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Abstract— A new technique for the measurement of semi-
conductor laser gain and dispersion spectra is presented.The
technique is based on an analysis of the subthreshold emission
spectrum by Fourier transforms. Applications of this method to
AlGaInP-basedinterband laserdiodesand mid-infrar ed intersub-
band quantum cascadelasers are discussed.A good agreement
between the measured dispersion of the refractive index and
tabulated values in the literatur e was found.

Index Terms—Dispersioncurves,Fourier transform, gain spec-
tra, semiconductor lasers.

I. INTRODUCTION

T HE MEASUREMENT of gain spectrais an important
tool for the optimization and characterizationof semi-

conductor lasers. A number of different methods for the
determinationof the net gain spectrumhave beenproposed
in the literature. The Hakki–Paoli method [1], [2] usesthe
ratio betweenthepeaksandvalleysof individual Fabry–Ṕerot
resonances,while with Cassidy’smethod[3], one estimates
the areaunder eachFabry–Ṕerot resonanceand comparesit
with the correspondingarea of a smooth, i.e., unstructured
spectrum.Finally, Henry’smethod[4] utilizestheunamplified
spontaneousemissionspectrumand the relation betweenthe
stimulated and spontaneousemission coefficients to obtain
the gain spectrum.This techniquehasthe advantagethat the
gain curve can be measuredwithout relying on the presence
of Fabry–Ṕerot resonancesin the spectrum.The Hakki–Paoli
techniquehas the benefit of being a simple method which
works very well as long as the cavity hasonly a moderately
high -factor. However, as soon as the resonatorfinesse
becomestoo high, the methodis, due to experimentallimi-
tations,not working properly becausethereoccursno longer
an improvementof the fringe contrast [5]. With Cassidy’s
method,one can determinehigher net gain values because
the area under the curve continuesto diminish as the -
factor of the cavity increases.A possiblelimitation is rather
on the low sidewhereareasof almostequalsizehaveto be
compared.In light of thesedrawbacks,the methodpresented
in this article is superiorbecausethe Fourier transformof the
emissionspectrum(interferogram)takesnaturallyinto account
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both shapeand contrastof the Fabry–Ṕerot fringes [6], [7].

In addition, it allows a measurementof the refractive index
dispersion.Ideally,onestartswith theinterferogrammeasured
with a Fourier transformspectrometer;this simplifies the use
of this new techniquein a naturalway. However,in order to
keepthe theorygeneral,we will beginour derivationwith the
spectrum.

We definethe conjugateFourier variablesaswavenumber,
, anddistance, . The minus- Fouriertransformof a

function is then given by

(1)

We calculatenow the transmissionspectrumof a Fabry–Ṕerot
resonator,consistingof a material with constantrefractive
index, , andconstantabsorptionindex acrossthe
wavenumberrangeof interest.In addition,we assumenormal
incidence,a wavenumber-independentintensity reflectanceof

at the two mirrors, and a distance
between them. Then the transmissionspectrum in the

wavenumberdomainis given by the Airy-formula [9]

(2)

wheretheparameter is definedvia . In agreement
with earlier publicationson this topic [10], we understand
that this transmissionspectrumis a periodic function and
equivalentto an infinite sum of equally displacedLorentz-
shapedpeaks.Insteadof an infinite sum of Lorentz peaks,it
is alsopossibleto write (2) in the wavenumberdomainasan
infinite seriesof cosinefunctions,accordingto

(3)

This differentrepresentationof (2) in thewavenumberdomain
is advantageousfor the understandingof the following steps.
We remark at this point, that the Fourier transform of (2)
would be a seriesof exponentiallydecayingdelta-peakswith
a constantharmonicamplituderatio . Obviously, the whole
derivationshownabovebecomesslightly morecomplicatedif
we allow the material to have wavenumber-dependentgain,

. is now a function of wavenumber,accordingto

(4)
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andthequantity is referredto asnetgain.Whenintro-
ducing this new relation into (3), we get in the wavenumber
domain

(5)
After calculating the Fourier transform of this series, we get a
similar result as mentioned before, except for the fact that the
former delta peaks are now replaced by peaks whose shapes
are given by the Fourier transforms of the corresponding
prefactors , and which are obviously
different for each harmonic peak pair. Here, we omit the
calculation of the Fourier transform of these prefactors and
simply call them ; the transform of (5) now being

(6)
If we take the shape-functions of two adjacent harmonic peaks
[for instance and ], inverse-transform them, and
divide by each other, then we get the function of (4),
according to

(7)

Obviously, the inverse-transforms of and de-
scribe the wavenumber-dependent dc- and ac-components of
the spectrum, respectively. From , we can calculate the
net gain by solving (4).

If there is a wavenumber-dependence of both refractive
index and absorption, then the above gain analysis works
under the following, rather trivial, condition: The broadening
of the first harmonic peak due to dispersion and gain must be
smaller than the harmonic peak separation. In order to recover
the refractive index as a function of wavenumber, one starts
from the shape function of the first-harmonic peak, ,
which needs to be inverse-transformed. The amplitude of the
resulting complex function describes, as already mentioned,
the ac-component of the spectrum, while its phase,

is proportional to the refractive index [7]. There
are two details which slightly complicate this rather straight-
forward process. Spectra are usually not known from
to . This experimental fact results in an unknown phase
constant ; this constant can be calculated if one knows
one refractive index value within the measured range. For the
example shown below, we took this refractive index value
from the literature [11]. The other important feature is that the
shape function covers only a distance range of .
An inverse-transform of this “cut” function leads thus to an
additional factor 2 in the phase.

