “when” the phase-step oc-
curs. Therefore, one may think that if the instantaneous signal
is modulated [ or ] either because of the modulation
scheme (with sine-wave, for example, see [8]) or because the
atomic beam is modulated [13], [14], the intermodulation effect

will appear and limit the stability, even in continuous fountains.
As demonstrated in [7] and in this communication, this is not
necessarily the case, since the signal [, and ] in a
Ramsey resonator produced by any LO “phase-step”, lasts,
the time spent by the atoms in the Ramsey resonator. If this time
is equal to the interrogation cycle ( ), the error signal
applied to the LO to correct for a phase step becomes indepen-
dent of its time of occurrence, with any modulation form. The
difficulty of applying the formalism developed by Dick to a con-
tinuous fountain lies in the fact that in this case the half-mod-
ulation period becomes comparable toand the error signal
produced by a “phase-step” covers at least two interrogation cy-
cles. This difficulty is overcome by the approach presented in
this communication. Our approach is entirely based on a con-
tinuous operation of the resonator, considering the pulsed oper-
ation as a particular modulation of the continuous error signal
(see Section VI below).

D. The Case of Square-Wave Phase Modulation

We can see that for the condition , square-wave
phase modulation is expected to better cancel the LLO insta-
bility due to aliasing, since in this case the function is con-
stant and its Fourier coefficients [in (21)] are all equal to
zero ( ). This fact will probably be a useful feature in ac-
tual cases with atomic velocity distribution and finite Rabi in-
teractions where the above condition can no longer be verified
for all atoms.

E. Limitations of the Model

In our simple model of a continuous fountain, we have made
several idealizations in order to get a relatively simple analyt-
ical formula for the power spectral density of LLO frequency
fluctuations due to aliasing phenomena. These idealizations set
a limitation to the conclusions that we can draw from the for-
mula (30). To better describe a real frequency standard and to
get quantitative predictions, an extension of the model is neces-
sary to include the main following points.

1) Velocity Distribution of Atoms:In our model, the atomic
beam is monokinetic. In the real continuous fountain of cold ce-
sium atoms, the initial longitudinal temperature of the beam is
low [10], leading to a narrow velocity distribution (a few cen-
timeters per second) around the mean launching velocity (4
m/s). This spread of velocity induces a distribution of transit
time in the Ramsey cavity. Even though small, this effect must
be taken into account because in that case the condition

is no longer verified for all atoms. The consequence is a
residual degradation of the frequency stability, i.e.,
, that we have to estimate.
2) Finite Rabi Interactions:The finite interaction time of

real frequency standards has not been taken into account in this
study. This effect also has to be investigated, especially in the
case of square-wave phase modulation where it is expected to
have significant consequences. Indeed, in that case a small frac-
tion of atoms can undergo a phase commutation in one or two
interaction regions giving rise to sharp transients in the output
signal of the resonator. The effect of these transients on the
LLO frequency stability and the possibility to suppress them by
blanking, which should reintroduce a small amount of aliasing
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with a velocity distribution, are under study. It is worth noting
that for the condition and with a monokinetic beam,
such a blanking should not introduce any aliasing since in that
case the symmetry properties of the function are conserved.

3) Phase Shift between Modulation and Demodulation:In
the present analysis, we have assumed that the demodulation
waveform of the synchronous detector is in phase with the mod-
ulated signal. In the case of monokinetic beam, this is the op-
timum condition. But with a velocity distribution of atoms, the
transit time and the detection delay between resonator and
detector (not taken into account here) are not the same for all
atoms, resulting in a modulated signal at the output of the res-
onator which is deformed with respect to that with monokinetic
atoms. Therefore, the “optimum” phase shift between the mod-
ulated signal and the demodulation signal is not unambiguously
defined. The effect of this phase adjustment on the stability is
also worth being investigated.

4) Bandwidth of the Detector:The detector considered in
the model is an ideal detector of infinitely wide bandwidth.
The cutoff frequency in the high of a real detector will intro-
duce a deformation of the modulated signal from the resonator
(as suggested to us by C. Audoin). As a consequence, in the
square-wave phase modulation the Fourier coefficientsof
the function will not vanish for the condition ,
as discussed in Section V-D, since is no longer a product
of two perfect square waveforms. Even though expected to lead
to a small degradation of the LLO frequency stability, this effect
has to be investigated.

VI. REDUCTION TO THEPULSED CASE

It is interesting now to compare the model to the well-known
case of the Dick effect appearing in the pulsed mode operation
of a cesium fountain frequency standard.

The periodic availability of the error signal can be taken into
account in our model by a periodic sampling operation on,
with period . The error signal then takes the following form:

(31)

where is a Dirac comb given by

(32)

Within these assumptions and doing again the spectral analysis
of the so-defined error signal, we find for the power spectral
density of the LLO fractional frequency fluctuations

(33)
This formula corresponds exactly to the well-known “Dick for-
mula” in the case of a pulsed fountain. Indeed, the term
involved in (33) is equal to the ratio of the Fourier coeffi-
cients of the Fourier series development of the sensitivity func-
tion , as defined in [16].

VII. CONCLUSION

A simple model of continuously operated fountain frequency
standard has been developed to investigate possible degrada-
tions of the LLO frequency stability. This model has shown that
if the half-period of modulation is equal to the transit time

, no frequency instability due to an aliasing effect appears.
This is true for all usual modulation-demodulation schemes. The
case of a pulsed frequency standard can be recovered by sam-
pling the continuous error signal at the cycle frequency, leading
to the well-known “Dick formula.”

The extension of the model to better describe a real fountain
frequency standard and to get quantitative predictions, by taking
into account such effects as a velocity distribution of atoms and
the finite Rabi interaction time, is under investigation. We ex-
pect that these effects will introduce only a small degradation of
the frequency stability, not preventing from reaching the “shot
noise” stability limit with a conventional quartz crystal oscil-
lator and state-of-the-art frequency chain.

This model may also be applied to multipulse operation [13]
or juggling [14] of future fountain frequency standards and sets
a solid basis for future experimental investigations.
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