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Frequency fluctuations of lasers cause a broadening of their line shapes. Although the relation between
the frequency noise spectrum and the laser line shape has been studied extensively, no simple expression
exists to evaluate the laser linewidth for frequency noise spectra that does not follow a power law. We
present a simple approach to this relation with an approximate formula for evaluation of the laser line-

width that can be applied to arbitrary noise spectral densities.
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1. Introduction

Lasers with a high spectral purity currently find
important applications in frequency metrology, high-
resolution spectroscopy, coherent optical commu-
nications, and atomic physics, to name a few uses.
Advances in investigation and narrowing of laser
linewidth have experienced a remarkable evolution,
yielding techniques that give us unprecedented con-
trol over the optical phase/frequency [1-9]. The spec-
tral properties of such lasers can be conveniently
described either in terms of their optical line shape
and associated linewidth or in terms of the power
spectral density of their frequency noise. Both ap-
proaches are complementary, but the knowledge of
the frequency noise spectral density provides much
more information on the laser noise. A measurement
of the laser linewidth (obtained by heterodyning
with a reference laser source or by self-homodyne/
heterodyne interferometry using a long optical delay
line) is often sufficient in many applications (e.g., in
high-resolution spectroscopy or coherent optical com-
munications). Some experiments, though, require
more complete knowledge of the Fourier distribution
of the laser frequency fluctuations. Knowledge of the
frequency noise spectral density enables one to re-
trieve the laser line shape and, thus, the linewidth

(while the reverse process, i.e., determining the noise
spectral density from the line shape, is not possible),
but this operation is most often not straightforward.

The relation between frequency noise spectral den-
sity and laser linewidth has already been addressed
in many papers dealing with general theoretical con-
siderations or with more or less particular cases. In
one of the earliest papers on this topic, Elliott and
co-workers [10] derived theoretical formulas linking
the frequency noise spectral density to the laser line
shape. They also discussed the different line shapes
obtained in the case of a rectangular noise spectrum
of finite bandwidth in the two extreme conditions
where the ratio of the frequency deviation to the
noise bandwidth is either large (leading to a Gaus-
sian line shape) or small (resulting in a Lorentzian
line shape). Their work was supported by experimen-
tal results showing the transformation of the laser
spectrum from Lorentzian to Gaussian for decreas-
ing noise bandwidth. The ideal case of a pure white
frequency noise spectrum has been extensively re-
ported for a long time (see, for example, [11]), as
it can be fully solved analytically leading to the
well-known Lorentzian line shape described by the
Schawlow—-Townes—Henry linewidth [12,13]. How-
ever, the real noise spectrum of a laser is much more
complicated and leads to a nonanalytical line shape
that can be determined only numerically. Lasers are



generally affected by flicker noise at low frequency,
and this type of noise has been widely studied in
the literature [14—17]. The major feature of this type
of noise is to produce spectral broadening of the la-
ser linewidth compared to the Schawlow—Townes—
Henry limit, but an exact expression of the line shape
cannot be obtained, and different approximations
have been proposed to describe this situation. For ex-
ample, Tourrenc [15] numerically showed the diver-
gence of the linewidth with increasing observation
time in the presence of 1/f-type noise, while Mercer
[16] gave an analytical approximation for this diver-
ging Gaussian linewidth. Stéphan et al. [14] gave a
different approximation of the 1/f-induced Gaussian
contribution to the line shape, with a linewidth that
does not contain any dependency on the observation
time, and Godone et al. [18,19] gave the rf spectra cor-
responding to phase noise spectral densities of arbi-
trary slopes. Finally, some publications also stated
that the combined contribution of white noise
Lorentzian line shape and 1/f-noise Gaussian line
shape resulted in a Voigt profile for the optical line
shape [14,16,20].

