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Theoretical Study of the Dick Effect in a Continuously
Operated Ramsey Resonator
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Abstract—it is well established that passive frequency standards “intermodulation effect” was first pointed out by Kramer [1],
operated in pulsed mode may suffer a degradation of their fre- then described in detail by Audoin [5] in the case of a passive
q.‘ljle?cy(it(‘;;’”'ty due to the frequency (FM) noise of the Local Os- ¢q|| standard in the quasi-static approximation (modulation
cillator . : . :

In continuously operated frequency standards, it has been frequency_ much smaller t_han ato_mm resonance linewidth).
shown that a similar degradation of the frequency stability may e are interested here in possible degradations, due to the LO
arise, depending on the used modulation-demodulation scheme.FM noise, of the frequency stability of a Ramsey resonator fed
In this paper, we report a theoretical analysis on the possible py a continuous beam of atoms showing a constant intensity. In
degradations of the frequency stability of a continuous fountain this type of standards, atoms are continuously interrogated and
due to the LO FM noise. A simple model is developed to evaluate ! .
whether or not aliasing persists. This model is based on a con- a_ny LO p_hase step will be detected and will pro_duce ar_1 error
tinuous frequency control loop of a frequency standard using a Slgnal. Itis eXpeCted that this absence of dead times will con-
Ramsey resonator. stitute a significant advantage over the pulsed fountains, where

From this model, we derive a general formula, valid for all usual  gliasing is unavoidable.
modulation-demodulation schemes, for the LO frequency fluctua- A generalization of the Dick formalism for pulsed Ramsey

tions due to aliasing in closed loop operation. We demonstrate that tors to th i din 61 [7 d
in an ideal situation and for all usual modulation waveforms, no '€Sonators to the continuous case was proposed in [6], [7], an

aliasing occurs if the half-period of modulation equals the transit briefly addressed in [8]. Our approach is complementary to [7],
time of atoms in the Ramsey resonator. We also deduce that in [8] in that we start out with the error signal generated in the
the same conditions, square-wave phase modulation provides the continuous case and derive the “Dick formula” as a particular
strongest cancellation of the LO instabilities in closed loop opera- case where the continuous error signal is sampled.

tion. Finally, we show that the “Dick formula” for the specific case . .
of the pulsed fountain can be recovered from the model by a sam- To eva}luate whether alla§|ng rlevertheless perS|sts: we con-
pling operation. sider a simple model, described in Section Il, of a continuously
operated frequency standard using a Ramsey resonator. In Sec-
tion 111, the error signal of the frequency control loop is derived
in a general case involving any modulation-demodulation wave-
|. INTRODUCTION form. Then, we calculate in Section IV the frequency spectrum
éthe Locked Local Oscillator (LLO) when the loop is closed
)m the knowledge of the power spectral densify°(f) of
actional frequency fluctuations of the unlocked LO. Finally,
deduce the LLO power spectral density"/ (f) of frac-

Index Terms—DPick effect, frequency standards, laser cooling.

N PASSIVE frequency standards operated in pulsed mo
I like ion traps or cold atom fountains, it has been theoretical
[1]-[3] and experimentally [4] demonstrated that this particul
mode of operation may lead to a degradation of the frequenv()f _ . dhal .
stability. In these kinds of devices, the frequency (FM) noise g nal frequency ﬂgctuaﬂong due to a"aS'T‘g- The result consti-
the Local Oscillator (LO) around harmonics of the pulse rate futes gfqrmulavallg fpr C°”“”“°‘js fogntam Ram;ey resong?ors
downconverted by aliasing into the bandpass of the frequerﬁg/d similar to the “Dick formula Wh'Ch, was dgrlved.specm-
control loop. This mechanism, called “Dick effect” in the lit-C lly fo_r pulsed resonators._ Ther_l, we discuss its main features
erature because it was first predicted and described by DicK §ec_t|on V as well as the I|rr_1|t§1t|ons (.)f the model. Flnall)‘/‘, we
JPL [2], limits the achievable stability even with state-of-the-a ow mﬂthe last sectl.o.n that it is possible to recover the "Dick
quartz local oscillators. o_rmula for_the specific case of the pulsed fountain by a sam-

In continuously operated frequency standards, a similgpng operation.