Fig. 1(top) shows the subthreshold spectrum of an AlGaInP-
based laser diode emitting light at 670 nm [12], Fig. 1(center)
its net gain curve, and Fig. 1(bottom) the refractive index
curve; the latter two were obtained by the procedures described

Fig. 1. (Top) High-resolution emission spectrum of a red laser diode. (Cen-
ter) Corresponding net gain curve for the spectrum shown above obtained
using the Fourier transform method. (Bottom) Corresponding refractive index
as a function of wavenumber obtained using the Fourier transform method.

Fig. 2. Real part of the Fourier transformed emission spectrum shown in
Fig. 1 (top). The inset shows the inverse transforms of the zeroth- and
first-order harmonic peaks.

above. The dispersion-corrected refractive index values calcu-
lated from Fig. 1(bottom) agree within less than 3% with those
calculated from the Fabry–Pérot mode spacing. In Fig. 2, we
present the real part of the Fourier transform and, as an inset,
the inverse-transformed zeroth- and first-order harmonics.

Three emission spectra of a mid-infrared quantum cascade
laser measured at different injection currents are shown in
Fig. 3. In Fig. 4, a comparison between Hakki–Paoli and
Fourier transform gain curves obtained from the spectra in
Fig. 3 is presented. The gain spectra of the two methods agree
very well; deviations in the center of the window are on the
order of 1 cm . Deviations toward the edge of the transform
window are due to numerical errors; they can be minimized
by using a differently shaped (i.e., not rectangular) window
for the Fourier transform. The inset shows the refractive
index, which, unlike in an interband laser, decreases with
increasing wavenumber. This is due to the fact that there is
strong absorption at frequencies around the longitudinal optical
phonon; this absorption leads to additional dispersion effects
in the material.

An interesting question is how spectrometer resolution,
noise, and dc-offsets influence the results of our technique.
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Fig. 3. Subthreshold high-resolution emission spectra of a 10.4-�m
mid-infraredquantumcascadelaserat threerepresentativeinjection currents.

Fig. 4. ComparisonbetweenHakki–PaoliandFouriertransformgaincurves
for the laser spectrashown in Fig. 3. The inset showsthe refractive index
dispersionfor the samedevice.

In order to get someinsight into theseproblems,we calcu-
lated a Fabry–Ṕerot mode spectrum,and convolutedit with
a triangular line profile, which correspondsto the impulse
responseof a typical grating spectrometer.Then we added
somerandomnoiseanda smalldc-offset.By doinga seriesof
gain calculationswith changingnoise levels, dc-offsets,and
resolutions,we found that the gain spectrumis influencedby
theseparametersin the following way. An increasein noise
level changesthewavenumberwindow, within which thegain
curve is measuredaccurately.An increaseof the linewidth
functionresults,in general,in a verticalshift of theentiregain
curve. Since a worse resolutioncuts higher frequenciesand
thus reducesthe peakheight of the Fabry–Ṕerot resonances,
the nonideal gain curve exhibits always lower gain values
thanthe ideal one.A small dc-offset, finally, leadsto a slight
changein the shapeof the gain curve. We useda simulated
spectrumwith amaximal -parameterof 0.65in thecenter.We
then assumeda spectrometerimpulseresponsefunction with
the samelinewidth as the width of thesecentralFabry–Ṕerot
resonances.With a cavity length of 500 m, this leads to
a 1-cm deviation in the gain spectrum.When using the
Hakki–Paolitechnique,thefringe visibility of theFabry–Ṕerot
resonanceschangedby more than 25%, but the deviation in

the gain curvewasagainonly 1.5 cm . This showsthat the
Fouriertransformmethodis at leastcomparablyinsensitiveto
the spectrometerresolutionas the Hakki–Paoli technique.In
fact, if thespectrometer’simpulseresponsefunctionis known,
onecanusethe convolutiontheoremto correctthe measured
interferogramand thusobtainevenbetterresultsfor the gain
spectrum.

Concerningthe spectrometerresolution,oneshouldoutline
anotherimportantfeature.In aFouriertransformspectrometer,
the high frequencyfilter function has a rectangularshape.
Therefore,aslong asthe zeroth-andfirst-harmonicpeaksare
within thefilter function,thegaincurveis notatall affectedby
thefiltering process.For thisspecialcase,ourmethodwill give
muchbetterresultsthanany othergain measurementmethod
which is basedon a determinationof the fringe contrast.

In conclusion,we have presenteda novel methodfor the
measurementof semiconductorlasergain spectraanddisper-
sion curves.The method is basedon the Fourier transform
of theemissionspectrum.A comparisonbetweenHakki–Paoli
gain dataand dataobtainedfrom our novel methodshowed
excellentagreementbetweenthe two methods.We also dis-
cussedthe effects of spectrometerresolutionand dispersion
on the gain spectrum.
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