In this paper, we present a simple geometric
approach to determine the linewidth of a laser from
its frequency noise spectral density. Our approach
makes use of a simple approximate formula to deter-
mine the linewidth corresponding to an arbitrary
noise spectrum. Starting with the ideal case of a
low-pass filtered white noise of varying cutoff fre-
quency, we show how differently the low- and high-
frequency noise components affect the line shape
and how the linewidth changes with respect to the
noise cutoff frequency. Then, we demonstrate in
which limit conditions the Lorentzian and Gaussian
line shapes generally discussed in former publica-
tions are retrieved. We introduce our simple approx-
imation of the linewidth by showing how the noise
spectrum can be geometrically separated in two
areas with a fully different influence on the line
shape. Only one of these spectral areas contributes
to the linewidth, the remaining part of the spectrum
influencing only the wings of the line shape. The
main benefit of our work is to make a simple link be-
tween the frequency noise spectrum of a laser and its
linewidth, without any assumption on the noise spec-
tral distribution. By showing how some spectral com-
ponents of the noise determine the linewidth while
others affect only the wings of the line shape, we pro-
vide a simple geometric criterion to determine those
spectral components that contribute to the linewidth.
As a result, a simple formula is reported to calculate
the linewidth of a laser for an arbitrary frequency
noise spectrum, i.e., this expression is applicable to
any type of frequency noise and is thus not restricted
to the ideal cases of white noise and flicker noise
usually considered.

Before introducing our approach, we give a brief
reminder of the important theoretical steps enabling
the linking of the frequency noise spectrum of a laser
and its line shape. A detailed theoretical description
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can be found in [10,15,16]. Given the frequency noise
spectral density S; (f) (we consider single-sided
spectral densities throughout this article) of the laser
light field E(¢) = Eq exp[i(2zvot + ¢(t))] (complex re-
presentation), one can calculate the autocorrelation

function I'g(z) = E*(¢)E(¢ + 1) as follows:

o sin? (zf~
p(e) = Bgeizere ™ I S50
where 6v =v -1y, is the laser frequency deviation
around its average value yy. According to the
Wiener—Khintchine theorem, the laser line shape
is given by the Fourier transform of the autocorrela-
tion function

Sp(v) = 2 / Ty (), )

Unfortunately, this general formula most often can-
not be analytically integrated, except for the trivial
case of white frequency noise Sy, (f) = hy (with A
given in Hz?/Hz) that leads to the well-known
Lorentzian line shape with a full width at half-
maximum FWHM = zh, [10,15,16].

In the following, we will start by studying the case
of a low-pass filtered white frequency noise. This will
lead us to establish a simple approximate formula of
the linewidth of a real laser from its frequency noise
spectrum. Finally, we will apply this formula to
different situations that are of practical interest to
experimentalists and in which frequency noise is
important.

2. Laser Spectrum in the Case of a Low-Pass Filtered
White Frequency Noise

As an introduction to the derivation of our approxi-
mate expression of the laser linewidth, let us first
consider a frequency noise spectral density that
has a constant level h,(Hz2/Hz) below a cutoff fre-
quency f, and that drops to zero above this threshold:

sulh) = {0 #1750 ®)

In this simple case, it is possible to evaluate analy-
tically the integral in Eq. (1) and obtain the following
expression for the autocorrelation function:

T(c) = EgeiZnuorezi;—?(Sinz(”fcf)—”chSi(Z”ch))
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where Si(x) = [¥sin(¢)/¢d¢ is the sine integral func-
tion. On the other hand, most often, it is not possible
to obtain an analytical expression for the Fourier
transform in Eq. (2), and, therefore, the laser line
shape must be evaluated numerically. An analytical
expression of the line shape is, however, calculable
in the two extreme conditions in which f, — « and
fe—0:



e When f, > «:
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and the line shape is Lorentzian with a width
FWHM = zh, (this corresponds to the white noise
previously mentioned).

e Whenf, - 0:

Spw) = B2 (-2 g (6)
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and the line shape is Gaussian with a width
FWHM = (81n(2)hf.)"/? that depends on the cutoff
frequency f..