degradation of the frequency stability may arise. It depends on
the scheme of modulation-demodulation used to generate the Il. MODEL OF FREQUENCY CONTROL LoOOP
error signal which controls the LO frequency and on the value

of the modulation frequency. This mechanism, the so—calledlr1 the present derivation (.)f the LLO fr_equency s_tab|||ty lim-
itation, we focus our attention on passive fountain frequency

standards using a continuous Ramsey interrogation scheme [9],
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Fig. 1. Block-diagram of the continuous fountain frequency standard.

signal at the output of the resonator is synchronously detectéd= 3, my = 0 andF = 4, mp = 0 of the cesium atom is
at a modulation frequencyy;. Then, after integration, it given in a good approximation, valid for the central fringe of the
generates the continuous error sigag) used to control the Ramsey pattern, by [11]:

LO frequency. In order to evaluate the specific contribution

of the Dick effect to the frequency instability, we do not take P(t) = 3 {1+ cos [(w —wo)T + ¢(t, T)]} 3)
into account the shot noise in the atomic beam and we also o ) ) _
assume that the Ramsey resonator, the frequency synthesfg&fmonokinetic atoms and optimum Rabi pulseg3). wo is

the synchronous detector, and the modulation generator addi® hyperfine transition angular frequency of the cesium atom
noise to the error signal. and¢(t, T') is the instantaneous apparent phase difference ex-

perienced by the atoms between the two Rabi pulses, resulting

from the effect of the phase modulation, the LO phase fluctua-

tions and the motion of cesium atoms inside the resonator. It is
We suppose that the Ramsey resonator is fed by a signa@fen by

the form

I1l. ERRORSIGNAL OF THE FREQUENCY CONTROL LOOP

o(t, T) = g(t) — p(t = T). @

V(t) = Vo cos(wt + ¢(t)). 1)

Inserting (2) into (4) leads to the following expression:

The atoms are then subjected to two oscillatory magnetic fields
of constant amplitude and of angular frequengyhe first with P(t, T) = Pumoa(t, T) + d¢ro(t, T) + A¢. (5)
phasep(t — T') and the second with phagét). T is the transit
time between the two Rabi pulses and the mean angular fre-
quency of the interrogation signal which is a multiple of the LO
angular frequencyy.o. The time-dependent phagé:) con-
tains several terms

The first term is due to the generated phase modulation

d)mod (t7 T) = d)lnod (t) - d)lnod (t - T) (6)

whereg,,.qa(t — ) andg,,.q(t) are the instantaneous modula-
tion phase in the first, respectively the second Rabi pulse. For the
P(t) = Pmoa(t) + gédLo(t) + do- (2)  modulation waveforms generally used in frequency standards,
. ] ) Pmoa(t) is assumed to be an odd and periodic function of pe-
The first one,¢moa(t), is a general phase modulation waveriog 7, whose spectrum contains only odd harmonics of the

form needed to generate the error signal which will allow theioqylation frequencyy, = 1/Ty. As a resultpuoq (t, T)
frequency control loop to keep the angular frequen@s close -5n pe written as

as possible to that of the cesium atanis the multiplying factor
of the frequency synthesizer ahd; o () represents the instan- Gmod(t, T) = 2¢me(t, T) (7)
taneous LO phase fluctuations, is an arbitrary constant phase.

In the limit of infinitely short Rabi pulses, the phase of thevherec(t, T') is a periodic function of period’,, whose spec-
interrogation microwave field is constant during the interactiotrum contains odd harmonics only and such that the maximum
Therefore, the time-dependent probability that a transition oof |c(¢, T')| is unity. ¢,, is the phase modulation depth of the
curs inside the Ramsey resonator between the hyperfine stateslulation waveforng,,oa(t).
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The second term in (5) is a random component due to the LOIf d(¢) denotes the demodulation waveform of the syn-
phase fluctuations chronous detector, the signal at its output is given by

