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This thesis presents experimental studies on continuous-wave (CW)
laser-microwave double-resonance (DR) spectroscopy and metrology
in rubidium (*’Rb) vapor cells in view of new high-performance,
compact Rb-cell atomic clocks. Two different approaches were
studied in this work; the wall-coated cell approach and the enlarged
cell buffer gas cell approach. New magnetron-type cavity microwave
resonator (MWR) that can hold the vapor cells as large as 25 mm
diameter was developed and studied. Detailed analyses on the short-
medium- and long-term clock stabilities are measured and presented
for both the approaches.
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Abstract

This thesis presents experimental studies on continuous-wave (CW) laser-microwave
double-resonance (DR) spectroscopy and metrology in rubidium (3Rb) vapor cells
in view of new high-performance, compact Rb-cell atomic clocks. The Rb vapor
cell is confined inside a magnetron-type cavity microwave resonator (MWR). The
CW DR spectroscopy involves two resonant electromagnetic fields that are operated
simultaneously to interrogate the atoms - the optical field to polarize the atoms by
optical pumping, and the microwave field to drive the ground-state hyperfine clock
transition that serves as an atomic frequency reference. Details on characterization
of compact laser heads and microwave synthesizers used in this work are presented.
The vapor cell standards are useful in our everyday lives for applications ranging from
telecommunications, navigation, metrology etc.

In view of improving the performances of the Rb cell standards, two different clock
approaches were studied in detail:

The first one is on use of vapor cells (1.4 cm®) whose inner walls are coated with
anti-relaxation material. A first ever wall-coated cell clock was demonstrated with a
good short-term frequency stability. The medium- to long-term stability was found
to be limited by the temperature coefficient (TC) of the coating material itself. This
work gave the insight to important features to be considered in future anti-relaxation
coating materials for atomic standards.

The second novel approach involves using a bigger cell (12 cm?) within a newly
developed, improved MWR towards a high-performance atomic standard. Adopting
a larger cell gives a higher atomic Q-factor signal that improves the short-term clock
stability. In this approach, the cell was filled with 8"Rb and buffer gases. With this
clock, we demonstrate the state-of-the-art short-term stability of < 1.4x10713 7=1/2,
Metrological quantitative measurements on parameters influencing the medium- to
long-term stability were studied in view of next generation satellite navigation sys-
tems that demand a stability level of <1x107'* at 10* s (equivalent to <1 ns/day).
The potential of short-term stability and understanding of the limiting factors on
medium- to long-term time scales demonstrated in this study pave the way for future
work towards the commercialization of high-performace Rb atomic clocks for a variety

of applications.

Keywords: Rb standard; Double-Resonance (DR); Spectroscopy; Vapor cells; Magnetron-
type cavity; Frequency stability; Wall-coating; Metrology.
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Introduction

Time = Life, Therefore, waste your time and waste your life, or master
your time and master your life.
-Alan Lakein

ASTERING the time means to be able to measure and maintain it efficiently. Pre-
M cise measurement of time and frequency synchronization is useful for mankind
in everyday life [1,2]. For instance, in maintaining the Coordinated Universal Time
(UTC) that is based on International Atomic Time (TAI) [3], accurate positioning
and navigation systems [4-7] (Global Positioning System (GPS), Galileo, Glonass
ete.), high-speed data transfer and synchronization in telecommunications [6]. They
are also used in synchronizing time for banking and stock transactions, military ap-
plications, regulation of power grids to avoid power losses [8], in radio and television
broadcasting, geophysics, metrology and other scientific endeavors such as deep space
navigation and studies (e.g. Cassini Huygens) [5,9]. Other scientific applications
are the search for variation in fine-structure constant [10], test of Einstein’s special
theory of relativity [11], and including one of the recent experiment on the precise
measurement of the speed of neutrinos [12].

The development of atomic clocks started six decades ago. The idea to build
a clock using an atomic beam magnetic resonance was proposed by Isidor Rabi in
1945 [13]. Based on Rabi’s technique [14], NIST (formerly known as National Bureau
of Standards (NBS)) built the first atomic clock using ammonia molecules in 1949.
Following to that, Essen and Parry at National Physical Laboratory (NPL) built the
first thermal cesium beam clock in 1955 [15]. These developments vindicated the
International System of Units (SI) in 1967 to define the SI second as 9,192,631,770
periods of vibration of the ground state hyperfine transition in an unperturbed cesium-
133 atom [16], and later in 1997 it was affirmed that this definition refers to a cesium
atom at rest at a temperature of 0 K.

Various types of clocks were developed since then including, the cesium thermal
beam clocks [17,18], active and passive hydrogen masers [7,19,20], lamp-pumped ru-
bidium cell standards [4,21,22], cesium cold atomic fountain clocks [18], optical-lattice
clocks [23], ion-trap clocks [24-27] and chip-based cold atom clocks [28-30]. However,

for the applications that demand to address the issues of performance, portability,
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reliability, cost, weight and power consumption, the rubidium cell standards are ad-
vantageous over other kinds of clocks [31]. Presently, the industrial lamp-pumped Rb
clocks are used in telecom and navigation systems. However, the constant demand
for improved next generation applications requires pushing the limits on the perfor-
mances of the portable clocks. With this motivation, we focus our work on improving
the rubidium standards towards high-performances by adopting the laser-pumping

techniques in view of next generation space and telecommunication applications.

The basics of Double-Resonance (DR) spectroscopy and clock are explained in
[4,22,32,33]. As the name indicates, the DR scheme has two resonances; one in the
optical domain and the other in the microwave domain. The first order magnetic
insensitive transition exists in the groundstate hyperfine manifold matching with the
microwave wavelength, known as the clock transition that is generally used for the
clock operation. At the heart of a conventional rubidium atomic frequency standard,
atomic rubidium in vapor phase and buffer gases are contained in a glass enclosure,
called vapor cells. Buffer gases help to prevent the polarized Rb atoms from colliding
on to the cell walls and reduce the mean free path of a Rb atom to less than the
microwave photon’s wavelength of few centimeters, thereby giving rise to narrow
resonance lines, this is known as Dicke narrowing [34]. Alternative to using buffer-
gases in order to preserve the polarization by avoiding collisions of atoms with the
glass walls, an evacuated glass cell whose inner walls are coated with an anti-relaxation
material and filled with Rb vapor could be adopted as a new heart [35-37] for the
clocks. The first studies on collisions between alkali atoms and coatings, such as
paraffins (CHy),, or silanes (e.g., dimethyldichlorosilane) were done by Bouchiat and
Brossel during the 1960s [38] by adopting the Franzen’s method of relaxation in the
dark [39]. They found that in a 6 cm diameter spherical cell, it takes about 10* atom-
wall collisions before an atom loses its state of polarization. Recent work of Balabas
and colleagues shows that it is possible for the atomic polarization lifetimes to exceed
one minute, with atoms undergoing up to 10°¢ collisions with an alkene-based coating
[40]. Although the idea to use wall-coated cells in an atomic frequency standard was
suggested by Robinson [35] in the late 1950’s, it was not realized due to the limitations
in operating temperatures of such cells (incompatible with the use of lamps for optical
pumping) and other technological difficulties, such as control of the coating quality.
Part of these drawbacks is overcome with laser optical pumping, however a reliable
commercial product is yet to be realized. Recently, the interest in wall-coated cells
for high-precision spectroscopy and metrology is growing again, because coated cells

represent good candidates to realize high-performance or micro-fabricated devices,
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such as miniaturized atomic clocks and/or atomic magnetometers [41,42]. Basic
studies on the application of wall-coated cells for Rb frequency standards are reported
in [43-47].

The short-term frequency stability of a clock (in terms of Allan deviation) is in-
versely proportional to the atomic Q-factor and signal-to-noise (S/N) ratio [31]. This
implies that a narrow linewidth of the atomic signal increases the Q-factor and hence
improves the short-term clock stability. The conventional rubidium frequency stan-
dards use lamps for optical pumping [48,49] and give a short-term stability around
4x10712 772, By employing lasers for optical-pumping, we expect to improve the
short-term by more than one order of magnitude [22,50]. The medium- to long-term
clock stability is influenced by AC Stark shift, microwave power shift, temperature as-
sociated shifts and other related physical effects, and hence metrological quantitative
measurements on these parameters are also of relevance to be studied in detail. We
note a recent work by S. Micalizio and colleagues showing a state-of-the-art perfor-
mance of a pulsed Rb standard exhibiting the stability as low as 1.7x 1073 7=1/2 [51].
This clock was operated using Pulsed Optical Pumping (POP) principle with the
physics package! containing a cylindrical cavity inside a vacuum enclosure.

We adopt the continuous-wave (CW) laser-pumped DR approach in our clock
scheme. Our clocks are operated in ambient laboratory environment. Two different
technologies towards a compact next generation rubidium cell standard are studied
in this thesis: (i) use of wall-coating technology, and (ii) studies with a bigger cell
(than that is used in the conventional Rb standards), using an improved and enlarged
cavity towards a high-performance atomic standard. In the first approach, we char-
acterize the wall-coated evacuated vapor cell filled with 8Rb and implement it in
a clock demonstrator. The detailed studies on the clock’s short-term and medium-
to long-term performances were done. The second, and novel approach involves the
development of a new magnetron-type cavity resonator that has a compact volume,
can hold a vapor cell larger than in existing rubidium standards and resonates around
the 8"Rb ground state hyperfine frequency (vgp). The well-defined field geometry in
a given volume, competitive Q-factor, and power efficiency of these resonators make

them ideal components for portable clock applications.

IThe clock cell was fabricated in LTF.
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The contents of this thesis are arranged in chapters as follows:

Chapter 1

This chapter gives the general basics required to understand a DR based rubidium
standard. At first, a general clock principle is given. This is followed by the DR prin-
ciple, and the 8"Rb "clock transition" explanation, along with theoretical description
of the DR principle and the DR signal. The basics of determining the clock’s fre-
quency stability in terms of Overlapping Allan deviation is discussed and an overview
on the underlying noise processes are given. Finally, the relevant perturbations on a
Rb standard are disscussed in detail. A thorough experimental studies on these clock

perturbations are done and explained in Chapters 5 and 6.

Chapter 2

The two main sources of electromagnetic radiation in DR clocks, one for optical pump-
ing and second for microwave interrogation need to be abiding to certain stringent
requirements in order to achieve the high-performance clock stabilities. Therefore,
this chapter is dedicated on the details of these two sources, their requirements and

measured characteristics.

Chapter 3

This chapter gives the details on the vapor cells and microwave resonator cavities
used in this thesis work. The 14 mm diameter wall-coated cell, the enlarged 25 mm
diameter buffer-gas cell, and their respective cavities are presented along with their
simulated field modes and Zeeman measurements. Newly designed, fabricated, assem-
bled and tuned cavity that can accommodate the 25 mm diameter cell is presented
along with simulated field modes and Zeeman measurements. This cavity is empha-
sized towards the high-performance Rb clock. The results achieved using the first
prototype of 25 mm cavity are published in 4, 11 (these numbers refer to list of pub-
lications and presentations, page xix). The design and performance results of the

optimized cavity with an improved field mode are published in 2, 6, and 7.

Chapter 4
This chapter gives the details on experimental schematics, physics package(s) and
breadboard(s) used to study the CW-DR spectroscopy and clock stabilites in this

thesis.
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Chapter 5

This chapter is dedicated to the studies on 14 mm diameter wall-coated cell. The
characterization of wall coated cell was done by measuring the Rb ground-state 77 and
T, relaxation times. The systematic shifts, Av of the clock transition from the un-
perturbed hyperfine ground-state frequency, vg,, due to intensity and frequency light
shifts [52,53], microwave power shift [54], temperature shifts [55] and spin-exchange
shifts [56] are analyzed and discussed in detail. The influence of these parameters
on the clock frequency instability is also evaluated. The results of this chapter are
published in 1 and 13.

Chapter 6

We show that our CW-DR high-performance laser-pumped Rb standard using the
25 mm diameter BG cell outperforms laser pumped cesium (LPCs) standards [17],
and is comparable to cold-atom portable clocks [57] and the space passive hydro-
gen maser (SPHM) [20], but from a compact physics package (PP) with volume of
<1 dm? only. Similar to the spectroscopic analyses done on the wall-coated clock
(see Chapter 5, Section 5.4), the perturbation measurements on the clock transition
frequency affecting medium- to long-term time scales are measured and analyzed.
With this clock, we achieve a state-of-the-art short-term stability adopting the CW
DR principle. Parts of the work in this chapter are published in both peer reviewed
articles (2, 4) and journal proceedings (5, 6, 7, 11).