For a fixed frequency noise level A, it is interesting
to numerically study the evolution of the laser line
shape as a function of the cutoff frequency f,. between
these two extreme cases. The result is shown in Fig. 1
for hy = 1Hz% /Hz. According to Egs. (5) and (6), one
observes that when f,. < h, the line shape is Gaus-
sian and the linewidth increases with f.. However,
when f, > h(, the line shape becomes Lorentzian
and the linewidth stops to increase (it will be shown
later that the noise at high Fourier frequencies con-
tributes only to the wings of the line shape). In order
to explore the transition between these two regimes,
we numerically calculated the linewidth as a func-
tion of the cutoff frequency /., and the results are pre-
sented in Fig. 2. We found that a good approximation
valid for any f, is given by the following expression:

g

with a relative error smaller than 4% over the entire
range of the cutoff frequency £, as shown in the lower
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Fig. 1. (Color online) Numerical calculation of the laser line
shape Sy (6v) for a fixed frequency noise level h, = 1Hz?/Hz and
different values of the cutoff frequency: a, f.=0.03Hz; b,
f. =0.3Hz;c,f, = 3Hz;and d, f, = 30 Hz. The line shapes are nor-
malized to help the comparison of their full width at half-
maximum (FWHM). The line shape evolves from a Gaussian when
fe < hy and to a Lorentzian when f, > h.
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Fig. 2. (Color online) Upper graph: Numerical computation show-
ing the evolution of the linewidth (FWHM) with the cutoff fre-
quency f, in the case of low-pass filtered white noise. The dots
have been calculated by numerical integration of the exact rela-
tions Egs. (1) and (2). The continuous line is given by our approx-
imate formula Eq. (7). Both horizontal and vertical scales have
been normalized to the noise level 4. The behavior at low and high
cutoff frequencies is indicated by the asymptotic response (red
dashed lines). Lower graph: Relative error between the exact
and approximate values.
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graph of Fig. 2. The corner frequency corresponding
to the transition between the two regimes is situated
at the intersection of the two asymptotes shown in
the upper graph of Fig. 2 and is given by
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fi= 8T(2)h0 =~ 1.78h,. (8)

3. Simple Formula to Estimate the Laser Linewidth

The example of the low-pass filtered white noise
shows that the frequency noise spectrum can be se-
parated into two regions that affect the line shape in
a radically different way. In the first region, defined
by S;, (f) > 81In(2)f /z% the noise contributes to the
central part of the line shape, which is Gaussian,
and thus to the laser linewidth. In the second region,
defined by S, (f) < 81n(2)f /7% the noise contributes
mainly to the wings of the line shape but does not
affect the linewidth. The striking difference between
the noise effects in these two regions can be under-
stood in terms of frequency modulation theory. In
the first region, the noise level is high compared to
its Fourier frequency, therefore it produces a slow fre-
quency modulation with a high modulation index
[21] p > 1. Conversely, in the second region, the noise
level is small compared to its Fourier frequency, and,
accordingly, the modulation index g is small, which
means that the modulation is too fast to have a sig-
nificant effect on the laser linewidth. In the rest of
this article, the line separating these two regions will



be called the fS-separation line. These observations
are summarized in Fig. 3, where a typical laser fre-
quency noise spectral density is represented. A care-
ful inspection of Egs. (1) and (2) shows that the low
frequency approximation given in Eq. (6) can be ex-
tended to arbitrary noise spectra. Indeed, noise com-
ponents in the high modulation index area with a
spectral density higher than their Fourier frequency
(Ss,(f) >f) give rise to Gaussian autocorrelation
functions, which are multiplied together and then
Fourier transformed to give the laser line shape. As
a result, the line shape is a Gaussian function whose
variance is the sum of the contributions of all high
modulation index noise components. Therefore, one
can obtain a good approximation of the laser line-
width by the following simple expression:

FWHM = (81n(2)A)"/2, (9)

where A is the surface of the high modulation index
area, i.e., the overall surface under the portions of
S5, (f) that exceed the f-separation line (see Fig. 3)

A= | H(Su(f)-8In(2)f /)Ss()df,

1T,

(10)

with H(x) being the Heaviside unit step function
(H(x) =1ifx20and H(x) = 0ifx < 0) and T, being
the measurement time that prevents the observation
of low frequencies below 1/7,. This low frequency
limit can be set to zero when the area in Eq. (10) does
not show low frequency divergence. However, this is
not the case in the presence of flicker noise, for which
the measurement time plays an important role, as
will be shown in the next section.
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Fig. 3. (Color online) A typical laser frequency noise spectral den-

sity composed of flicker noise at low frequencies and white noise at
high frequencies. The dashed line given by S, (f) = 81n(2)f/#? se-
parates the spectrum into two regions whose contributions to the
laser line shape is very different: the high modulation index area
contributes to the linewidth, whereas the low modulation index
area contributes only to the wings of the line shape (see the text
for details).