épro(t, T) = q (6¢ro(t) — é¢rLo(t — 1)) ®) s(t) = —5 Kbpro(t, T)sin[2¢mc(t, T)] d(t)  (15)

wheredpro(t—T) andé¢ro(t) are the instantaneous LO phasevhere K is a constant which depends on the synchronous de-
in the first, respectively the second Rabi pulse. This term cantaetor gain. The error signalt) applied to the LO is obtained
directly expressed as a function of frequency fluctuations  after passing through the integrator

t 1 t
6(/)Lo(t, T) = q/ 6wLo(t/) dt’ (9) C(t) = —/ S(t/) dt/ (16)
t—T TI —oo
whereéwro(t) is a random function representing the LO anwhere7 is the time constant of the integrator. Equations (15)
gular frequency fluctuations. and (16) are the basic relationships of our simple model and will
The third term in (5) is a constant phase difference be analyzed below in order to find the power spectral density of
the LLO frequency fluctuations.
Ap =z — 1 (10)
) ) ] IV. FREQUENCY SPECTRUM OF THELLO
whereg, andg, are the arbitrary constant LO phase in the first, i
respectively, the second Rabi pulse. We are now interested to calculate the spectrum of the error

In the following, we restrict our analysis to the case wherddnal defined by (15) and (16). The signat) at the output of
the resonance condition is fulfilled, i.e., we assume that the ffl€ Synchronous detector is composed of two parts:

quency control loop keeps the mean detuning w, equal to * arandom paré¢ro(t, T) depending on the LO angular
zero. The remaining small time-dependent detuning is then only ~ frequency fluctuationgiwy.o (t). We assume in the fol-
due to the LO frequency fluctuations aroundWe also assume lowing that the proces&vro(?) is stationary and of zero

that there is no frequency independent background atom flux Mmean val_ug; _ _
in the resonator. Therefore, the time-dependent response of ther @ deterministic partin[2¢,,c(#, 1)]d(t) which depends
resonator to the phase modulation, which is proportional to the ~ on the modulation-demodulation scheme.
time-dependent Ramsey probability (3), is given by the signal of Let us start by calculating the two-sided power spectral den-
a photodetector at the output of the resonator and may be writéey S5, ., (f) of the random paré¢ro(¢, T) given by
as
1
_ N

I(t) — %IO {1 + cos [(/)(t, T)]} (11) (5(/)Lo(t, T) = q/t_T (5wLo(t ) dt’ = qéwLo(t) * h(t) an
wherel, is the signal at resonanceft, 7) = 0. Inserting (5) ' here the symbot stands for convolution ankt) is a rectan-
and (7) |_nto (11) and assuming th_at no permanent phase d'ﬁﬁ[nar impulse equal to 1 fa¥ < ¢ < 7" and 0 elsewhere. The
ence exists between the two Rabi pulsag (= 0), we have  aytocorrelation functiolss, , (1) of §¢r.o(t, T') reads then

) 1

1 = 5 L+ cos 2ol T) + 8guo(t, TN} (12 Riio(7) = @ Rowro (7) % h(=7) x W) (18)

The standard deviation 6f1.6 (¢, T°) is much smaller thage,,, where Ry o(7) is the autocorrelation function afwr.o(t).
which is usually of the order 0\;/2 radian The two-sided power spectral density is obtained by taking the

Fourier transform ofRs,, (7). We get

Soro(t, T) < 2¢.m. (13)

Ssono(F) = @ [HDI Siw, o () (19)
g\é)igzin;)a/g ;zﬁingeglz) limited to the first order of the rativ?/her(.aH (f) isthe transfer functipn of(t) andsSs,, (f)isthe
two-S|dt_ad power spectral density of the LO angular frequency
%f) = % {1+ cos [2pme(t, T)]} ﬂul(jgfcité(t))nks)é the deterministic part of the error signal:
_ % <5¢%(:T)> 2py i1 [2me(t, T)] . (14) alt) = sin [2pme(t, T)] d(b). (20)

This signal is then synchronously detectedfat and low- AS the spectrum of the dem.odulation wavefoi:‘(n) is assumed
pass filtered with cutoff frequency. < fi. Since the O contain only odd ha_rmomcg of the modulatpnfrequeﬁgy
spectrum of the periodic functioa(t, T') contains only odd the.spectrum oﬁ(t) WI.|| contain even harmonics only. Let us
harmonics, it follows that the spectrum obs[2¢,,c(¢, 7)] define the Fourier series developmentof)

and ofsin[2¢,,c(t, T)] contains only even and odd harmonics too

respectively. Therefore, only the third term of (14) will provide a(t) = co + Z oIt e 1)

the error signal. P
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where the coefficients,;, are in principle calculable from the in closed loop operation. Itis given, in the limit of high loop gain
knowledge of the modulation and demodulation waveforms. l&sd introducing one-sided power spectral densities of fractional
autocorrelation functio®, () is then the following: frequency, by

sty 0TI stoqy)