Finally, the conclusions and future prospects are drawn based on the work pre-
sented in the thesis, towards the future high-performance clocks and their applica-
tions. The comparison of the high-performance clock presented in this thesis is made

with presently existing portable clocks around the world.






Chapter 1 Double-Resonance Atomic
Clock: Principle, The-
ory and Stability

Imagination is more important than knowledge.
-Albert Einstein

In general, the atomic frequency standards (atomic clocks) exploit a ground-state
hyperfine transition to provide a stable atomic frequency reference to which the fre-
quency of a quartz oscillator is stabilized [22,32,58]. A general interrogation and

quartz stabilization scheme is shown in Fig. 1.1.

Interrogation
Atomic Macroscopic
resonator oscillator
Tuning ®
Voltage

Crystal

resonator
'\ 9
l/

Servo loop Output

(correction) ’ Frequency

Spectroscopic
signal

Figure 1.1: General clock principle showing interrogation of atoms to give a spectroscopic
signal and a servo correction feedback to stabilize the macro oscillator (quartz) to get the

clock signal.

This thesis is about vapor cell clocks [4]. Vapor cell clocks have multiple advan-
tages. They are simple in operation, compact in size, no vacuum system required,
many atoms contribute to the signal to give a good clock stability, they are portable
and reliable (tested in deep space applications, eg. Cassini Huygens). Our studies

are done with atomic 3"Rb confined in glass-blown cells (see Chapter 3 for details).
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This chapter explains the DR principle - explaining the interrogation with atomic
resonator (cf. Fig. 1.1), basic theoretical description and achievable frequency sta-
bilities along with the perturbations involved in a typical DR clock. Later on, in
Chapters 5 & 6 these aspects will be used to study, characterize and optimize the

clock frequency stability performance.

1.1 Double-Resonance (DR) principle

0000000000000
Atomic vapor Photodetector
Light
source
> B—
TO00000000000 DR sienal
C-field coils £

Transmitted light

; — «— ~ kHz
Microwave =
source VRp

Microwave frequency

Figure 1.2: Double-Resonance spectrocopic principle showing the interrogation of atoms
confined in a vapor cell by optical and microwave fields to give a transmitted resonance

curuve.

The studies in this thesis are based on the contiuous-wave (CW) laser-microwave
double-resonance (DR) principle, explained as follows: Consider a three level system
(cf. levels |1), |2), |3) in Fig. 1.3) at thermal equilibrium; both its ground states are
equally populated. A laser-optical resonant field pumps the atoms to one of the atomic
ground states via excited state by depleting the other ground state, thus creating
a ground-state polarization. Simultaneously, a second resonant field interrogates at
microwave frequency to drive the ground-state hyperfine clock transition: 525 2| F, =
1,mp =0) +— |F, = 2,mp = 0) in the case of ¥’Rb. The frequency of this transition
is vy, = 6834682610.90429(9) Hz [59]. The opacity of the vapor to the transmitted
light signal as a function of microwave frequency is a measure of the atomic ground-
state polarization known as DR signal (see Fig. 1.2). This signal typically has a
Lorentzian shape as shown in Fig. 1.2, and the stabilization of the quartz oscillator

to the centre of this reference signal, vgy, realizes the clock [4,22]. We adopt the
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CW-DR interrogation scheme, as it is a simple method of operating the Rb standard.
Whereas, the other techniques such as Pulsed Optical Pumping (POP) [60] require
additional optical systems such as the Acousto Optical Modulator (AOM) for the
clock operation increasing the operational complexity and volume of the clock. On
the other hand, for POP operation, more stringent requirements on the microwave
Local Oscillator (LO) phase noise is essential to avoid the Dick effect [61]. However,
good improvements in the LO phase noise has helped the realization of excellent
stabilities of the POP clocks [51].

1.1.1 Clock transition and perturbations

5Py, —
3/2
13)
; . ~780.24 nm
Optical Pumping,v, , o
87Rb atom op (D2-transition)
=+
mp=+1 mg=+2
Fg = 2 mgp= 0
mp=-1 —
my 2 2) A
| Microwave
> 28”2 B=0 : clock transition, Vg, B=#0
| ~6.835 GHz
E |1>m\V: 0
Fg -1 F mg=+1

Figure 1.3: DR principle for 8"Rb atom with energy level scheme showing the optical
pumping and the clock-transition. The detailed energy level diagram and the properties of
8TRb are given in Appendiz A. The excited-state 5 2P3/2 has the hyperfine structure that

could be resolved, which is not shown here.

Figure 1.3 shows the energy-level diagram of 8’Rb atom. The laser sources used in
these studies emit around 780 nm (Rb D2-transition: 5 2S;/2¢—5 ?Pj)5). In the pres-
ence of a static, directional magnetic field, B, (shown in Fig. 1.2), the ground-state
degeneracy of 8 Rb atomic energy levels is lifted into their corresponding Zeeman-
sublevels [62]. In presence of magnetic fields, the Zeeman energy level shift is ex-
plained by the Breit-Rabi formula [32] as,

Uhts grmppp Uhts dmp |
Av = — — B+ 1 X+ X2 1.1
Ty ) 7 > \/ ot T (1.1)
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where, g; is the Landé g-factor for the nucleus, v, is the hyperfine frequency differ-
ence, X = (gr + g7)upB/h.vhys, gs the Landé g-factor for the valence electron with
total angular momentum of J, and I=3/2 is the nuclear spin for Rb-87.

The first order dependence of Zeeman levels can be estimated by differentiating the
above formula (Eqn. 1.1) with respect to the external magnetic field B as, 0Av/0B,
shown in Fig. 1.4. The magnetic-dipole allowed transitions (Amp = 0,+1, see Fig. 1.4

for further details) are marked with circles.

F=2, m=+2 — |

F=2, m=+1 ~

1 L 4
0 / F=2, m=0 -

7
F=2, mp=-1

— [GHz/T]

Ay
B

_sl F=1, mp=-1

F=1, my=0
—10f -~
F=1, mp=+1 —_

F=2, my=-2 ==
-0.2 —0.1 0.0 0.1 0.2
Magnetic field [T]

Figure 1.4: The transition dependence on external magnetic field is shown for 37 Rb
ground-state magnetic dipole-transitions. Magnetic dipole-allowed transitions that occur
when Ovy5(B) /0B are equal but with opposite sign for both states of transitions are marked

with circles.

The magnetic dipole matrix elements values of the allowed Zeeman transitions be-
tween the two ground states are shown in Fig. 1.5. The relative strength of the inter-
action between 8"Rb and resonant microwave radiation is characterized by these mag-
netic dipole matrix elements. Similar to the optical dipole matrix element that couples
the ground state to the excited state in an atom, the magetic dipole matrix element
couples the two ground state hyperfine transitions via the spin operator S and can be
computed as (F,mp|S|F',m}) [32]. We are interested in the unperturbed transition
for the first-order magnetic field variation, which is evident at the centre, known as
the clock transition. Though the first order magnetic fields do not influence the clock
transition, the second-order magnetic variations can however cause perturbations (see

Section 1.5.1). It is important to minimize the effect of these magnetic variations on
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the clock transition, therefore magnetic shields are used. From Fig. 1.4, it is interest-
ing to see that two other transitions: 5 25 5| Fy = 1,mp = 1) «— |[F, = 2,mp = 1)
and 5 251 5|Fy = 1,mp = —1) <— |F, = 2,mp = —1) are affected negligibly by
the first order magnetic variations only in very high field B. Hence, in principle one
can deduce that these transitions could also be used for the clock operation, but the
magnetic field required for this is too high compared to the practical usage in typical

Rb standards of few milli Gauss.

mp=+2
mp=+1
F5=2 mp=0
mg=-1 /
mg=-2 7\
1 RES
\ 42 "1z
528
2{g=0 Bzo -8 % -1 B

mp=+1

Figure 1.5: Magnetic dipole matrixz elements values computed for the ground state transi-
tions of 8" Rb atom.

The short-term stability of a clock (in terms of Allan deviation) is inversely pro-
portional to the atomic quality factor (or line-Q) and to the signal-to-noise (S/N)
ratio [22,32]. The atomic quality factor is defined as,

VRb

Q. = A (1.2)
where Avy /5 is the full-width half-maximum of the DR signal with a line centre at vgy,.
A narrow 8"Rb DR-signal with a line-width less than 1 kHz has the atomic Q-factor
as large as 107. Therefore the parameter of the line-Q: the full-width half-maximum
(Arn2) is important to be controlled for a narrower signal that gives a better atomic

Q-factor and hence a better clock short-term stability.
The sources of perturbations effecting vg, and Avy/, are important to be studied
and understood in view of better clock performances. The fluctuations and noises of
EM-fields (laser and microwave), temperature variations on the atoms, magnetic field

fluctuations etc., cause the perturbations on the centre frequency, vg;, of the DR signal.
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These perturbations are termed as systematic frequency shifts, Av. These shifts
include the constant buffer-gas shift [63], time dependent intensity and frequency
light shifts [21,64], microwave power shift [54,65], temperature shifts [55], and cavity
pulling shift [32]. However, the shift induced due to collisions of buffer gases with
Rb atoms gives a static shift on vg, known as pressure shift that is dependent on
temperature (see Section 1.5.3). This net pressure shift is the main reason why
vapor-cell clocks are secondary standards, which require calibration to correct for the
initial inaccuracy and these collisions also result in frequency drifts in long-term [66].
A thorough understanding of the above shifts can help in controlling and minimizing

the perturbing effects on the clock frequency instabilities.

1.2 DR Theory

The theory presented here is based on Vanier and Mandache’s approach for laser
pumped passive DR Rb frequency standards [22]. Here we present an overview of
required theoretical basis and a more detailed analysis can be found in [22,32, 50].
We follow a simplified three-level model for DR analysis, however in reality the laser
interrogation (depending on laser line-width) happens with the excited state where
more than one level is involved and with all the eight Zeeman levels in the ground
state. The details on extending from three-level to multi-level treatement can be

found in [56] and [50].

A. Buffer gas cell case

In our DR theoretical treatment we mainly consider the condition in which the va-
por cells are filled with 87 Rb atoms and buffer gases. We however contrast these
assumptions with wall-coated and the evacuated cell cases in the sections below.

The three-level model explained here has following assumptions:

1. Atomic 8 Rb and buffer gases are confined in a glass cell that is placed inside a
microwave cavity. 87Rb has two ground states for the clock transition and one
excited state for optical pumping. In reality for D2-transition of "Rb atom,
there are four excited state hyperfine levels (see [50]), but for simplicity we

consider only one excited level in our treatment here.

2. The continuous wave scheme includes simultaneously operated optical pumping
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laser field for creating a ground state population inversion and a microwave field

for interrogating the clock transition.

3. The excited levels are overlapped due to buffer gas collisional broadening and
Doppler broadening. Buffer gas-Rb atom collisions cause a homogeneous broad-
ening of Ps/o hyperfine levels (~ 18 MHz/torr) [67]. Due to this, the excited
states overlap and the 3-level approximation considering only one excited state
is justified. The Doppler broadening is 530 MHz (at the temperature of clock
operation of 60 °C) and by considering the buffer gas pressure of 20 torr, the
buffer gas broadening is 360 MHz and hence giving a total optical linewidth
(in lab. frame) of 890 MHz. The excited state spontaneous emission (decay
rate, due to BG collisions), I'* is of the order 2 - 5x10° s (at the pressures
considered in the present analysis), and is considered to be equally probable to

all Zeeman sub-levels in one hyperfine ground state level.

4. The laser with linear polarization is tuned to 8’Rb D2-transition (5 257/, —
52P /2). The laser beam intensity is uniform along its radius and the propoga-
tion direction of laser beam is considered in z-direction, i.e. along the cylindrical
cell’s symmetry axis and in the direction of the applied static magnetic field.
The laser line-width (~ 5 MHz) is much less than the ground state hyperfine
splitting.

5. Relaxations due to buffer gas collisions, spin exchange collisions and cell-walls
collisions in both, ground and excited states are considered in a phenomenolog-
ical way. Fractional population in the excited state is always small as compared

to the decay rate, considering low light intensities.