4. Application 1: Laser Spectrum in the Case of
Flicker Frequency Noise

As a first application of our approach, let us consider
the case of a laser suffering from pure flicker noise,
ie., S5 (f) =af*, with 1<a<2. For the sake of
clarity, let us write the parameter a in terms of the
frequency f,, at which S;, intersects the g-separation
line, i.e.,a = 81n(2)f%/72. This allows a dimension-
less representation of the flicker noise model

Ss,(f) _ 8In(2) (ff )

fm 7’

as illustrated in Fig. 4. As mentioned in the previous
section, the linewidth is a function of the observation
time 7T',, and one can evaluate this dependence using
the approximate formulas, Eqgs. (9) and (10). After
integrating Eq. (10), one obtains for a =1

(11)

FWHM = £, 811;(2) In(f,, T, )", (12)
and for a > 1,
FWHM — £, 81r71r(2) {(fmj;o)_a—ll _ 1} 1/2' (13)

In order to check the validity of these approximate
formulas, we integrated numerically the exact rela-
tion given by Egs. (1) and (2) to obtain the line shape
for different values of the exponent « of the flicker
noise (¢ =1, 1.2, 1.5, 1.7, and 2.0), from which we
calculated the linewidth (FWHM). The numerical re-
sults superposed to the approximate values given by
Eqgs. (12) and (13) are presented in Fig. 5. They show
a good agreement, the error being smaller than 10%
as long as T,f,, > 5. Note that the discrepancy ap-
pears when the lower bound 1/7T, approaches f,,.
This behavior was expected because the transition
between high and low modulation index areas is pro-
gressive and thus can lead to deviations from the ap-
proximations given in Eqgs. (9) and (10). More details
on this intermediate regime will be given in the next
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Fig. 4. (Color online) Pure flicker frequency noise model of
Eq. (11) with a = 1, 1.2, 1.5, 1.7, and 2.0. The axes are normalized
with respect to the frequency f,, at which S;, intersects the
p-separation line.
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Fig. 5. (Color online) Evolution of the laser linewidth with re-

spect to the measurement time in the case of a frequency noise
spectrum composed of flicker noise as shown in Fig. 4. The dots
have been obtained by numerical integration of the exact relation
between the frequency noise and the line shape given by Egs. (1)
and (2). The red lines are the values given by the approximate
formulas Eqgs. (12) and (13).

section. As a final remark, let us discuss the rele-
vance of this pure flicker noise model. Although this
case may seem far from the frequency noise spectrum
of a real laser, which has a white noise background at
high Fourier frequencies, we should stress that the
frequency noise below the p-separation line does
not contribute to the linewidth but only to the wings
of the line shape. As a consequence, our pure flicker
noise model applies to any laser having flicker noise
above the f-separation line, whatever the noise in
the low modulation index area is.

5. Application 2: Laser Linewidth Reduction

In this section, we discuss the process of laser line-
width reduction by applying our approach to a sim-
plifed laser frequency noise model that still keeps
the main features of the problem. In this model, a
free-running laser with a constant frequency noise le-
vel hy, (Hz2 /Hz) is considered, and we assume that the
frequency noise is reduced to another constant level
h, with a servo loop of bandwidth f;. The resulting
frequency noise spectral density is given by Ss,(f) =
he if f < fp and S;,(f) = hy if f 2, as illustrated in
Fig. 6. Notice that this simplified noise model may
also result from a laser showing initial flicker noise
in free-running mode if the servo loop contains an in-
tegral part that reduces the flicker noise at low
frequencies. With this model, it is interesting to cal-
culate the evolution of the laser line shape and
linewidth with the servo-loop bandwidth. One can
evaluate Eq. (1) to obtain the autocorrelation function

(14)

where w, = 2xf, and Si(x) is the sine integral func-
tion. Because the Fourier transform of this autocorre-
lation function is difficult to solve analytically, we
evaluated the laser line shape numerically and then
deduced the linewidth (FWHM). The results are pre-
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Fig. 6. (Color online) Frequency noise model used to study laser
linewidth reduction using a servo loop. We assume that the free-
running laser noise level k; = 1000Hz?/Hz is reduced to h, =
100Hz%2/Hz with a servo loop having a bandwidth f;, of a,
100 Hz; b, 300 Hz; ¢, 500 Hz; and d, 1500 Hz. The dashed line re-
presents the p-separation line. The minimum servo-loop band-
width necessary to efficiently reduce the laser linewidth is
min — 72h, /(81n(2)).