+oo
Ry(r)=c3+ Z |cor|? (eHhmiuT 4 emithmiTy 0 (22) T K2K23H(0)]2
k=1

o0
|lear? |H 2k /) Lo
2
c  |H(0)2 Sy (k)

f</fe (29)

The two-sided power spectral density follows immediately:

+ oo
! 2 2
Sall) = b + kz::l fearP180] = 2k fan) + 80 + 2k fa) We are interested here only in the aliased part of the spectrum.
(23) Introducing the expression of the transfer functié(y ), we ob-
with 6( f) the Dirac impulse function. tain finally the following expression for the power spectral den-
The autocorrelation function of the signgl) at the output sity of the LLO fractional frequency fluctuations due to aliasing:
of the synchronous detector is given by

+oo 2
LLO / r\ ~v lear® . 5 T LO
K? Syt (f) :22 5— sinc <2k7r—) SV 2k far)
Ro(r) = 4 Rsgpo(7)Ra(T) (24) ’ =1 T ) 0)
f<fe 30

sinced¢r.o(t, T) anda(t) are two independent variables [12].

. s 1.0 .
After filtering through an ideal lowpass filter (transfer functioyvheresinc(z) = sin(z)/x and5,®(f) is the power spectral
Hy(f) = 1for|f| < f.and O elsewhere), the two-sided powegensny of the LO fractional frequency fluctuations. This for-
spectral density’ (f) of s(¢) is then readily obtained mula is the basic relationship to analyze the effect of any type
® of modulation-demodulation scheme on the LLO frequency sta-
K2 bility.
S.(f) = e sono () * Sa(f)  fI < fe (25)

V. DISCUSSION

At the output of the integrator and overlooking any mathemat- without developing further (30), we can already point out
ical complications, the two-sided power spectral densjtyf) some general features of the result.
of the error signak(¢) may be written as

A. Modulation Frequency

/
LJC)Q If] < fe- (26) Inspecting the term involving the ratiB/T; in (30), it fol-
(27 f17) lows in particular that for the conditiol = Tj;/2, this term
will be equal to zero for ang and as a result the power spectral
%ensitij}La?(f) will vanish. This property can be expressed

S.(f) =

Inserting (19), (23), and (25) into (26), we obtain the followin

expression: differently in saying that if the modulation frequency is equal to

5 o 5 5 oo th.e resonator linewidth, no frequency instability due to aliasing

S(f) = K¢ EIH(|PSh, () + Kt Z will be added to the LLO frequency. Another remarkable fea-
e 1672 f217 wLo 1672 f217 — ture is that this property is true fatl usual modulation-demod-

% {|02k|2 % [|H(f _ 2ka)|25ngo(f — 2% fur) ulation schemessince the latter intervenes in the formula only

through the Fourier coefficients;,.
HH(f + 2k far)P St (f + 26520)] ) ? ¢
If] < fe. (27) B. Interpretation of the Result

We can interpret this property as follows. In our model, the
This spectrum is composed of two parts. The first one whi@peration of demodulation which takes place in the synchronous
containsS;,, _(f) corresponds to the error signal that actuallyetector is equivalent to multiplying the frequency fluctuations
controls the LO frequency fluctuations. The second one, whigfithe output of the resonator by a waveform that contains only
contains all the even multiples ¢f,, corresponds to a spuriouseven harmonics of the modulation frequency. As a result, all
error signal generated by downconversion of LO frequency fluiyctuations whose Fourier frequencies are an even multiple of
tuations at higher harmonics of the modulation frequency, thige modulation frequency will be downconverted into the band-
is the aliased part of the spectrum. From the loop equationggss of the frequency loop, giving rise to a spurious error signal
time domain introducing instabilities in the LLO frequency. The effect of the
Ramsey resonator is to filter out, by averaging over the transit
bwrLo(t) = dwro(t) — Kee(t) (28) time, the LO fluctuations whose period is a submultiple of the
transit time as can be seen from (9). Then, if the half-period
and assuming thaf. < fs, which is usually the case in syn-of modulation corresponds to the transit time of the Ramsey
chronous detection, we can extract the LLO frequency spectruasonator, all LO fluctuations whose Fourier frequencies are an
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will appear and limit the stability, even in continuous fountains.
As demonstrated in [7] and in this communication, this is not
necessarily the case, since the sigdat), s(¢) ande(t)] in a
Ramsey resonator produced by any LO “phase-step”, 1sts
the time spent by the atoms in the Ramsey resonator. If this time
is equal to the interrogation cycl&y; /2), the error signak(t)
applied to the LO to correct for a phase step becomes indepen-
dent of its time of occurrence, with any modulation form. The
difficulty of applying the formalism developed by Dick to a con-
tinuous fountain lies in the fact that in this case the half-mod-
ulation period becomes comparable’ffoand the error signal
produced by a “phase-step” covers at least two interrogation cy-
f/W cles. This difficulty is overcome by the approach presented in
this communication. Our approach is entirely based on a con-
Fig.2.  Module of the normalized transfer functiéii ) / (0) plotted versus - tinyous operation of the resonator, considering the pulsed oper-
the Fourier frequency normalized to the resonator linewidth'. This curve . . . . .
illustrates the filtering effect of the Ramsey resonator. The vertical lines showtﬁgon asa partlcular modulation of the continuous error S|gna|