B. Wall-coated cell case

To our knowledge the DR theoretical treatment with wall-coated cell does not exist.
Here we consider the present DR theory to be closely matching to the wall-coated
cell case with following modifications in the above assumptions. Only the differences
with the above assumptions are contrasted here, and rest of them hold good for
the wall-coated case also. In the assumption 1, instead of buffer gases in a glass
cell, we consider the inner walls of the cell coated with an anti-relaxation material.
Contrary to the case of buffer gas in assumption 3, the excited P3/; hyperfine levels of
87Rb atom are not overlapped in a wall-coated cell (I'* = 38x10° s7!). In contrast to

assumption 5, the relaxations and frequency shifts considered are due to wall-collisions
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and spin-exchange collisions. They are still considered in a phenomenological way and

are treated in Chapter 5.

C. Evacuated cell case

A polarized atom in an evacuated (without buffer gases or wall-coating) vapor cell can
depolarize by only one collision on the wall and hence the achievable DR-linewidth
is several tens of kHz for a cm-scale cell, which corresponds to a clock short-term
stability of approximately 1x107° at 1s. This assumes that the DR signal is not
further degraded due to time-of-flight (TOF) effect (broadening due to the limited
interaction time of an atom in the laser beam path). In contrast, a cell whose inner
walls are coated with a high-quality anti-relaxation material preserves the polarized
state of an alkali atom for more than a few hundred to few thousand collisions,
depending on the size of the cell. The long-lived atomic polarization in turn increases
the Q-factor of the atomic resonance line and thereby contributes to improve the

short-term stability of the clock.

1.2.1 Three level model DR scheme

Figure 1.6 shows the three-level interrogation DR scheme, with |g;) = |F = 1, mp = 0)
and |g2) = |F = 2,mp = 0) being the two clock transition ground states driven by
microwave angular frequency of w, and |e) is the excited state to which the laser of
frequency wy, is tuned for optical pumping. The longitudinal relaxation rate v, and
transverse relaxation rate 7, are responsible for population and coherence between

two ground-states, respectively and are written as,

T = MBe T Nw + NSk, (1.3a)
Y2 = Y2BG T Vew + V25E; (1.3b)

where, vp¢ is due to collisions with the buffer gas and ~y is the diffusion to the cell
walls and ygg is the spin-exchange relaxation rate, corresponding to both ~v; and 7,
alike. Further details on relaxation rates can be found in [32,50]. The atom-radiation
fields system is analysed in density matrix formalism [68]. The time evolution of the
atomic density matrix elements representing the population of energy levels and the
coherences, under the action of Hamiltonian H is described by the quantum Liouville

equation [69]:
L =__[H 1.4
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Figure 1.6: A three-level model for DR interrogation in 8" Rb. wy is the laser angular
frequency, Ay is the laser detuning with respect to the optical transition, w,, is the microwave
angular frequency, I'* is the excited state decay rate and 1 and o are the population and

coherence relaxation rates, respectively.

The Hamiltonian H is the sum of several contributions in the interaction of atom with

laser and microwave fields on the density matrices, p, and & is the Dirac’s constant.

1.2.2 Atom-Laser interaction

The laser electric field E with an angular frequency wy and a definite polarization

vector & propagating in z-axis (r = (0,0, z)) with vector k can be written as,
E(wp,t,2) = Ey € cos(wrt +k - 1), (1.5)

where, Ej is the amplitude of the laser radiation field. The interaction hamiltonian
is written as Hg = d.E(wy, t,z), where d = —er is the electric dipole operator. The
optical Rabi angular frequency can then be written as,

Eq

R E,
Qp = f(e|er ~8|ga) = —

?degzv (16)
The terms within bra-c-ket are dipole matrix elements of D2 transition. Decay from
the excited state is treated in a phenomenological method, i.e., at low light intensities
the decay rate from P-state is always larger than the excited state fractional popula-

tion. Then, the density matrices explaining atom-laser interactions: p.. and pg,., are
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written as [22]:

ap@e —iw —iw *
ot = _QR Impglee it QRImpgzee T Pee;
(1.7a)
OPgre . QR bR i QR 4 -
(9352 = Wgyefgoe + 27€Z Lt(pee — Pgags) + 2361 “tpgw - 176 Ltpg1g2 - ?pgmﬁ
(1.7b)

In the above equations, I'* is the excited state decay rate and bg is the microwave
Rabi frequency given by Eqn. 1.14. Note that the equation referring to laser coupling
to |g1) ground state (%) is omitted as we assume that our laser linewidth is much
narrower than the ground-state hyperfine splitting.

From Fig. 1.2, we know that the measurable parameter is the intenstiy of the laser
at the exit of the clock cell. This intensity on the detector causes a photocurrent
and the voltage proportional to the load resistance is measured. The electric field
E(wp,t, 2) is related to the electric polarization P by the relation [22],

OE O’E 0°P

5.2 COHO G = Ho gy (1.8)
where € is the vacuum dielectric constant and g is the permeability of free space. The
above equation (cf. Eqn. 1.8) can be transformed in terms of optical Rabi frequency

as [70],
K _ o Imé

0z 92¢7

where 6,4, is the complex amplitude of the optical coherence that is decomposed by

(1.9)

excluding the fast oscillations from pg,, and the absorption coefficient « is given by,
a= (;:()Lhdgw) n, [m's7!] (1.10)
with ¢ as the light speed in vacuum, ¢y the permeability of free space and n the atomic
number density.
Finally, the Laser pumping rate, I', can be defined as,
. 93,/2/° T
P72+ (wor — w0y — )

where wey, = Ay in Fig. 1.6. When the laser is turned exactly to the transition |gs)

(1.11)

to |e), the above equation approximates to:

Ok
I
where Qp is function of z. A non-resonant coupling of the laser field with |g;) state

r,= (1.12)

leads to off-resonant light-shift effect through virtual transitions (see Section 1.5.2).
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1.2.3 Atom-Microwave interrogation

The microwave field is considered to be in resonance with the two ground states (see
Fig. 1.6) and is given by,
B,,(r,t) = By cos(w,t), (1.13)

where By is the microwave field amplitude and w), is its angular frequency. Associated
angular microwave Rabi frequency for the clock transition is written as,
KB
br(r) = fBz(r), (1.14)
where, pp is the Bohr magnerton. The matrix elements explaining these interac-
tions are pg,g,, Pgoge aNd pg 4., With the sum of populations of two ground states

Pgigi TPgag. ~ 1, and are written as:

a —iw —iw F*
% = —bp Impy, g, + QpImpy,ee”™H 4 5 Pee— M (Pgogs — 1/2), (1.15a)
a — —iw L
% - +bR Irnpglfn6 ot + QRImpg1ee Lt + ? Pee — M1 (pglgl - 1/2)7 (115b)
9p . ibr Q.
# = 11 Wy1g2Pg1g2 T 76 ”t(pgzgz - Pg1g1) + 176 Ltpg26 (1.15c)
QR —iwrt
_176 Pgre — V2Pg1g2-

In this model, it is also assumed that the optical Rabi frequency Q0 < I'*, the
microwave Rabi frequency br < I'" and the microwave detuning w, < I'", where
W, = Wy—Wg,g,- Typically, the values of Qg, br and T'* are of the order 10° 57", 10% s~
and 10° s71, respectively. The values considered here are valid over a broad range
of optical and microwave Rabi frequencies usually applied in DR clocks. Therefore,
from above approximations one can eliminate the population in the excited state, and
similar to the optical coherence (d4,. in Eqn. 1.9) the ground state coherence d,,,,

created by the microwave field can be written as,

| (be/2) (32 +T)
(72 + Fp)2 + (W + Awrs — wgyg,)?
(bR/Q) (wu + Awrs — w9192>
(2 + )% + (wy + Awpg — Wgygy)?

A+

69192 -

A, (1.16a)

where, Awpg is the light-shift given by Eqn. 1.43 (see Section 1.5.2) and A is the
population difference between the two ground states given by,
Iy

b?g (72 JFFp)
(72 JFFP)ZJF(WRJFAWLS*WQ 92)2

A= (1.17a)

(’72 + Fp) +
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On the other hand, the optical optical coherence d,,. (cf. Eqn. 1.9) is given as,
Qr/2

(4 * .
(% + i(wr — Wgye

Sge = — (1.18a)

)) P 9292
This means that the transition from |e) to |gs) is mainly driven by the direct inter-
action of the laser and not by any feedback from the other transition |g;) to |e).
The value of p,,, is obtained from the set of equations, 1.7 and 1.15 within the

frame of above approximations on Qg, br and I™as explained in [22].

The saturation factor is defined as,
b2
S =2 (1.19)

172

where, 7, = 7+I,/2 and Yy = v2+1,/2. Here optical pumping is considered as an

added source of relaxation contributing for line broadening.

1.2.4 DR signal

The typical DR signal has approximately Lorentzian shape and hence by using the

above saturation parameter it can be written as:

S 1

DRy =~ g Sy

(1.20)

where aq is the maximum fractional signal amplitude at x = 0, and x = u;*},. The
2
full-width-half-maximum (FWHM) of the DR signal is given by,

1, 77—

Hence, the FWHM (Aw/5) can be calculated at the exit of the cell by proper evalu-
ation of the pumping rates and saturation factor. The important parameter in view
of clock frequency stability is the Discriminator slope (D) that can be approximately

written as,

A
AV1/2 ’

D~ (1.22)

where, A is the amplitude of the DR signal. Similarly, another important parameter
known as Figure-Of-Merit (FOM), which also considers the detected background noise
(Bk) affecting the signal to noise (S/N) ratio can be defined as,

C

FOM = ,
AV1/2

(1.23)
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where, C' is the contrast of the DR signal given by C' = A/Bk, with A as the DR
signal amplitude and Bk the background level. Further more, the contrast of the
DR signal depends on absorption coefficient o, microwave field intensity, laser light
intensity (or pumping rate) and the length of the cell (L). Using Eqns. 1.9 & 1.16a
by numerical evaluation, one can write the contrast C' in terms of Rabi frequency
as [22]:

gz =Liw=w,) —Qz=Luw,)

C pu—
Q%(2 = Lw,)

(1.24)

1

For instance, the microwave detuning, w, = 27 x 10000 s makes sure that the

background is well outside the microwave resonance.

1.3 Buffer gas line broadening and relaxation mech-

anisms

By using buffer gases in the Rb cell it is possible to preserve the polarization-state of
the atoms up to few milliseconds (by suppressing relaxation on the cell walls, the time-
of-flight broadening and the Doppler broadening) to get a narrow (~ kHz) resonance
line with an improved @),. However, the buffer gases also cause line broadening of
the optical absorption [67]. Equations 1.3(a) & 1.3(b) give the possible relaxation
mechanisms responsible for the change of population (1) difference and coherence
(72) in the ground state clock transition. Below we outline these line-broadening

mechanisms in some detail for the case of the 25 mm diameter cell used in this study.

1.3.1 Buffer gas collisional relaxations

Albeit the buffer gas prevents the atoms from colliding on to the glass walls of the
vapor cell, the collisions between 8"Rb atoms and the buffer gases are unavoidable.
The binary collisions of alkali atoms with buffer gases alter the electron density at
the alkali nucleus and thereby a change in alkali’s hyperfine coupling (i.e., AL.S —
(A+0A)L.S)). This is known as Carver mechanism [71], and is explained in [72,73].
These collisions are dependent on the collisional cross-sections between Rb atoms and
buffer gases, the cell temperature in turn is responsible for the mean relative velocity
between the Rb atoms and buffer gases, v,.. P is the corresponding BG pressure inside

the vapor cell. Thus, the buffer gas relaxations for population and coherence can be
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written as [56]:

P

Yiec = Lo vy o1 p (1.25a)
0
P

Yepc = Lo vy o2 g (1.25Db)
0

where Ly (= 2.686 7774(47)x10% m™3 at 0 °C and 1 atm.) is Loschmidt’s con-
stant, oy is the collisional cross-section responsible for population (i.e., pg,4,-Pg2g.)
relaxation, oy is the collisional cross-section responsible for the coherence (pg,4,) re-
laxation, v, = {/8kp - T /7 is the mean velocity of the colliding atoms and buffer
gases at temperature 7', with kg the Boltzmann constant and p the reduced mass
of the colliding particles and Fy is equal to 760 Torr. The collision cross-sections
between Rb and respective buffer gas responsible for population and coherence re-
laxations are given in Table 1.1. The Ny buffer gas also acts as a quenching gas; the
excited rubidium atoms can transfer from one of the P states to the ground states
without emitting or absorbing the radiation, since all the fluorescence is quenched by

nitrogen gas [32].

