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Measuremenbf SemiconductotaserGain and
DispersionCurvesUtilizing Fourier Transforms
of the EmissionSpectra

Daniel Hofstetterand Jerome Faist

Abstract— A new technique for the measurement of semi-
conductor laser gain and dispersion spectra is presented.The
technique is basedon an analysis of the subthreshold emission
spectrum by Fourier transforms. Applications of this method to
AlGalnP-basedinterband laserdiodesand mid-infrar edintersub-
band quantum cascadelasers are discussed.A good agreement
between the measured dispersion of the refractive index and
tabulated valuesin the literatur e was found.

Index Terms—Dispersioncurves, Fourier transform, gain spec-
tra, semiconductor lasers.

I. INTRODUCTION

HE MEASUREMENT of gain spectrais an important

tool for the optimization and characterizatiorof semi-
conductor lasers. A number of different methodsfor the
determinationof the net gain spectrumhave beenproposed
in the literature. The Hakki—Paoli method[1], [2] usesthe
ratio betweenthe peaksandvalleysof individual Fabry—FRerot
resonanceswhile with Cassidy’smethod[3], one estimates
the areaunder each Fabry—Frot resonanceand comparest
with the correspondingareaof a smooth,i.e., unstructured
spectrumFinally, Henry’s method[4] utilizesthe unamplified
spontaneougmissionspectrumand the relation betweenthe
stimulated and spontaneousemission coeficients to obtain
the gain spectrum.This techniquehasthe advantagdhat the
gain curve can be measuredwithout relying on the presence
of Fabry—Rerot resonance# the spectrum.The Hakki—Paoli
techniquehas the benefit of being a simple method which
works very well aslong asthe cavity hasonly a moderately
high @-factor. However, as soon as the resonatorfinesse
becomestoo high, the methodis, due to experimentallimi-
tations, not working properly becausehere occursno longer
an improvementof the fringe contrast[5]. With Cassidy’s
method, one can determinehigher net gain values because
the area under the curve continuesto diminish as the -
factor of the cavity increasesA possiblelimitation is rather
onthelow @ sidewhereareasof almostequalsizehaveto be
comparedIn light of thesedrawbacksthe methodpresented
in this article is superiorbecausehe Fouriertransformof the
emissionspectrum(interferogram}akesnaturallyinto account
both shapeand contrastof the Fabry—FRerot fringes [6], [7].
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In addition, it allows a measurementf the refractive index
dispersionldeally, onestartswith the interferogrammeasured
with a Fouriertransformspectrometerthis simplifies the use
of this new techniquein a naturalway. However,in orderto
keepthe theorygeneralwe will beginour derivationwith the
spectrum.

We definethe conjugateFourier variablesas wavenumber,
B = 1/X, anddistanced. The minus< Fouriertransformof a
function I(53) is then given by
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We calculatenow the transmissiorspectrumof a Fabry—Rrot
resonator,consisting of a material with constantrefractive
index, n, andconstan@bsorptionndexk = a\ /4w acrosshe
wavenumberangeof interest.In addition,we assumenormal
incidence,a wavenumber-independeimtensity reflectanceof
R = (n —1)?/(n + 1)? at the two mirrors, and a distance

L betweenthem. Then the transmissionspectrumin the
wavenumberdomainis given by the Airy-formula [9]
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wherethe parameteb is definedvia b = Re=*L. In agreement
with earlier publicationson this topic [10], we understand
that this transmissionspectrumis a periodic function and
equivalentto an infinite sum of equally displacedLorentz-
shapedpeaks.Insteadof an infinite sum of Lorentz peaks,it
is also possibleto write (2) in the wavenumbedomainasan
infinite seriesof cosinefunctions,accordingto

1—R\?
0="7%)
This differentrepresentationf (2) in thewavenumbedomain
is advantageoufor the understandingf the following steps.
We remark at this point, that the Fourier transform of (2)
would be a seriesof exponentiallydecayingdelta-peakswvith
a constantharmonicamplituderatio 5. Obviously, the whole
derivationshownabovebecomeslightly more complicatedf
we allow the materialto have wavenumber-dependeggin,

g(/3). b is now a function of wavenumberaccordingto
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andthequantitya—g(3) is referredto asnetgain. Whenintro- — r . . ; T
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After calculating the Fourier transform of this series, we geta 5 -2 '-l\," \M/ i V]
similar result as mentioned before, except for the fact that the f e g . : - : .
former delta peaks are now replaced by peaks whose shapes:é a4l i
are given by the Fourier transforms of the corresponding I ]
p_refactors[2b(/3)m+1]/[1 - Q(/J)Q], and which are obviously = | . 1 . .
different for each harmonic peak pair. Here, we omit the 14800 14850 12900 12950 15000

calculation of the Fourier transform of these prefactors and

simply call themW,,,(d); the transform of (5) now being Wavenumbers [cm-]

Fig. 1. (Top) High-resolution emission spectrum of a red laser diode. (Cen-

- 1—-—R d ter) Corresponding net gain curve for the spectrum shown above obtained
I( ) =|—F 4 L Z ﬁ —m using the Fourier transform method. (Bottom) Corresponding refractive index
VR n M —oo as a function of wavenumber obtained using the Fourier transform method.
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If we take the shape-functions of two adjacent harmonic peaks gl ' ' b
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[for instanceWW(d) and W1 (d)], inverse-transform them, and
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the spectrum, respectively. Frohi3), we can calculate the
net gain by solving (4).