location of the downconverted harmonics (... B1; /2 > T, --for Ts /2 =  (See Section VI below).
7).

LH(f) / H(0)I

D. The Case of Square-Wave Phase Modulation

even multiple of the modulation frequency will be cancelled at We can see that for the conditidh = T /2, square-wave

the output of the resonator as shown in Fig. 2. phase modulation is expected to better cancel the LLO insta-
It follows from what was said above that no downconversidsility due to aliasing, since in this case the functicin) is con-

into the bandpass is possible in that case or, in other words, tsgint and its Fourier coefficients;, [in (21)] are all equal to

no frequency instability can be added to the LLO frequency Bero ¢ # 0). This fact will probably be a useful feature in ac-

aliasing. tual cases with atomic velocity distribution and finite Rabi in-
) _ _ teractions where the above condition can no longer be verified
C. Link with Previous Work for all atoms.

This property has previously been derived by Makdissi [7
in a different manner, namely in the context of an extension
the sensitivity function [2] from the pulsed to the continuously In our simple model of a continuous fountain, we have made
operated resonator. The generalization proposed in [7] is inteeveral idealizations in order to get a relatively simple analyt-
esting since it starts from the well-known formalism developéadal formula for the power spectral density of LLO frequency
by Dick [2], [3] and extends it to the continuous case. This foftuctuations due to aliasing phenomena. These idealizations set
malism uses the two following notions of: 1) “phase steps” ta limitation to the conclusions that we can draw from the for-
describe an elementary phase fluctuation of the LO and 2) “senula (30). To better describe a real frequency standard and to
sitivity function” ¢(t), describing the time-dependent responsget quantitative predictions, an extension of the model is neces-
of the resonator to such “phase steps.” The ideal situation fosary to include the main following points.
frequency standard is to have a consigft}, that produces no 1) Velocity Distribution of Atoms:n our model, the atomic
aliasing. In a Ramsey resonatg(t) assumes nonzero valuesbeam is monokinetic. In the real continuous fountain of cold ce-
over the duratioff” of the atomic transit, which is, in the case osium atoms, the initial longitudinal temperature of the beam is
a pulsed fountain, shorter than the interrogation cy€lg (2). low [10], leading to a narrow velocity distribution (a few cen-
With this formalism, the so-called “Dick effect” (aliasing pro-timeters per second) around the mean launching velosity (
duced by dead-times) may be seen as the consequence off®. This spread of velocity induces a distribution of transit
fact that if a “phase-step” occurs at some times (during a detithe in the Ramsey cavity. Even though small, this effect must
time), no error signal is produced & 0). Therefore, it is in- be taken into account because in that case the conditien
tuitively understandable that in a continuous fountain [9], [1@ /2 is no longer verified for all atoms. The consequence is a
or a quasi-continuous fountain [13], [14] where atoms are aksidual degradation of the frequency stability, i J.},La?.(f) >
ways present in the resonator, no Dick effect will occur, whil@, that we have to estimate.
pulsed standards are subject to it. The “intermodulation effect’2) Finite Rabi Interactions:The finite interaction time of
[5] has a similar origin but is slightly different, since it occurseal frequency standards has not been taken into account in this
even if there are no dead-times [15]. In the Dick formalism, thitudy. This effect also has to be investigated, especially in the
effect may be described mathematically by saying gfat is case of square-wave phase modulation where it is expected to
not constant and physically by saying that the magnitude of thave significant consequences. Indeed, in that case a small frac-
response of the resonator depends on “when” the phase-stepiot of atoms can undergo a phase commutation in one or two
curs. Therefore, one may think that if the instantaneous sigmatleraction regions giving rise to sharp transients in the output
is modulated I (¢) or s(¢)] either because of the modulationsignal of the resonator. The effect of these transients on the
scheme (with sine-wave, for example, see [8]) or because tHeO frequency stability and the possibility to suppress them by
atomic beam is modulated [13], [14], the intermodulation effetanking, which should reintroduce a small amount of aliasing