Table 1.1: Collisional cross-sections of Rb with Ar and Na.

Collision | o1 [1072% cm?] | 02 [10723 cm?]
Rb-Ar 37 37
Rb-No 8.3 350

For example, considering the temperature of 63 °C (336 K) (we get v, = 286.4
m/s), and a typical buffer gas pressure (in our case) of 19.5 Torr and computing for
the above equations (cf. 1.25(a) & 1.25(b)), we get 71pe = 8.94 s7! and Y9pe =
76.4 s71, respectively.

1.3.2 Cell-wall diffusion relaxations

The atoms diffuse through the buffer gases by the process of collisions and finally
can reach the bare glass walls, where they lose the state of polarization, resulting in
essentially zero population difference. The motion of atoms through buffer gases can
be explained by diffusion equation. For a cylindrical cell (like the ones used in our
clocks in this thesis), with radius a and length of the cell L, the diffusion equations

responsible for the relaxations through binary (Rb-BG) collisions of populations and
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coherence, respectively, are given by [32]:
(2.405)? 7?2 P
mw= e + 12 DOF ) (1.26a)
(2.405)2 w2\ _ R

The process of diffusion causes transitions among the atomic energy levels contribut-
ing for 7, and the phase shifts by affecting the coherence contributing for 5. However,
note that the order of shift contribution for both the relaxations is same. Typical
values of the diffusion constant Dy for 8’ Rb with the buffer gases Ar and N, are given
in the Table 1.2. There are possibilities of molecule formation as explained in [32,72],

which could also cause the relaxation.

Table 1.2: Diffusion constants of Rb interacting with buffer gases. These wvalues are

calculated for a temperature of 63°C from [32] by considering Dy is proportional to T/? [74].

Buffer gas | Relaxation | Dy [cm?: s7!]

Ar Yiw 0.49
Yow 0.53

N2 Yiw 0.45
Yow 0.4

Now, by considering the typical cell dimensions in our case of radius a = 1.15 cm
and length L = 2.3 cm and the diffusion constant values from Table 1.2 and computing
for the Equations 1.26(a) & 1.26(b), we get vy = 228.5 s7! and o = 226 s71,

respectively.

1.3.3 Spin exchange relaxations

The spin-exchange collisions between two atoms A and B in 5/ state with spin-up
1) (lg2) = +1/2) and spin-down [{) (]g1) = -1/2) can be represented as [75],

AlT) + BN — AN + BIT), (1.27)

showing that after the collision the spin states of the two atoms are exchanged, but
the total spin of a colliding pair of atoms is conserved. This effect is also a source
of relaxation that causes broadening of the resonance line depending on the atomic
density [32].
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The spin exchange collision between two Rb atoms responsible for relaxation of

populations is given as [56]:

VISE = Us Oez N, (1.28)

where o, is the spin-exchange cross section responsible for broadening of the reso-
nance signal and vg = 1/8kg - T'/mp is the mean velocity between the two colliding
Rb atoms with reduced mass j between them. Typically oo, ~ 1.6x107 cm? for
8TRb [32,76]. Whereas, the coherence spin-exchange relaxation rate 7ygp is given
as [56]:

61 +1

S 1.29
ST+4 '8P (1.29)

Y2SE =

where [ is the nuclear spin, for 8"Rb it is 3/2. For a temperature of 63 °C, the rubid-

ium density is 6.9x 10 cm =3 and v, is calculated to be 2.86x10* cm-s~!

1

, substituting

these values and o.,, we get y195 ~ 316 s71, and yo5p ~ 197.5 s7L.

Table 1.3 summarizes the population and coherence relaxations caused on 8"Rb
atoms in a buffer gas vapor cell. The intrinsic linewidth of the DR signal is limited
by the total relaxation, i.e. sum of the coherence relaxations of the above processes.
The value of intrinsic linewidth is considered when there is no influence of light and
microwave, i.e., at zero light intensity and zero microwave power. For our vapor cell
with a buffer gas pressure of 26 mbar (19.5 Torr), operating at a temperature of 336 K,
when there is complete absence of light and microwave, the saturation parameter (cf.
Eqn. 1.19) becomes “zero”, and hence the intrinsic linewidth using the Eqn. 1.21 is
calculated to be ~ 160 Hz.

Table 1.3: Relaxation of population and coherence of the clock transition in 8" Rb calculated
for 25 mm diameter BG cell.

Parameter Symbol | Value [s7!] | Symbol | Value [s7!]
BG collision relaxation Y1BG 8.94 YoBG 76.4
Cell-wall diffusion relaxation Nw 228.5 Yow 226
Spin exchange relaxation Y1SE 316 Y2SE 197.5
Total relaxation Y1 ~ 553 Yo ~ 500
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1.4 Clock Frequency Stability

The frequency stability of a Rb standard can be divided into three regimes based on
the averaging time scales: (i) the short-term stability, limited due to S/N ratio (typi-
cally 1-100 s in this thesis), (ii) the medium-term stability, limited due to random-walk
or flicker noise (100-1000 s here) and (iii) the long-term stability, limited due to drift
and ageing processes (1,000 s up to one day or more). However, in the studies done
here, we consider the effects of (ii) and (iii) combined, and focus our attention on the
clock behavior at 10,000 seconds, as this is at relevant time scales (6,000 s) that are
essential in view of clock error prediction and synchronization [31,77,78].

In this section, at first, few basic concepts on accuracy, precision, stability, over-
lapping Allan deviation and noise processes are explained. This is followed by a

discussion of short-term and medium- to long-term stabilities.

1.4.1 Accuracy, precision and stability

Precise but Not accurate and Accurate but Accurate and
not accurate not precise not precise precise

- vy Ry e (b)

Time Time A ‘ Time Time
Stable but Not stable and ceurate Stable and

(on the average)
not accurate not accurate accurate
but not stable

Figure 1.7: (a) Conceptual illustration of the accuracy, precision and stability of an oscil-
lator with a target analogy, (b) the corresponding frequency stability as a function of time.
Courtesy: John R. Vig, A tutorial on quartz crystal resonators and oscillators, Frequency

control and timing applications, November 2008.

The instantaneous frequency of an oscillator at time ¢ can be considered as:

f(t) = foll +e+y(0)], (1.30)

where fj is the reference frequency or the unperturbed ground-state hyperfine fre-

quency of an atom (e.g. vg, in 8"Rb, shown in Fig. 1.3), € is the systematic bias
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and y(t) represent the statistical fluctuations. In an analytical measurement, it is the
accuracy that gives a measure of how close is the measured value to the reference.
In the Eqn. 1.30, if € = 0, then it is accurate. The precision is the reproducibility
of multiple measurements and usually it is described by the standard deviation; if
y(t) = 0, it is determined as 100% stable in terms of frequency. Figure 1.7 illustrates
the accuracy, precision and stabilities of a target analogy. The centre circle of the
target is considered as the reference point (or reference frequency) and the deviation
of bullets from the centre is represented in terms of frequency as a function of time
in the lower part of the illustration. Next sections explain the need and method of
evaluation of y(t), that is used to characterize a clock’s performance in terms of Allan

deviation.

1.4.2 Need for Allan deviation

The noises affecting an oscillator lead to its instabilities. In order to distinguish
between the noises such as white frequency noise and flicker frequency noise, the
conventional statistical tool such as standard deviation is not suitable as the output
is divergent. Therfore, in order to characterize the variations of the oscillator over
time due to different noise processes (see Fig.1.9), the two sample variance is used
known as Allan variance [79]. The square root of Allan variance is known as Allan
deviation. Below section gives the basics of Allan deviation and its variant known as
overlapping Allan deviation. The overlapping Allan deviation takes more number of
averages than the Allan deviation that helps to increase the confidence limits of the

statistical analysis.

1.4.3 Overlapping Allan deviation and noise processes

An atomic standard’s frequency or phase fluctuations are typically characterized in
time domain, statistically in terms of Allan deviation [79-81]. A typical frequency
output of an atomic standard is shown in Fig. 1.8. This frequency as a function of
time can be divided into equal intervals of duration 7; such that, 7 = t;.; — ¢;, and
7; are the averages of y(t) in each interval [¢;;t;,1].

In Fig. 1.8, y(t) is the oscillator frequency normalized to the reference (cf. Eqn. 1.30).

The mean frequency fluctuations 7; in the interval 7 can be represented as,

tit1

U= / y(t)dt, (1.31)
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Figure 1.8: Typical frequency fluctuations of an atomic standard or oscillator.

And the Allan deviation for N number of intervals can be calculated as [79,82]:

o) i = | T ) = le_l) S -mr. (132)

The confidence interval of an Allan deviation is estimated as +o,(7)//(N — 1), this
is usually dependent on the noise type [83]. In order to improve the confidence of a
stability estimation and to make the best use of the data set, the overlapping between
the samples at each averaging time 79 < 7 is considered. Consider the overlapping
samples at each averaging time 7, which is an integer multiple of 7. From a set of M
frequency measurements, the averaging time 7 = mmy, then the Overlapping Allan

deviation can be expressed as,

1 N—2m+1 (j+m—1 2!
= Yixm — Uil ¢ 1.33

The confidence interval of an Overlapping Allan variance estimate is better than
that of normal Allan variance as the additional overlapping intervals are taken in
to consideration to improve the confidence estimation [83]. In performing the clock
stability estimate for our clocks explained in this thesis, we use the overlapping Allan
deviation because of better statistical estimate of the clock’s performance.

It is also possible to calculate the stability in frequency domain in terms of power
spectral density (PSD) by accounting for phase or frequency fluctuations as a function
of Fourier frequency [79,83]. The PSD of the random frequency fluctuations can be

written in the form of power law spectral densities as,

Sy(f) =D_h(@)f?, (1.34)
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where, S,(f) is one-sided PSD of y in Hz™!, f the Fourier frequency in Hz, h(«)
is the intensity coefficient and « the exponent of the power law noise process. The
most commonly encountered behavior of o,(7) for different noise process spectra in
an atomic standard are shown in Fig. 1.9. The relation between a and p (or S, (f) and
o,(7)) can be found in [84]. Note that in order to distinguish between the white PM

noise and the Flicker PM noise, modified Allan deviation technique must be used [83].

. w2
o | Wvhite PM o(1)~1
qr oL
Elickér.PM Sy(f) ~f
=-a-1
11 g
log Freq

)i

- Drift
o,(1) N
-13

‘\ WHite T FTigker | R 1
o E E t
o | S
-15 7 7
1
0 2 4 6 8 10

log t

Figure 1.9: The logo versus logr plot shows the power-law dependence of Allan Variance
value and the type of noise associated with a particular slope, . FM: frequency noise,
PM: phase noise, and RW: random walk noise. Modified Allan deviation must be used to
distinguish between RW-FM (flicker phase) and Freq Drift (white phase) noises. Courtesy:
This graph is taken from [83].

1.4.4 Short-term stability

The short-term stability (1 to 100 s) of a passive rubidium frequency standard strongly
depends on signal to noise ratio (S/N) [32,85]. The instability caused due to this is

termed as og/y, and can be estimated [31] by,

Npsd —1/2

o T)=——"— T 1.35
() = (1.3)
where N5 is the detection noise power-spectral-density when microwave and pump
laser are switched on (in closed clock loop condition). D is the discriminator slope
that can be approximated as the ratio of the signal amplitude (A) to the linewidth

(Ary/2) of DR signal (see Fig. 1.10). The measured noise density, N,sq also includes
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Microwave frequency detuning

Figure 1.10: A typical DR signal showing a Lorentzian line shape.

the contribution of PM-to-AM (phase noise to amplitude noise) laser noise conversion
in the clock cell [86,87].

