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Abstract—We report on the primary frequency standard
now under construction at the Observatoire de Neuchatel
(ON). The design is based on a continuous fountain of laser-
cooled cesium atoms, which combines two advantages: the
negligible contribution of collisions to the inaccuracy and
the absence of stability degradation caused by aliasing ef-
fects encountered in pulsed operation. The design is re-
viewed with special emphasis on the specific features of a
continuous fountain, namely the source, the microwave cav-
ity (TEp21 mode), and the microwave modulation scheme.
The possible sources of frequency biases and their expected
contributions to the error budget are discussed. Based on
present data, an accuracy in the low 10~15 range and a
short-term stability of 7 - 10~14 are attainable simultane-
ously under the same operating conditions.

I. INTRODUCTION

ASER cooling has made possible major improvements
Lin frequency metrology. The gain in short-term sta-
bility and accuracy in pulsed fountains with respect to
conventional thermal beam primary frequency standards
has already exceeded a factor of three [1] and is likely to
increase further. However, few devices are already opera-
tional, and most of the research work in this field is limited
to schemes in which clouds of atoms are sequentially cap-
tured, launched, and interrogated. It has been recognized
[2] that the pulsed character of the experiment imposes
stringent conditions on the local oscillator. In addition, a
high stability requires high density atomic clouds in which
the collisional shift may be far from negligible. An alter-
native to solve both problems is the use of a continuous
beam of laser-cooled atoms. Such a device is under con-
struction at ON in collaboration with the Swiss Federal
Office of Metrology (OFMET).

The purpose of this paper is to review the design of
the so-called continuous fountain (Section II) and to ad-
dress metrological considerations such as short-term stabil-
ity, interrogation scheme, and frequency shifts with special
emphasis on the continuous character.
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II. DESCRIPTION OF THE DESIGN

This section gives a description of the continuous foun-
tain presently under construction at ON. Fig. 1 shows a
general view of the atomic resonator.

A. Vacuum System

The vacuum system is made of aluminum and can be
divided into two parts. The lower part contains the source
of the atomic beam and the detection region. Source and
detection are in different compartments of the vacuum sys-
tem. The chamber containing the source is filled with ce-
sium vapour, and, in the detection part, graphite absorbs
cesium atoms, ensuring a low background cesium pressure.
The upper part houses the microwave interrogation and
is surrounded by three layers of magnetic shielding. Ton
pumps are connected to the upper and lower part of the
system to achieve a working pressure in the 10~7 Pa range.

B. Optics

Previous investigations [3] have shown that the inten-
sity of the atomic flux that can be obtained with an opti-
cal molasses is almost as good as the one achieved with an
anisotropic magneto-optical trap. For the sake of simplic-
ity, the source of the continuous fountain, therefore, will
be an optical molasses formed by two pairs of counterprop-
agating beams in the vertical plane, mutually perpendicu-
lar and at 45° to the vertical (C; Fig. 1). A third pair (B;
Fig. 1) is orthogonal to this plane and is retroreflected.
Repumping light (F = 3 — F/ = 4) is mixed to the B
beams. Each cooling beam has a 1/e? diameter of 24 mm.

Further collimation of the launched atoms is achieved
50 mm above the center of the molasses in a region of 2-D
transverse cooling. Beam diameters are 10 mm at 1/e2.

Two channels of detection are planned, thus allowing
compensation for possible variations of the atomic flux by
normalization. Both channels work with beams measur-
ing 10 mm. The optics are entirely fiber-coupled, making
the vacuum system independent of the preparation of the
light on the optical bench. The main components are an
extended cavity laser (ECL) as master laser whose output
is amplified by a MOPA from which all cooling beams are
derived. Repumping light is provided by a DBR laser, and
the probing beam is the output of an additional ECL.
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Fig. 1. General view of the atomic resonator under construction.
1) Source chamber, 2) detection chamber, 3) light trap (light shields
not shown for clarity), 4) microwave cavity, and 5) magnetic shield-
ing. A) Transverse cooling, B) and C) main cooling and launching,
D) detection beam, and E) fluorescence.
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C. Trajectory of Atoms

From the source, the atoms are launched at a small an-
gle with respect to the vertical (30 mrad) by means of a
moving molasses. The required horizontal velocity com-
ponent is obtained by tilting the transverse cooling beam
geometry (A; Fig. 1). For a 45° geometry, the launching
velocity vy, is related to the difference in frequency between
horizontal beams and up- and down-going beams (+Af,
—Af, respectively) by

vy = V2AAS. (1)

With an initial velocity of approximately 3.8 m/s, the
atoms describe a ballistic parabola with a maximum height
of 750 mm. The horizontal distance between source and
detection is 85 mm. The transit time between the first
and second microwave interaction region is 0.5 s (atomic
linewidth @ = 101°).