Limitations of the Model
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with a velocity distribution, are under study. It is worth noting VII. CONCLUSION
that for the and't'o'T - TM./2 and with a molnol.<|net|.c begm, A simple model of continuously operated fountain frequency
such a blanking should not introduce any aliasing since in tlla[

) 4 bndard has been developed to investigate possible degrada-
case the Symme_”y properties of the funcimﬁﬂ) are conseryed. tions of the LLO frequency stability. This model has shown that
3) Phase Shift between Modulation and Demodulati¢m:

A if the half-period of modulatioff’y; /2 is equal to the transit time
the present analysis, we have assumed that the demodula§on, frequency instability due to an aliasing effect appears.

waveform of the synchronous detector is in phase with the moghs;s is trye for all usual modulation-demodulation schemes. The
ulated signal. In the case of monokinetic beam, this is the Opsse of a pulsed frequency standard can be recovered by sam-
timum condition. But with a velocity distribution of atoms, thep”ng the continuous error signal at the cycle frequency, leading
transit time7” and the detection deldj; between resonator andig the well-known “Dick formula.”
detector (not taken into account here) are not the same for alirhe extension of the model to better describe a real fountain
atoms, resulting in a modulated signal at the output of the regsquency standard and to get quantitative predictions, by taking
onator which is deformed with respect to that with monokinetigto account such effects as a velocity distribution of atoms and
atoms. Therefore, the “optimum” phase shift between the moghe finite Rabi interaction time, is under investigation. We ex-
ulated signal and the demodulation signal is not unambiguouglyct that these effects will introduce only a small degradation of
defined. The effect of this phase adjustment on the stabilitytige frequency stability, not preventing from reaching the “shot
also worth being investigated. noise” stability limit with a conventional quartz crystal oscil-
4) Bandwidth of the DetectorThe detector considered injator and state-of-the-art frequency chain.
the model is an ideal detector of infinitely wide bandwidth. This model may also be applied to multipulse operation [13]
The cutoff frequency in the high of a real detector will introor juggling [14] of future fountain frequency standards and sets

duce a deformation of the modulated signal from the resonatpsolid basis for future experimental investigations.

(as suggested to us by C. Audoin). As a consequence, in the
square-wave phase modulation the Fourier coefficiepisof
the functiona(t) will not vanish for the conditio?” = Ty, /2, 0
as discussed in Section V-D, sine€&) is no longer a product

of two perfect square waveforms. Even though expected to lead?]
to a small degradation of the LLO frequency stability, this effect
has to be investigated. 3]

VI. REDUCTION TO THE PULSED CASE

Itis interesting now to compare the model to the well-known [4]
case of the Dick effect appearing in the pulsed mode operation
of a cesium fountain frequency standard. 5]

The periodic availability of the error signal can be taken into
account in our model by a periodic sampling operatios @,

with period7... The error signal then takes the following form: (6]
t
)= - [ spo, Da@u@ydr (31
277 J_ oo
) ) . (8]
whereu(t) is a Dirac comb given by
oo [9]
u(t) = > 8(t—kT.). (32)
heee [10]

Within these assumptions and doing again the spectral analysis
of the so-defined error signal, we find for the power spectraf11]
density of the LLO fractional frequency fluctuations (12

1o S ine? (1L gro 23]

Sy el (f) = 225111(3 </€7r7> Sy (kfe) f<re.
k=1 ¢
(33)

This formula corresponds exactly to the well-known “Dick for-
mula” in the case of a pulsed fountain. Indeed, ¢he: term
involved in (33) is equal to the ratigf /g2 of the Fourier coeffi-
cients of the Fourier series development of the sensitivity funcpg
tion g(¢), as defined in [16].

(14]

[15]
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