If there is a wavenumber-dependence of both refracti@. 2. Real part of the Fourier transformed emission spectrum shown in
index and absorption, then the above gain analysis woﬂggt gré;?p%armjmfze;aigows the inverse transforms of the zeroth- and
under the following, rather trivial, condition: The broadening
of the first harmonic peak due to dispersion and gain must Bbove. The dispersion-corrected refractive index values calcu-
smaller than the harmonic peak separation. In order to recolegied from Fig. 1(bottom) agree within less than 3% with those
the refractive index as a function of wavenumber, one stadalculated from the Fabry-&Pot mode spacing. In Fig. 2, we
from the shape function of the first-harmonic pedK;(d), present the real part of the Fourier transform and, as an inset,
which needs to be inverse-transformed. The amplitude of ttiee inverse-transformed zeroth- and first-order harmonics.
resulting complex function describes, as already mentioned,Three emission spectra of a mid-infrared quantum cascade
the ac-component of the spectrum, while its phagg]) = laser measured at different injection currents are shown in
4mn(B) L3 is proportional to the refractive index [7]. ThereFig. 3. In Fig. 4, a comparison between Hakki—Paoli and
are two details which slightly complicate this rather straightourier transform gain curves obtained from the spectra in
forward process. Spectra are usually not known ffgym, = 0  Fig. 3 is presented. The gain spectra of the two methods agree
to Buax. This experimental fact results in an unknown phaseery well; deviations in the center of the window are on the
constant¢y; this constant can be calculated if one knowsrder of<1 cmt. Deviations toward the edge of the transform
one refractive index value within the measured range. For théndow are due to numerical errors; they can be minimized
example shown below, we took this refractive index valuey using a differently shaped (i.e., not rectangular) window
from the literature [11]. The other important feature is that tHer the Fourier transform. The inset shows the refractive
shape functiori¥; (d) covers only a distance range #fly/2. index, which, unlike in an interband laser, decreases with
An inverse-transform of this “cut” function leads thus to aincreasing wavenumber. This is due to the fact that there is
additional factor 2 in the phase. strong absorption at frequencies around the longitudinal optical

Fig. 1(top) shows the subthreshold spectrum of an AlGalnphonon; this absorption leads to additional dispersion effects
based laser diode emitting light at 670 nm [12], Fig. 1(center) the material.
its net gain curve, and Fig. 1(bottom) the refractive index An interesting question is how spectrometer resolution,
curve; the latter two were obtained by the procedures describasise, and dc-offsets influence the results of our technique.
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Fig. 3. Subthreshold high-resolution emission spectra of a 10.4um
mid-infraredquantumcascadédaserat threerepresentativénjection currents.
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Fig. 4. ComparisorbetweenHakki—Paoliand Fouriertransformgain curves
for the laser spectrashownin Fig. 3. The inset showsthe refractive index
dispersionfor the samedevice.

In orderto get someinsight into theseproblems,we calcu-
lated a Fabry—Rerot mode spectrum,and convolutedit with
a triangular line profile, which correspondgo the impulse
responseof a typical grating spectrometerThen we added
somerandomnoiseanda small dc-offset. By doinga seriesof
gain calculationswith changingnoise levels, dc-offsets, and
resolutionswe found that the gain spectrumis influencedby
theseparametersn the following way. An increasein noise
level changeghe wavenumbewindow, within which the gain
curve is measuredaccurately.An increaseof the linewidth
functionresults,in generaljn avertical shift of the entiregain
curve. Since a worse resolution cuts higher frequenciesand
thus reducesthe peak height of the Fabry—Rrot resonances,
the nonideal gain curve exhibits always lower gain values
thanthe ideal one.A small dc-offset, finally, leadsto a slight
changein the shapeof the gain curve. We useda simulated
spectrunwith amaximalb-parametepf 0.65in the centerWe
then assumeda spectrometeimpulse responsegunction with
the samelinewidth asthe width of thesecentral Fabry—Rrot
resonancesWith a cavity length of 500 pm, this leadsto
a 1-cnm ! deviation in the gain spectrum.When using the
Hakki—Paolitechniquethefringe visibility of the Fabry—Rerot
resonanceghangedby more than 25%, but the deviationin

the gain curve was againonly 1.5 cm~!. This showsthat the
Fouriertransformmethodis at leastcomparablyinsensitiveto
the spectrometeresolutionas the Hakki—Paolitechnique.In
fact, if the spectrometer’smpulseresponsdunctionis known,
one can usethe convolutiontheoremto correctthe measured
interferogramand thus obtain evenbetterresultsfor the gain
spectrum.

Concerningthe spectrometeresolution,one shouldoutline
anotherimportantfeature.ln a Fouriertransformspectrometer,
the high frequencyfilter function has a rectangularshape.
Therefore,aslong asthe zeroth-andfirst-harmonicpeaksare
within thefilter function,the gaincurveis notatall affectedby
thefiltering processkForthis specialcase pur methodwill give
much betterresultsthan any other gain measurementethod
which is basedon a determinatiorof the fringe contrast.

In conclusion,we have presenteda novel methodfor the
measurementf semiconductofasergain spectraand disper-
sion curves. The methodis basedon the Fourier transform
of the emissionspectrumA comparisorbetweerHakki—Paoli
gain dataand data obtainedfrom our novel methodshowed
excellentagreemenbetweenthe two methods.We also dis-
cussedthe effects of spectrometeresolutionand dispersion
on the gain spectrum.
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