sented in Figs. 7 and 8. We observe that the laser line-
width tends toward zh;, when the bandwidth f;, tends
toward zero. This can be understood because the noise
spectrum tends toward a white-type noise of spectral
density h,;, leading to a Lorentzian profile of width
zhy. On the other hand, the linewidth drops down
to zh, when the bandwidth f;, tends toward infinity,
since in this case, the noise spectrum approaches a
white-type noise of spectral density A,. In Fig. 7, we
reported with a dashed line the linewidth obtained
with our approximate formula Egs. (9) and (10),
and the agreement with the results of the numerical
integration is good, except when the value of the servo
bandwidth is between A, and h;. In order to under-
stand the origin of this discrepancy, we reported in
Fig. 8 the laser line shape for four particular values
of the bandwidth. We observe that the line shape
changes considerably in this range: the servo loop
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Fig. 7. (Color online) Evolution of the laser linewidth (FWHM)
with the servo-loop bandwidth f} for the frequency noise model
presented in Fig. 6. Special values of the servo bandwidth, for
which the line shape is represented in Fig. 8, are indicated by
the following points: a, f;, = 100Hz; b, f;,, = 300 Hz; ¢, f;, = 500 Hz;
and d, f;, = 1500 Hz. The continuous line has been obtained by nu-
merical integration of the exact relation Egs. (1) and (2), and the
dashed line has been obtained with our approximate formula Egs.
(9) and (10).
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Fig. 8. (Color online) Evolution of the laser line shape with the
servo-loop bandwidth for the frequency noise model presented
in Fig. 6. We chose the following values of the servo bandwidth:
a, f, =100Hz;, b, f, =300Hz; ¢, f, =500Hz; and d, f, =
1500 Hz, which correspond to the points indicated in Fig. 7.

repels the frequency noise from the center, and, as a
consequence, two sidebands appear outside of the ser-
vo bandwidth, i.e., at év > f;, while the central part
strongly narrows and becomes Lorentzian. Because
of this radical change of line shape, the different line-
widths at half-maximum are not similar in this range,
and comparison with the Gaussian linewidth approx-
imation Eqgs. (9) and (10) loses its significance, which
explains the observed discrepancy. Nevertheless, our
approximate formula is able to predict the minimum
servo-loop bandwidth necessary to efficiently reduce
the laser linewidth, which is given by fMi® = z%h,/
(81n(2)). It depends on the free-running laser noise
level A, and corresponds to the situation in which
the noise level A, is entirely below the p-separation
line for frequencies outside of the servo bandwidth
(see Fig. 6). As a consequence, when f; > frbnin, only
the low frequency part with noise level A, is above
the -separation line and contributes to the laser line-
width, which is given by zA,. Note that the final laser
linewidth depends on the noise level 4,, and thus on
the servo-loop gain at low frequency, but is indepen-
dent of the servo bandwidth, provided that f;, > fiin.

6. Conclusion

The study of a low-pass filtered white frequency noise
has led us to the establishment of a new and simple
approximation of the relation between frequency
noise and laser linewidth, which is valid for arbitrary
noise spectra. We have shown how the frequency noise
spectrum is separated into two areas corresponding to
high and low modulationindexregimes (i.e.,# > 1and
B < 1) by a simple line that we called the $-separation
line. Then, we explained why only those spectral com-
ponents for which the frequency noise is higher than
the -separation line (the high modulation index area)
contribute to the linewidth. An approximate value of
the linewidth is simply obtained from the geometrical
surface of the high modulation index area. The appli-
cation of this approach to the case of flicker noise
provides an approximate formula for the linewidth,
showing its dependence to the observation time.
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Finally, the use of this approach to the reduction of
the laser linewidth emphasizes some important as-
pects of this problem, such as the minimal required
servo-loop bandwidth and the achievable laser line-
width. Moreover, this last example showed that the
limitations of this simplified approach appear only
when the laser line shape is too complex to be charac-
terized by a mere linewidth.
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