The error signal is generated by frequency modulating ( f,,,) the microwave at rea-
sonably low frequencies of few hundreds of Hz with a depth of +df as depicted in
Fig. 1.11(a). More precisely, the discriminator slope D is determined close to the cen-
tre of the error signal (see Fig. 1.11). The modulation depth is always considered to
be less than the FWHM (A /2) of the DR signal here. We consider this modulation
happens during a quasi-static state, meaning that the DR signal doesn’t move during
the modulation process. The optimized maximum discriminator slope D is obtained
at a modulation depth £0f = 0.3xAwv;/5. On the other hand, the modulation fre-
quency f,, is chosen such that it is lower than the v; and ~, relaxation rates [32],
thus giving enough time for the atom to respond for microwave interrogation in the
quasi-static condition.

The modulated signal is detected using phase sensitive synchronous lock-in detec-
tion circuit to obtain the error signal as shown in Fig. 1.11(b). The extrema in the
error signal show the points of the changing slope in the DR signal. The instability
caused due to frequency modulation on the phase noise of the LO is denoted here as
O pMnoise(T). Phase noise of the microwave frequency synthesizer sets a limit on the
clock frequency stability known as Dick effect [61,88,89]: the process of frequency
modulation adds an extra noise to the closed clock loop via aliasing effect (or in-
termodulation induced effect) [90]. This noise depends on the modulation frequency
used in the clock loop as explained in Section 2.6.2 (Table 2.2).

The intensity and frequency fluctuations of the laser also affect the short-term
clock stability via light-shifts (see Section 1.5.2). We denote the instabilities caused
due to both the light-shifts affecting the DR line centre to move as o5(7) = 04(7) +
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) Y B
I

H-wave
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Figure 1.11: (a) Sampling of the DR signal by frequency modulation (fy,) of the microwave
with a depth of £6f and (b) its corresponding error signal obtained by phase-sensitive de-

tection. Dotted line at the centre of the error signal shows the discriminator slope D.

og(7) that can be estimated as,

: T
oo(T) = o] Uf;b/h L. 12 (1.36a)
o5(7) = 18] OAVRb/ VL2 (1.36h)

where || is the absolute value of the intensity light-shift coefficient (cf. Section 1.5.2),
I;, is the input laser interrogating intensity, oay, /1, is the relative intensity stability
of the laser (cf. Section 2.4 and Fig. 2.7), |8] is the absolute value of the frequency
light-shift coefficient (cf. Section 1.5.2), v = 384.23 THz is the frequency of laser
for the D2-transition and oa,, /., is the relative frequency stability of the laser (cf.
Section 2.4 and Fig. 2.6).

Eventually, the overall short-term clock frequency stability can be estimated from

the sum of the squares of the individual limits by the following equation:

1

oy(T) = \/ 05/N(T)? + Tpanoise(T)? + oLs(T)? . (1.37)

The shot-noise limit of the clock occurring due to statistical nature of the photons

arrival at the detector (time-energy uncertainty) [91,92] is calculated using the noise

Nshot: \/Q-G'Idc, (138)

where e is the charge of an electron and I, is the photocurrent of the DR signal at

spectral density as,
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Avyjy. By replacing Nyjo in place of Np,zq in the Eqn. 1.35, one can calcuate the shot-
noise limited clock frequency stability, o0 (7). This sets the potential limit of the
clock’s attainable short-term stability, provided the other technical noise contributions

(eg. laser noise, LO phase noise etc.) are nullified.

1.4.5 Medium- to long-term frequency stability
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Figure 1.12: Physical effects and their corresponding sources of fluctuations affecting the
clock frequency stability in medium-long-term time scales. Tymp is the ambient temperature
around the physics package (PP), Puym is the atmospheric pressure and B is the external
magnetic field.

As explained in Section 1.4, the medium-term frequency stability is mainly af-
fected by flicker and random walk noise types, whereas the long-term clock frequency
stability is affected by drift and ageing (see Fig. 1.9). In laser pumped Rb standards,
the frequency and amplitude instabilities of the laser are among the main causes of
instabilities. The other physical environmental parameters, such as temperature vari-
ations, atmospheric pressure, magnetic field variations etc., also causes the limits on
achievable stabilty [93].

Figure 1.12 shows physical effects and their corresponding sources of fluctuations
affecting the clock frequency in medium-long-term time scales. Therefore, the per-

turbed output clock frequency can be estimated as,

Vpert = VRb —+ AVZ + AVLS + AVBG =+ AVSE + AV,uP + AVCP, (139)
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where, v, is the frequency of the 8’Rb unperturbed hyperfine transition used as
reference and Avy is the 27¢ order Zeeman shift, Avyg is the light-shift, Avge is
the shift caused due to collisions between 8" Rb and buffer gases, Avgg is the spin-
exchange shift (due to 8"Rb-*"Rb collisions), Av,p is the microwave power shift and
Avcp is the shift due to cavity-pulling. Though the effect of light-shift in this work
is compensated for by using the AOM laser head, the temperature variations are

unavoidable as our clocks are operated in laboratory ambient conditions.

1.5 Clock Frequency Perturbations

In this section we will discuss the perturbations and the corresponding shifts caused
on the centre frequency of the DR signal vg, (cf. Fig. 1.11) in detail. In particular,
the focus will be on the effects that are most relevant on the medium- to long-term
frequency stability. The emphasis is to understand the underlying physical effects in
view of having a better control on them in order to improve the medium- to long-term

frequency stability in the clocks presented here.

1.5.1 Second order Zeeman shift

The second order Zeeman shift for the clock transition is given as,
Avy = Ay|B - 2%, with Ay = 575.14 Hz/G?, (1.40)

where, Z is the quantization axis direction. The magnetic field B includes the com-
bination of contributions [93] from, the applied quantization magnetic field By, the
residual field B, and the field related to the noise of the magnetic shields Bs. B, is
the field that remains even after the shields are used to suppress the external flucu-
ations. The fluctuations of these terms on clock frequency can be characterized by

their respective variances, o3, (7), 0% (1) and o3, (1) as [93]:

0,(1) = <2AOBO> {05,(7) + 0%, (1) + 05, (1)} (1.41)

Vpert
The calculations for our typical experimental conditions using Eqn. 1.41 are done in
Section 4.5.1.

1.5.2 Light-shifts

Generally, the AC Stark shift effect is termed as light-shift (LS) in atomic clocks [52].

The LS effect of an electromagnetic field on the clock transition is usually encountered
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in Rb clocks when in continuous wave (CW) operation. This occurs by the light field
initiating virtual transitions in the atoms, and in this sense is fundamentally related
to the Lamb shift, which arises due to atom’s interaction with the vacuum field [4].
The LS, Avpg, can be written as [53,94],

(WL - wopt)
*)2 9
(wL — Wopt)2 + %

Aps— inRF (1.42)
where, Qp is the optical Rabi frequency proportional to laser intensity I, wy, is the
laser angular frequency, I'* is the width of the approximatively Lorentzian optical
absorption broadened due to BG collisions that is centered at the optical atomic
transition frequency wop.

Incidentally, there is a minor contribution to the light-shift from the other ground
state (|g1)) levels due to the spread of the wings of the dispersive LS profiles [21,32].
This is important to be considered in evaluating the effect of LS on the ground-state
hyperfine "clock transition" [21]. Therefore, the total LS contribution from Ajg; and

Ao can be written as,
AI/LS = ALSQ — ALSl- (143)

with Avps = Awpg/2m. By detuning the laser frequency (v) one can reduce the
effect of intensity light-shift on the clock. To facilitate this, we have developed a laser
head integrated with Acousto Optical Modulator (AOM) (cf. Section 2.2.2). The use
of AOM LH is demonstrated to reduce the intensity LS coefficient as explained in
Sections 5.4.1 & 6.3.1, respectively.

A. Intensity Light-shift coefficient, o

From Eq. (1.42), the intensity LS coefficient, a, can be derived as a = 8@# at a
fixed laser frequency. This essentially gives the slope when the clock frequency is
measured as a function of laser intensity. The limitation to the clock’s stability due
to intensity light-shift, a in medium-to long-term time scales can be estimated by the

Eqn. 2.2 (explained in Section 2.4).

B. Frequency Light-shift coefficient,

From Eq.(1.42), when the intensity of the light is kept constant, the frequency LS

8AVLS
ovy,

coefficient is written as g = Frequency LS can be nullified, e.g. in pulsed
mode [56]. In the continuous-wave operation discussed here, this is not possible, but

we can reduce [ by operating at low light intensities [95] (also see Chapters 5 & 6)
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or operating at high buffer gas pressures as studied by Camparo et al. [96]. The
influence of 5 on clock instability can also be estimated similar to that of intensity

LS, given by Eqn. 2.1 in Section 2.4.
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Figure 1.13: Conceptual diagram depicting the intensity and frequency light shift effects.
The z-scale shows the laser frequency detuning around the center of the optical transition

in the clock cell.

The plot of total LS Avpg as a function of laser frequency detuning for different
laser intensities when the laser frequency is varied around the Fy — F, transitions is
shown in Fig. 1.13. The amplitude (or slope) of the curve in the shaded area increases
as the laser intensity increases (Ir4 >> I ) and vice versa, this effect as a function
of laser intensity depicted by solid-line-arrows is the intensity light shift coefficient
a. At a fixed laser intensity, the slope of the curve gives the frequency light shift
coefficient 3 that is depicted by dashed-line-arrows. The nominal laser stabilization

range studied in this thesis is shown by the shaded box.

1.5.3 Buffer gas shifts and Temperature Coefficient (TC)

The buffer gas (BG) is mainly used in order to prevent the atoms from colliding on to
the walls of a glass cell. At reasonably high buffer gas pressures (> 15 Torr), during
the interrogation time of ' Rb atoms with the EM-fields, the atoms can be assumed
to be almost stationary in space inside the vapor cell [34]. The collision cross-sections
(01 & 09 in Eqn. 1.25) of buffer gases with Rb atoms (for the Rb D2-transition),
in particular, nitrogen Ny is large enough (~43 AQ) to keep the Rb atoms localized

in space [32]. As said earlier, the Ny buffer gas also acts as a quenching gas: the
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excited rubidium atoms can transfer from one of the P-states to the S-states without
emitting or absorbing the radiation, since all the fluorescence is quenched by nitrogen
gas. The buffer gas can also be used to reduce the intensity light-shift effect [21,97].
This is achieved by filling the right amount of BG pressure inside the clock cell that
due to collisions with the buffer gases shifts the excited state Rb transition line (v
in Eqn. 1.42) to give a minimal effect on the clock frequency. In a conventional
lamp-pumped Rb standard, the BG were used in the lamp in order to match the
transition lines of ®Rb with that of 8'Rb [32]. By first approximation, the observed
collision frequency shift between the alkali atoms and BG gas molecules can be more
appropriately termed as density shift [97].

The shift due to the 8"Rb-buffer gas collisions is dependent on the temperature
of operation of the clock. A mixture of buffer gases can be used to reduce the tem-
perature coefficient. For this purpose, we use an appropriate mixture of Argon (Ar)
and Nitrogen (N3); while Ny produces the necessary fluorescence quenching, the Ar
decreases the TC of nitrogen. The Ny has a +¢ TC with Rb, whereas Ar has -*¢ TC,
therefore by mixing these two gases one can obtain a zero TC point. The equation
that dictates this methodology can be written as [32,98],

Avpa(T) = vy + P8 + 6 AT +~' AT?), (1.44)

where P, = Py, + Py, is the total gas pressure, AT = T —Tj is the difference between
the working temperature and the reference temperature for which the coefficients are
measured. Note that the total gas pressure P; can increase during the cell sealing
[98]. ', 8", 4 are the pressure coefficient, the linear temperature coefficient and the
quadratic temperature coefficient of the mixture, respectively for the gas mixture.
Further more: 3'=(B8n, + rBar)/(1 + 1), 6 =(6n, + r64,)/(1 + 1) and v =(yn, +
rvar)/(1 4 7), with r as the pressure ratio Py,/Py,. Typical coefficient values for Ar

and Ny buffer gases are given in Table 1.4.

Table 1.4: Pressure shift and temperature coefficients of 8" Rb in Ar and Ny buffer gases.
The values are referred from [32].

Buffer gas | Bpg [Hz-Torr™!] | 6pg [Hz-Torr—1-°C~!] | yp¢ [Hz-Torr—1.°C~2]
Ar -59.7 -0.32 -0.35x1073
Ny 546.9 0.55 -1.5x1073

For our case of gas mixture ratio of 1.6, the corresponding calculated coefficients

are given in Table 1.5. At a total pressure P, of 19.5 Torr (typically in our case), the
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offset shift on g, is calculated as 3" x P, = 3385 Hz (see Fig. 6.3 for the measured

value).