On their trajectory, the atoms pass, after having left the
source, a zone of transverse cooling [3]. In a further step,
complete population inversion is obtained in the atomic
beam by means of a depumping laser tuned to the 4 — 4’
transition, which transfers all atoms into the F' = 3 ground
state. There is no provision in the present scheme to change
the existing population distribution in the mp sublevels.

Before entering the upper part of the vacuum system,
the atoms pass a light trap based on velocity selection. The
trap consists of turbine wheels whose blades, made of thin
absorbing glass sheet, are mounted at 45° with respect to
its vertical rotation axis. If the tangential speed matches
the atomic velocity, the atomic beam is transmitted with
little (10%) attenuation, and the light is absorbed or spec-
ularly reflected toward a fixed light trap. A discussion on
the performance of the light trap and considerations on
the expected relative frequency offset caused by light shift
is given in Section III.

Beyond the light trap, the atoms continue their
parabola and are subjected to the two consecutive 10-ms
microwave pulses spaced in time by typically 77 ~ 0.5 s.
On the detector side, another light trap prevents scattered
light from reaching the interaction region. Finally, the in-
ternal state of the atoms is probed optically.

D. Microwave Cavity

A continuous beam of atoms requires two separate in-
teraction zones in the microwave cavity. With a narrow
parabolic flight, however, the two zones can be separated
by a few centimeters only. The atoms will pass through a
coaxial TEgys; cavity on opposite sides of its axis but at
the same radius 7,. The proposed cavity mode shows no
azimuthal dependence of the H-field and has a maximum
z-component at r,. The longitudinal dependence of the
H.-component at r, is sinusoidal, as in a TEq;; cavity. A
sketch of the field lines is given in Fig. 2.
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Fig. 2. Vertical section on the cavity. Schematically drawn are the H
field lines.

III. METROLOGICAL ISSUES
A. Short-Term Stability

On the basis of the continuous atomic flux deduced from
atomic shot noise measurements in the demonstration ex-
periment, we anticipate a flux of atoms contributing to the
Ramsey signal equal to ¢ = 5 - 10° at/s. For an atomic
quality factor Q ~ 10'°, the short-term Allan deviation is
given by

172
oy(1) = W (2)

yielding o, (1) = 7-1071471/2,
B. Local Oscillator Effects

The development of new atomic frequency standards
based on ion traps, optically pumped Cs beam, and laser
pumped Rb gas cells triggered great effort to predict,
study, and diminish the degradation of the stability caused
by the phase noise of the local oscillator (LO). One of the
studied mechanisms—known as the Dick effect—appears
to be a major limitation also in pulsed fountains of cold
neutral atoms [2]. As other researchers have demonstrated
[4], the Dick effect will play a minor role in continuous
fountains, provided that an adequate interrogation scheme
is chosen.

The response of a Ramsey resonator to usual modu-
lation schemes (e.g., square-wave frequency modulation)
exhibits transients in the response of the atomic resonator
of the order of T}, the time between the two microwave
pulses. If these transients are to be blanked out, the duty
cycle will decrease, and, in the worst case, the resulting
Dick effect will become comparable with the value in a
pulsed fountain. Lowering the modulation frequency would
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help maintain a high duty cycle but would impose too
stringent requirements on the low frequency part of the
LO phase noise specification. The advantage of a contin-
uous fountain would be lost as far as the Dick effect is
concerned.

On the other hand, the response of a Ramsey resonator
to square-wave phase modulation is essentially immune
both to aliasing effects caused by blanking periods (if any)
and to intermodulation effects caused by non-linearities of
the resonator response [5]. Indeed, it can be shown that if
the modulation period T, is equal to 277, the transient
duration reduces to Tr, the transit time across each inter-
action region. This transient originates from the small frac-
tion of atoms (=~ 2%), which experience the phase switch
during their passage in the RF cavity. For all other atoms,
the sensitivity of the resonator response to phase fluctua-
tions of the LO is independent of time but only changes
sign each half-period of the modulation. After square-wave
demodulation and low-pass filtering, the correction sig-
nal applied to the LO corresponds exactly to the mov-
ing average (over Tp) of the LO frequency noise, but at
no point are high frequency components of the LO noise
spectrum translated down into the baseband. The linear-
ity and time-independence of the resonator response are
the essential elements for the overall immunity of this in-
terrogation scheme to aliasing and intermodulation effects.
The stability will still be limited by the residual contribu-
tion of the short transients for which the response is time-
dependent, through a Dick effect or an intermodulation
effect depending on whether the transients are blanked or
not. (This effect, as well as the influence of the atomic ve-
locity distribution, are presently being studied). In both
cases, the remaining degradation of the short-term sta-
bility is expected to remain in the low 10~'# range with
state-of-the-art quartz oscillator and synthesizer schemes.
This is an asset of the continuous beam technique for both
ground and space applications.