Table 1.5: Calculated coefficients of Ar and Ny BG mixture (with r = 1.6) contributing
to the temperature coefficient of the Rb vapor cell.

g [Hz - Torr—!] § [Hz-Torr—1.°C~1] ~ [Hz - Torr—!.°C~2]
173.6 1.46x10~2 -0.8x1073

1.5.4 Spin-exchange shift

As explained before the spin-exchange collisions not only cause the line broadening,
they also produce a small phase shift of the atomic magnetic moment, resulting in an

average frequency shift of the clock transition [76,93,99], given as:

Avgp = —inﬁs)\se A. (1.45)
8T

where Ay (= 6.9x107'° cm? for 8"Rb [99]) is the frequency-shift related collisional
cross-section, A is the population difference between the two hyperfine clock levels
[76]. The value and sign of A thus depends on the optical pumping condition in which
the atomic sample is prepared for clock operation, i.e. whether the optical pumping
is done from either 525;, F, = 1 or F, = 2 (cf. Fig. 1.3). For example, consider that
the atoms are pumped from F, = 1 state, in which case A = +1/5 and if the atoms
are pumped from F, = 2 state, A = -1/3 [76]. The mean velocity between the two
colliding Rb atoms with reduced mass p, inside the cell volume with a temperature

T, can be calculated by the formula,

Ty = \/8kg - Ty /7y (1.46)

where, kp is the Boltzmann constant.

The spin exchange frequency shift that is dependent on local temperature of the
stem T, in the operating range that changes the atomic density correspondingly, can
be calculated by the formula [76],

ATsp = (1.47)

At an operating cell volume temperature T, = 336 K, v, ~ 2.86x10* cm-s~*. And,
at the stem temperature of T, = 321 K the Rb atomic density n = 2x10'* ecm™2. For
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the condition in which atoms are pumped from F, = 1 state, A = +1/5. Therefore,
with the above values in Eqn. 1.45, one gets Avgg ~ -0.3 Hz or Ay”—}ff = -4.6x1071,
The dependance on temperature in our stem operating range around 321 K, we can
consider that the Rb density increases by 10% for every kelvin and thus we calculate
ATsp ~ -5x1072 /K (see Section 6.2.3).

1.5.5 Microwave power shift

The light-shift varies continuously along the path of the light beam in a buffer gas
cell thereby causing inhomogeneous broadening of the resonance signal [32, 54, 65,
100]. This happens due to the fact that atoms are relatively motionless during the
microwave interaction time so that spatial gradients can cause line inhomogeneity
effects inside a microwave cavity [54,65]. Hence, in a DR signal, we can say that the
measured resonance frequency is a function of the applied microwave (RF) power.
This inhomogeneity causes the shift on the clock hyperfine frequency and is termed as
power shift, Avp,. More precisely, this shift arises due to the fact that different parts
of the atomic sample that have different frequencies contribute less to the resonance
signal upon saturation and hence the line-centre is shifted. On the other hand, the
use of wall-coated cell (without buffer gases) reduces the effect of microwave power
shift [54,101]. But, the microwave power shift also includes the effect due to position
of atoms inside the vapor cell, known as position-shift. Hence the observed shift is a
weighted average of the ensemble of atoms that is dependent on each atom’s position
inside the cell [56,93]. It is attributed to the field distribution (mode) inside the
cavity and the variations of the microwave power [54], which couples the laser power
with the microwave power. Hence, the observed shift is dependent on light intensity
and mimics the light-shift behavior, known as pseudo-light-shift [56].

A detailed analytical theoretical analysis of this effect is not found in literature
and needs to be formalized. However, the observed effects have been treated with
numerical analysis and we focus our studies in this thesis on the basis of evaluating

the observed shift and its influence on the clock’s stability.

1.5.6 Cavity pulling

In a Rb standard, the vapor cell containing the atoms and buffer gases is placed inside
a microwave cavity. Due to the feedback of the cavity on the atoms and because of

detuning of the cavity from vgy, the cavity pulling effect arises. The cavity pulling
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shift can be written as,

Avep & g:(lfS)Ay& (1.48)
where Q. is the quality factor of the cavity, C' ~ 1072 [32] is the parameter dependent
on oscillation threshold, S = 2 is the saturation parameter for which the discrimina-
tor slope D is maximum, and Av, is the cavity detuning from vg, as a function of
temperature. Therefore, if the temperature varies, the cavity frequency also shifts,
and so does Av,, which implies that Avgp changes accordingly influencing the clock

frequency (cf. see Fig. 1.12).

1.5.7 Other shifts and drifts

Although the buffer gases such as Ny and Ar cannot penetrate the sealed borosilicate
glass cells, the lighter gas such as Helium (He) can permeate and thus create a very
slow shift (or drift) on clock long-term frequency [102,103]. It has a positive shift when
He permeates into the glass cell in the normal atmospheric conditions and vice versa
when the clock is in space. This is an equilibration process. For the clocks studied
in this thesis, we have not made any quantitative measurements on this effect, but
from Camparo et al. [102] we approximately estimate the equilibration time constant
of < 280 days for our cell sizes. All the other physical mechanisms responsible for
medium- to long-term clock instabilities are responsible for the drift caused over a

period of 1 day to few months.

1.5.8 Shifts and broadening summary

Tables 1.6 and 1.7 show the summary of the DR line-broadening mechanisms and the
perturbing effects causing the shifts on the DR line-centre frequency vg, for buffer
gas and wall-coated cells, respectively. The values presented here are approximated

typical ones, which are close to the measured values presented in Chapters 5 and 6.

1.6 Conclusions

The basic DR principle was explained along with the clock transition for a 3'Rb
atom and the possible perturbations were discussed. A summary of DR theoretical
description was given by pointing out the important aspects for the clock. The basics
on clock frequency stability analysis were explained by giving the importance on

Overlapping Allan deviation, as this will be used in characterizing our clocks studied
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Table 1.6: Summary of DR line-broadening and DR line-shift perturbing effects in buffer

gas cells.
Type Physical effect Approx. value [Hz]
Collisions [ox Ve
Broadening Wall collisions 70
Buffer gas collisions 10
Rb-Rb spin exchange 70
(BG interaction) Light broadening 100
Microwave power broadening 100
Total broadening 350
Pressure shift 4000
(constant shift)
Zeeman 2nd order <1
Intensity light-shift effect < 0.1
Shifts Frequency light-shift effect < 0.1
Cavity pulling shift < 0.1
Microwave power-shift effect < 0.1
Spin-exchange shift < +%0.5

®The sign depends on the pumping scheme, see Sections 1.5.4 & 5.4.4

Table 1.7: Summary of DR line-broadening and DR line-shift perturbing effects in wall-

coated cells.

Type Physical effect Approx. value [Hz]
Wall-collisions [ox V. ey]: 300
Broadening (adiabatic, temp. dependent)
(wall-coating Rb-Rb spin exchange 50
-interaction, Reservoir effect 50
see Chapter 5) Light broadening 100
Microwave power broadening 100
Total broadening 600
Wall-shift -300
Zeeman 2nd order <1
Intensity light-shift effect < 0.1
Shifts Frequency light-shift effect < 0.1
Cavity pulling shift < 0.1
Microwave power-shift effect < 0.1
Spin-exchange shift < £%0.5

®The sign depends on the pumping scheme, see Sections 1.5.4 & 5.4.4
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and presented in this thesis. The short term stability formula in order to predict the
S/N limit was introduced. The medium to long-term frequency perturbations were
explained along with the physical processes that are responsible for such effects. For
the buffer gas cell, we estimated an overall (in presence of laser and microwave) line-
boradening of about 350 Hz. The constant pressure shift due to BG, for a gas pressure
of 26 mbar is estimated to be around 4000 Hz and all the other shifts are < 1 Hz
from the Rb unperturbed frequency vg,. We also estimated the line-broadening and
shifts in wall-coated cell. The overall line-broadening in wall-coated cell is around
600 Hz with the wall-coated shift estimated to be around -300 Hz and all the other
shifts are < 1 Hz from vg,. The The intensity light-shift can be minimized by the use
of laser detuning technique with AOM laser head (cf. Section 2.2.2). The frequency
perturbing shifts and their contribution on the clock frequency instabilities have been

evaluated and are explained in the Chapters 5 & 6.



Chapter 2 Laser Heads and the Lo-
cal Oscillator (LO)

Time is really the only capital that any human being has, and the only
thing he can’t afford to lose.

-Thomas Edison.

In this chapter we give the details of two important sources required for the DR
spectroscopy and clock operation. At first, the optical laser sources that are used for
optical pumping and signal detection, and then the details on the microwave source
(the Local Oscillator - LO)) responsible for driving the microwave resonance and for

clock loop stabilization are presented along with the phase noise measurements.

The optical source used for this research is a Distributed Feedback (DFB) diode
laser that was mounted in a compact in-house built Laser Head (LH) module. Two
variants of the laser heads were fabricated for this study at LTF; one that has a
compact design without Acousto Optical Modulator (AOM) and the other one which
has an integrated AOM for frequency fine tuning (in order to minimize the light-
shift effect on clock stability). The laser heads presented here were mainly realized
thanks to the efforts of P. Scherler, F. Gruet and the author (T. Bandi) for design,
construction and characterization, M. Pellaton for Rb cells. This was based on the
previous work on External Cavity Diode Lasers (ECDL) [95]. The author mainly
contributed for the AOM LH by providing the basic design, assembly integration and

by performing the characterization measurements.

In order to avoid any ambiguity in distinguishing between the above mentioned
two laser heads, we name them as follows: (i) the compact laser head without AOM as
"the clock laser head" and (ii) the AOM-integrated module as "the AOM laser head’.

The LO was constructed at INRIM [51,104] and was procured via a collaboration
project [105]. The phase noise measurements performed at LTF by the author are
presented here by detailed analysis of its influence on the clock loop and instability

on clock’s short-term frequency performance.
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2.1 Requirements on laser and microwave sources

Our performance goal for the next generation clocks for satellite navigation is to
achieve a short-term stability of < 6x107'3 771/2 between 1 to 100 s and reach
< 1x107* (drift removed) between 10* s up to one day time scales, with an overall
volume of < 3 liters, mass of < 4 kg and power consumption of < 20 W. These
performance requirements set the limits on the laser and microwave sources explained

as follows:

(i) Laser source: A collimated laser beam with a wavelength of 780 nm and a power
output of at least few tens of microwatts (after passing through the optical compo-
nents) is required to optically pump the D2 transition of 8"Rb atoms to one of the
hyperfine ground states (thus creating an atomic ground-state polarization). The
linewidth of the laser should be in few MHz range in order to resolve all the sub-
Doppler transitions in a seperate, evacuated reference cell. This feature is required
for laser frequency stabilization by locking to one of the sub-Doppler transitions (cf.
Section 2.3). Locking to a sub-Doppler transition ensures a better laser frequency sta-
bility by minimizing the contribution via frequency light-shift coefficient 3. The Rel-
ative Intensity Noise (RIN) and FM noise should be < 1072 Hz~! and < 6 kHz/v/Hz
at the modulation frequency, respectively to reach the clock goal of < 6x10~1% 7=1/2,
Desired power stability of the laser in order to avoid the clock drift is within 0.1 % /day,
at fixed environmental conditions. Finally, the frequency stability of the laser should

be < 1x1071 771/2 (1-1000 s) and < 3x107'2 for 1,000 s to 1 day.

(ii) Local Oscillator: A synthesizer that can generate 6.835 GHz of microwave fre-
quency and a power output level up to 0 dBm is required. However for the DR
spectroscopic and clock measurements, the usage of power could be very well reduced
down to the level of -10 dBm or even less. A typical tuning range of 2 MHz is ideal
(to cover a broader range of associated clock frequency shifts) with steps of < 1 Hz
resolution. An important factor is the phase noise of the LO. Typical clock mod-
ulation frequency is in the range 50-300 Hz. For our clock, referred to a 6.8 GHz
carrier, a phase noise of < -80 dBrad?/Hz @ 100 Hz and <-100 dBrad?/Hz @ 1 kHz
is required. The LO should be capable of operating in two modes; a sweep mode -
covering a range of 1 MHz to ensure the full Zeeman spectrum and locked mode -
for the clock operation. The 10 MHz output of the crystal oscillator (OCXO) in the
microwave synthesizer should give a power output up to 10 dBm to compare the clock

with the active hydrogen maser.
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2.2 Frequency stabilized laser heads

The 780 nm DFB laser sources were procured from Eagleyard photonics GmbH (EYP-
DFB-0780-00080-1500-TOC03-0000). The laser diodes are mounted in TO-3 package
along with integrated peltier thermo-electric cooler, in order to reduce the sensitivity
to external thermal variations. Similar diodes emitting at 8 Rb D1 transition (795 nm)
were also used and laser heads were fabricated. The details on 795 nm laser heads
is out of the scope of this thesis (as we operate here only on D2-transition), and
can be found in [106,107]. An overview of the design is given in the below sections

highlighting the important characteristics that are useful for clock operation.

2.2.1 The clock laser head

The clock laser head shown in Fig. 2.1 is built on the basis of previous works at Obser-
vatoire de Neuchétel [95,108]. All the optical components are mounted on a thermally
controlled baseplate. The 780 nm (~384.6 THz) DFB diode is mounted next to the
collimation assembly that includes an optical isolator to avoid any backscattered light
on to the diode, that otherwise could invoke frequency instabilities. One part of the
direct beam is incident on a photodetector, that can be used to measure the direct
beam intensity variations (cf. Section 2.4). Another part of the direct beam is made
to pass through a miniature evacuated cell (10 mm diameter, 19 mm long) filled with
8"Rb atoms. This beam is retro-reflected on its path to resolve the sub-Doppler tran-
sitions and is detected using the second photodetector for laser frequency stabilization
(see Section 2.3). The space below the thermal baseplate is reserved for photodetector
pre-amplification electronics. The evacuated Rb cell is fabricated at the LTF, with an
in-house developed cell filling facility [106]. This cell is mounted inside an assembly
that has two magnetic shields, a magnetic coil and heaters for thermal control. The
magnetic shields reduce the influence of external magnetic fluctuations. A stabilized
magnetic field is applied using the magnetic coil and the heater is used to increase
the cell temperature in order to get a higher number of atoms participating in the in-
terrogation to give better signal-to-noise ratio. This heater is temperature controlled
at the mK level. The overall clock laser head assembly occupies a volume of 0.63 dm?

and mass of 0.6 kg.
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Figure 2.1: Fully mounted compact clock laser head shown without the outer covering
contrasting its dimensions with that of a pen. Dimensions are shown on the right hand

sitde. A detailed schematic with laser beam path is presented in Appendiz B

2.2.2 The AOM laser head

The design of the AOM laser head is similar to the clock laser head, except for the
implementation of the AOM and its relevant optical components (Fig. 2.2). A part
of the beam is split-off after the collimation assembly and is directed towards the
physics package for the clock interrogation. This feature of interrogating the direct
beam from the Laser Head with atoms in the clock physics package is essential in
order to avoid any laser instabilities arising due to detuning by the AOM. The other
part of the beam is detuned using the AOM assembly and then is passed through the
reference cell for sub-Doppler spectroscopy. The resolved sub-Doppler peaks are then
utilized for the laser frequency stabilization. Note that the detuning used for laser
frequency stabilization with the sub-Doppler peaks is with opposite sign to that as
seen by the atoms in the clock physics package. The beam passes through the AOM
in a double-pass configuration [109], depending on the detuning required, either the
1%t or 2™-order is selected for frequency stabilization. Further details on the design
and optical components can be found in [106]. The AOM laser head assembly has a

volume of < 2.3 dm?® and a mass of ~ 1.4 kg.
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Figure 2.2: Fully assembled AOM laser head shown contrasting its size to a pen. The top

cover is not shown. The laser beam path is shown in Appendiz B

As mentioned above, the AOM laser head is helpful for detuning the laser fre-
quency and thereby for reducing the intensity light-shift effect on the clock transi-
tion, inorder to improve the medium- to long-term clock frequency stability. We have
also demonstrated such an implementation in a wall-coated cell clock [110] as further
detailed in Chapters 5 & 6.

2.3 Saturated absorption spectroscopy and laser

frequency stabilization

In this section, we will see the methods adopted to frequency stabilize the above
introduced laser heads.

The reference cell filled with 8"Rb only is called as evacuated cell in this work.
These cells are mounted in the respective laser heads (see Figs. 2.1 & 2.2) and are
used for resolving the sub-Doppler transitions by the method of saturated-absorption
spectroscopy; a technique that we describe shortly later. When the frequency of
the laser is swept through transition lines of the atoms confined in the vapor cell,
part of the beam is absorbed giving an absorption signal that is recorded using a
photodetector. This signal is Doppler broadened due to the random thermal motion

of atoms within the vapor cell. It has a Maxwell-Boltzmann distribution around the
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transition frequency vy and the FWHM (~ 523 MHz for " Rb at 315 K in our case)
of this distribution can be determined by, Avp,,, = 22 \/2 -In2 - k:BT/m', where kg

is the Boltzmann constant, T' is the absolute temperature, ¢ is the speed of light in

vacuum and m is the mass of the absorbing atom. As the excited-state hyperfine
splittings are of the same order and comparable to the Doppler broadening, the
method of high-resolution spectroscopy (saturated absorption) is used to resolve the

sub-Doppler (or hyperfine splitting) peaks [111-113].

Let’s consider two counterpropagating laser beams with same frequency but dif-
fering intensities passing through the vapor cell; one intense beam is called "pump-
beam" with propagation vector +k, which optically pumps the atoms, whereas the
other beam is of low intensity known as "probe-beam" with the propagation vector
—Fk that is used to get the information on the pumped atoms. Both the beams are
made to overlap along the full length of the cell. For a simpler description, we assume
a two-level case having a ground-state |g) and an excited state |e). Let’s call the num-
ber of atoms in ground state as Ng and that in the excite state as Ne. Assuming the
laser frequency, v, detuned as vy — Av, the atoms moving with a longitudinal velocity
v = cAv /1y towards the probe beam give rise to a simple absorption signal (~ N,-
N.). These atoms perceive the probe-beam frequency as blue-shifted and that of the
pump-beam as red-shifted (as it is propagating in the opposite direction), hence no
effect due to pump-beam is observed if Ar > intrinsic width. Now consider the class
of atoms that are travelling perpendicular to the laser beam with velocities v; = 0,
such that v;, = 14, the pump-beam is "on-resonance' and hence optically pumps the
atoms, say 0N from the ground-state to the excited-state. This depletes or creates a
hole burning [114] in the ground state and populates the excited state. In this condi-
tion, the probe-beam absorption is reduced and a "dip" is seen, giving the information
on the natural linewidth of that particular resonant transition. This is also known
as sub-Doppler transition. As there are "dips" when the probe beam is transmitted
without any absorption these are also called as Lamb dips [112]. Consider a case with
more than one excite level: when the atoms are having velocities such that the pump-
beam is in resonance with one transition and the probe-beam is in resonance with
another transition, cross-over resonance dips appear. However, intuitively we see that
there are two velocity classes of atoms for which this condition is satisfied - atoms
travelling away from the pump laser and towards it. Finally, the probe-beam trans-
mission (intensity) is recorded as a function of laser frequency vy, when the pump and
probe beams are in resonance with the transitions in order to obtain the sub-Doppler

peaks. Typical Rb sub-Doppler peaks are shown in Fig. 2.3 on Doppler-broadened
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signal, obtained from our laser heads. The sub-Doppler peaks are having the FWHM
of about 17 MHz compared with the Doppler width of 500 MHz. The sub-Doppler
peaks’ linewidth is a factor of three higher than its natural linewidth, mainly due to
the probe beam intensity broadening [114]. However, a factor of ‘30" reduction in the
sub-Doppler FWHM compared with that of the Doppler broadening signal improves
the laser frequency stability, which in turn is useful to achieve a better clock stability.
The polarization of the pump and probe beams also influences the sub-Doppler peaks
(due to population redistribution among the Zeeman sublevels), in the sense either
the probe beam is transmitted or absorbed based on the polarization used [111]. We
use linear polarization that is parallel for both pump and probe beams (lin|[lin con-
figuration); hence we observe a sub-Doppler peak with increased absorption on the
Fy =1 component. The presence of this peak also indicates a good magnetic shielding
(< uT level) of the reference cell [95].
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Figure 2.3: Saturated absorption spectra of 8"Rb Dy from the reference evacuated cell
mounted in the laser head. The sub-Doppler lines are labelled and correspond as fol-
lows: 2-3: Fg=2—F.=3, C0O22-23: Fy=2—F.=2,3 cross-over, CO21-23: Fy=2—F.=1,3
cross-over, CO10-11: Fy=1—F.=0,1 cross-over, CO11-12:Fy=1—F.=1,2 cross-over, and
1-2: Fy=1—F.=2 transition.

A dedicated in-house made analog electronics for laser operation and frequency
stabilization is used. This electronics assembly has the features for laser diode’s
temperature control (with NTC thermistor feedback), current control unit with a
current noise of 1 nA/ VHz', the laser frequency stabilization module and the detector

signal pre-amplifier module.
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The laser injection current is frequency modulated at 50 kHz for stabilization using
lock-in detection. The modulated saturated absorption signal obtained from the laser
head is fed into the pre-amplifier module, which amplifies (settable gain) and filters
the signal at 50 kHz with a bandwidth of 20 kHz. The laser stabilization module
demodulates the amplified signal by multiplying it with the 50 kHz reference using
phase-sensitive synchronous detection (which includes a low pass filter of < 5 kHz
bandwidth) to give the dispersive error signal. For any deviation from the zero of the
error signal, the dc correction voltage is generated and applied to the laser current
using a servo-loop in order to have a controlled frequency stabilization onto any
desired sub-Doppler peak. This module also includes a ramp generator for scanning

the laser current with 20 Hz frequency to obtain full Rb spectra.

2.4 Laser linewidth, frequency and intensity sta-

bilities

BB
SMF ¢ e el S
Laser Head 1 |
(=18 . ;
(0) BS 1
¢—F— Rocell —{M ]
PD ]
M | ]
V—— M — DFB 1 i
v S l
Wavemeter :""'""""""""“"""":
Fabw-Pérot Interferometer ! M Laser Head 2 !
Optical Spectrum Analyzer M [ ]
Fast Fourier Transform ! BS ]
Fast photo-detector ! Pg_E : Rb cell M ]
1 1
H e ]
i M e DFB 2 i
i Ol !

Figure 2.4: Generalized laser spectral characterization setup. DFB: Distributed Feedback;
M:Mirror; PD:Photodetector; BS:Beamsplitter; OI:Optical Isolator; BB:Beam Blocker;
SMF:Single Mode Fibre, C:coupler, and \/2:Half-wave plate. Bottom left box lists the de-

vices used to measure different laser characteristics.

The laser diodes were tested by measuring the relevant parameters such as fre-
quency as a function of diode injection current (v (I)), frequency versus diode tem-
perature v (7)), output power, modehop-free tuning range, Side Mode Suppression
Ratio (SMSR), Relative Intensity Noise (RIN), FM noise, linewidth, frequency and
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intensity stabilities. Figure 2.4 shows a general setup that is used to characterize
the laser diodes/heads. At a time, one of the laser head modules is characterized
to measure most of the physical parameters mentioned above, except that the beat
measurement is done using both the laser modules to measure the linewidth and
frequency stability applying heterodyne detection. Various laboratory instruments

used to measure different spectral parameters are mentioned in the bottom left box
of Fig. 2.4.

The beat note between the two identical laser head units was performed by over-
lapping the beams using a beam-splitter. The superposed beam was detected (cf. 2.3)
using a fast photodetector (Newport 1434-50) and the signal was measured with an
rf spectrum analyzer (Agilent E4405B). The difference frequency between the two
laser frequencies of few tens of MHz is seen as the beat signal (Fig. 2.5). The width
of the Lorentzian beat signal corresponds to the sum of the linewidth of two laser
heads. The measurement details are explained in [106]. The narrow laser linewidths

of about 3 MHz are of particular relevance in order to resolve the sub-Doppler peaks
in "Rb [22, 32].

12— —— Data -
—— Lorentzian fit

Signal [10°A]

665 670 675 680 685 690 695 700 705 710

Frequency [106Hz]

Figure 2.5: Linewidth (FWHM) measured by beat-note method. The FWHM of individual
clock laser head can be considered as FWHM/2 ~ 2.15 MHz.