C. Collisional Shift

One advantage of the continuous beam is that the
atomic density corresponding to a given average atomic
flux and, consequently, to a given short-term stability is
considerably lower than that in pulsed operation. A pre-
liminary calculation of the collisional shift for a continuous
beam has been made with the following assumption: colli-
sions are caused by all atoms emitted from a source enter-
ing the cavity in any one of the |3; mp) substates (total flux
@), and the signal is produced only by the flux ¢, of atoms
initially in |3;0) substate that reaches the detection re-
gion after passing through both cavity holes (area S..). The
continuous beam is characterized by its launching velocity
v, its velocity at the cavity level v., and its longitudinal
temperature 7T;. For T} < 200 pK, the position-dependent
atomic density is sharply peaked near the apogee. Using
this position-dependent density, the time-averaged density
n experienced by the atoms in the beam center along their
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trajectory is readily evaluated:

(0] v\ 2 v2 [mme
n=7—— (14 == I+In(=<,/ )b
" s, ( - 77L> { o <17L QkBTl)} (3)

The collisional shift Av./ves is then predicted using
Av./ves = —Kn, where vey is the cesium clock frequency
and K = 6-10722 cm? [1]. For a continuous fountain oper-
ating with 10% at s, 7 = 2.4-10° at cm ™3, and the expected
collisional shift amounts to 1.4-10716. It will even be lower
with a molasses as an atomic source. The associated un-
certainty will lie in the low 10717 range.

D. Light-Shift

If exposed to the fluorescence emitted from the con-
tinuous source, atoms entering the microwave interaction
region would experience a light-shift Avpg/ves = 10712,
which might be difficult to measure or extrapolate to the
required 10715 level. To prevent that, light traps will be
placed between the atomic resonator and both the source
and the detection region. The efficiency of such a device
has been tested on a prototype to be better than 10° in
various conditions of illumination. Thus, the light-shift is
safely expected to be lower than 10716,

E. Cavity Phase Shifts

An important issue of the cavity design, namely in con-
trast to the cylindrical cavity in use in a pulsed fountain,
is the phase shift. The relative frequency offset related to
an end-to-end phase shift Ay is given by

Av,

ves

_ Ay
=5

(4)

For Q ~ 10, the relative frequency offset is thus roughly
3-10717/urad. A conservative estimate of this relative fre-
quency offset is 5 - 1076 if the coupling holes are offset
by as much as 0.1 mm from cavity apertures. Moreover,
it should be noted that the small size of the cavity allows
a true cavity reversal (as opposed to beam reversal), thus
reducing even further the uncertainty associated with end-
to-end phase shift.

An estimate of the distributed phase shift in the ra-
dial direction has been computed by techniques similar to
those described in [6]. For this 1-D computation, only the
losses in the cylindrical walls are taken into account. The
effect of the feeding holes, as well as that of the apertures
for the atoms, are neglected. The peak-to-peak variation
of the phase across an 8-mm aperture is of the order of
12 prad and would thus yield a relative frequency offset
of 4-1071 in the worst case. More details on the eval-
uation of the distributed phase shift can be found in [7].
In conclusion, this coaxial cavity is perfectly suitable for
a primary frequency standard below the 107!% accuracy
level.
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IV. CoNCLUSION

A primary frequency standard based on a continuous
beam of laser-cooled atoms is presently under construction
at ON. In this device, atoms are extracted from an optical
molasses and launched at a small angle with respect to
the vertical. A demonstration experiment indicates that
the expected atomic flux combined with the atomic line
Q of 10 is sufficient to achieve a short-term stability of
7-1077=1/2 To not degrade this short-term stability,
care must be taken for the selection of the interrogation
scheme. Square wave phase modulation with square de-
modulation is promising because the intermodulation ef-
fect and the Dick effect are suppressed to a large extend.
Among the advantages, one must also mention the reduced
collisonal shift that is expected to be in the 10716 range.
Light shift and phase gradient are specific problems of the
continuous fountain. The former is addressed by a rotat-
ing light trap capable of lowering the relative frequency
offset down to the 107! range. An estimate of the phase
gradient indicates that the related shift is of the order of
4 -107' and thus compatible with the accuracy goal of
1071%. As for the end-to-end phase shift, a cavity rever-
sal should allow the cancellation of this effect. Finally, the
possibility of operating the standard simultaneously at op-
timum accuracy and stability is inherent to the continuous
beam design. This is discussed here in a fountain geome-
try for ground-based clocks but will equally apply to space
versions in which linear beams will be used.
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