To measure the laser frequency stability either of the laser heads were locked
to two different sub-Doppler peaks and the beat note signal detected using the fast
photodetector is then fed to a frequency counter. The frequency counter is referenced
to an active Hydrogen maser to guarantee that the counter doesn’t degrade the laser

frequency stability evaluation.
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Figure 2.6: Beat note stabilities of the two 780 nm laser heads. Closed triangles represent
the beat between AOM LH and Clock LH, and closed circles represent the beat stability
between two identical Clock LHs.

Figure 2.6 gives the measured fractional frequency stability in terms of overlap-
ping Allan deviation for both, clock and AOM laser heads. The AOM laser head
shows slightly higher instability, possibly due to added frequency and intensity noises
from the AOM itself. The bumps around 1000 seconds are due to temperature vari-
ations in the laboratory mainly because of the air conditioning cycle. Influence of
the laser frequency instabilities affecting the clock medium- to long-term time scale
via frequency light shift coefficient () [32,52,53] can be estimated from the formula
giving the fractional clock instability due to 3, o5(7):

op(r) = 12 'UAV”;b/”L RS (2.1)

where, | 3] is the abolute value of the frequency light-shift coefficient (see Section 1.5.2),
0w, /vy, 1s the instability value obtained from Fig. 2.6 and vy, is the laser frequency.
The direct beam recorded using the photodetector shown in Figs. 2.1 and 2.2 is
used to estimate the fractional intensity variations of the corresponding laser head.
Figure 2.7 shows the clock laser head fractional intensity variations in terms of over-
lapping Allan deviation. The values are of particular relevance as they directly in-
fluence the clock frequency stability via intensity light-shift effect [32,53,110, 115].
The corresponding data set for the AOM LH could not yet be measured with the
aquisition system used for the Clock LH. However, from the previous data on AOM

LH, we estimate its upper limits (see Table 2.1).
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Influence of the laser intensity instabilities on the clock medium- to long-term

time scale that affects via intensity light shift coefficient () can be estimated by the
formula,
al-Ip-o
0a(T) = lof - 1o el (2.2)
VRb
where, |a] is the abolute value of the intensity light-shift coefficient (see Section 1.5.2),

oar, /1, s the fractional intensity instability value obtained from Fig. 2.7 and I, is

the interrogating beam intensity.
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Figure 2.7: Relative intensity stability of the Clock laser head beam.

2.5 Measured characteristics of the Laser Heads

Each LH was extensively characterized. A summary of the obtained results is given
in Table 2.1. The values of v, (I), v, (T), SMSR, output power, RIN and FM noise
of both, the clock and the AOM laser heads are very similar. However, the frequency
stability of the AOM LH is slightly degraded due to instabilities introduced by the
AOM assembly and additional optical components. When measured with the same
in-house built aquisition system, the intensity stabilities of both LHs are identical up
to 100 s. After 1000 s, the AOM LH shows slightly larger drift in comparison resulting
from additional thermal instabilities due to the larger base plate used in the AOM
LH and also possibly due to thermal variations of the AOM itself. The values given
in Table 2.1 will be used in the evaluation of the clock performance in Chapters 5 &

6.
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Table 2.1: Characteristics summary of 780 nm Clock and AOM laser heads.

Parameter Clock laser head AOM laser head

vr,(I) [GHz/mA] -1 -0.875

v (T) [GHz/K] -25 -26.3

Single mode operation Yes Yes

Modehop-free tuning range [GHz| ~ 80 ~ 80

Output power from DFB [mW] ~ 60 ~ 60

Output power from LH [mW] ~5 ~5

SMSR [dB] > 40 > 40

RIN [Hz™!] @75 mA <5x10~ @ 300 Hz 7x1071* @ 300 Hz

FM noise [kHz/v/Hz | 4 @ 300 Hz 5 @ 300 Hz

Linewidth [MHz] @ 75 mA ~ 2.2 ~ 4.6

Frequency stability

<5x10712 7=1/2 for <100 s
<8x10712 (100 s to 1 day)

<8x10712 7=1/2 for <100 s
<2x107! (100 s to 1 day)

Drift < 5x107!2/day
<3x107° (1-100 s)
1x10* at 10* s
Drift ~ -1.6x107*/day

Drift <-4x10~! /day
<1x10~* (1-100 s)
<3x107% at 10* s

Drift ~ +1x1073 /day

Intensity stability

2.6 The microwave Local Oscillator

The Local Oscillator (LO) produces the microwave radiation for interrogating the
atoms by means of the synthesis chain [51]. Briefly, in the LO, the first stages mul-
tiply the 10 MHz signal (from the oven controlled crystal oscillator - OCXO) up
to 180 MHz and this frequency is further multiplied to the microwave range by a
non-linear transmission line (NLTL) to give a comb spectrum, out of which the 39"
harmonic at the value of 7.02 GHz is selected for further signal processing. Note that
the NLTL is 20 dB less noisy compared to the Step-Recovery-Diode (SRD) used in
previous designs [104,116]. This frequency is filtered out by a coaxial filter and is
used to phase-lock a Yttrium-Iron-Garnet (YIG) oscillator. In the phase lock loop,
the 7.02 GHz is mixed with a 185.3 MHz to generate 6.835 GHz (for further details
see [51]).

The output from the LO was measured using an rf spectrum analyzer (Agilent
E4407B). Measured output frequency was 6.834686525 GHz. The frequency can be
tuned with 1 pHz resolution with a span of 1.5 GHz. 50 Hz spurs were present at
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the -66 dB level. The measured output power of the locked OCXO at 10 MHz was
2 dBm. While comparing the clock signal with that of the H-maser, the output from
the OCXO was amplified to 10 dBM using an rf amplifier (Mini-Circuits, ZHL-3A).

2.6.1 LO phase noise measurements

As mentioned before in the Section 1.4.4 of Chapter 1, the phase noise of the LO
is an important parameter to be measured accurately, as it influences on the short-
term clock stability via intermodulation effects. The schematic of the setup for the
phase noise measurement using cross-correlation method is shown in Fig. 2.8. Cross-
correlation is essentially a means for comparing two or more signals in order to de-

termine the degree of similarity between them.

l PLLI
[ Synthesizer 1 |
|_. SDI
> Noise
Parameters
The Local Oscillator —[E'— Measurement [© ;] Control PC
Amplifier System Data
(NMS)
[ Synthesizer 2
T PLL2

Figure 2.8: Schematic diagram of the cross-correlation phase noise measurement of the
LO. The LO is measured with a frequency difference between two reference oscillators. PLL:
Phase Lock Loop (see text for details)

A cross-correlation measurement was performed using two reference synthesizers
(Synthesizer 1 & Synthesizer 2 in Fig. 2.8) at 6.835 GHz in order to determine the
phase noise of the LO only. The 6.835 GHz and 20 dBm (amplified from 2 dBm using
the microwave amplifier MITEQAFD3-040080-27) output from the LO was divided
into two equal parts fed into the SDI Noise Measurement System (NMS) unit. One of
the outputs was compared with that of Synthesizer 1 by a Phase Lock Loop (PLL1),
and the other output of the LO was compared with that of Synthesizer 2 by the
second PLL (PLL2). Both the PLLs are 90° out of phase with respect to the LO
and were locked with a bandwidth of 5 Hz. The other parameters (such as high-pass
filter, DC-coupling, span etc.) were set using the computer interface. Finally, the

phase noise was measured and the results are shown in Fig. 2.9. The Synthesizer 1
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will be used for the wall-coated cell clock operation in Chapter 5, whereas the LO is

used for high-performance clock in Chapter 6.
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Figure 2.9: Cross-correlated phase noise measurement at 6.8 GHz carrier frequency.
Closed triangles (blue color) show the phase noise limited by Synthesizer 1, open circles
(green color) show the stability limited due to the influence of Synthesizer 2 and the closed

circles (brown color) represent the phase noise of the LO only.

The phase noise of the LO (Fig. 2.9 brown color curve) at the carrier frequency
of 6.8 GHz has a flicker level at -70 dBrad?/Hz and noise floor at -111 dBrad?/Hz.

2.6.2 LO phase noise influence on clock instability

The influence of the phase noise on clock instability depends on the modulation
frequency f,, that is used to stabilize the DR signal to the LO. During the process of
modulation, the aliasing effect influences the clock loop via higher even harmonics in
the phase noise spectrum [61,86,117]. The phase noise limited short-term stability,
0y(T) PMnoise I @ quasi-static model for the square-wave modulation and sine-wave
demodulation can be written in terms of phase noise spectral density [90,117], Sy (fi)

as

1

Jy(T)PMnoise - \l Z 022n ' S¢(2nfm) : 7_1/27 (23)

n=1

where
2n fm

Can = 2n—1)2n+ 1) vm

(2.4)
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Table 2.2: Influence of the LO phase noise due to intermodulation effects on the clock
short-term instability for the corresponding clock loop modulation frequencies by considering

the even harmonics of the phase noise up to 100 kHz.

Modulation frequency, f, [Hz] | 0y (T)prnoise T 1/?
10 6.82x 1014
20 6.47x107 14
30 6.77x10~14
40 7.34x10~
44 7.46x10~14
50 8.24x10~ 14
60 8.55x10~14
100 1.05x10~13
150 1.22x10713
164 1.32x10713
200 1.43x10~13
250 1.72x10713
300 1.89x10™13

By considering the even harmonics of the phase noise spectrum up to 100 kHz, the
estimated influence on the clock instability depending on the modulation frequency
fm = 164 Hz is estimated to be 8.98x107' 771/2. Detailed analysis on the LO
phase noise influence on the clock instability to corresponding selected clock loop
modulation frequencies are shown in Table 2.2. In the range of modulation frequency
fm considered here from 10 Hz to 300 Hz, nominally for every one Hz increase, an

increment in the phase noise influence of 0.425x101% .7=1/2 occurs.

2.6.3 LO power stability

The power stability of the LO was measured by connecting the synthesis chain out-
put to a microwave crystal power detector (Agilent 8472B), which was connected to
a higher-resolution data aquisition system. Data were recorded using a computer
interface. The aquired data are presented in terms of the relative power stability in
Fig. 2.10. The data around 1000 s suffer from the influence of the laboratory air
conditioning system.

The influence of the LO power instabilities on the clock stability is affected via
microwave power shift as explained in Section 1.5.5. Influence of the microwave power

instabilities on the clock medium- to long-term time scale that affects via microwave
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power shift(ups) can be estimated from the formula,

A . - P,
):| VPM| UAPH/PH F‘, (25)

Oups (T VRb
where, |Avp,| is the absolute value of the microwave power shift coefficient (cf. Sec-
tion 1.5.5), oap,/p, is the LO power instability value obtained from Fig. 2.10 and P,

is the input microwave power to the cavity resonator.
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Figure 2.10: Power stability of the local oscillator.

2.7 The LO for wall-coated cell clock

In the previous section (cf. Section 2.6), we have seen the details of the LO and
its phase noise measurements. For the experiments performed with wall-coated cell
(cf. Chapter 5), we used the LO that was termed as Synthesizer 1 in Section 2.6.1.
For further details on this microwave synthesizer see [104,116]. Figure 2.9 gives
the phase noise of Synthesizer 1 at 6.835 GHz carrier frequency. A flicker level of
-77 dBrad?/Hz (at 6.8 GHz Fourier frequency) and a noise floor of -102 dBrad?/Hz
were measured. The phase-noise limited short-term stability, o, (7) parnoise in a quasi-
static model for the square wave modulation with frequency f,, in terms of spectral
density is explained in Section 2.6.2 by Eqns. 2.3 & 2.4 [90].
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2.8 Conclusions

Two main sources (the optical and microwave) required for DR spectroscopy and
clock operation were presented with their respective characteristics. Two types of
laser heads, namely - the clock laser head and the AOM laser head were described.
The fully assembled clock laser head has an overall volume of < 0.7 dm? with a mass
of 0.6 kg and the AOM laser head has a volume of < 2.3 dm?® with a mass of 1.4 kg.
Sub-Doppler (saturated absorption) spectroscopy and laser stabilization principles
were discussed qualitatively. The complete characteristics of each laser head were
detailed along with their influences on the clock instabilities. The laser linewidths of
the clock LH and AOM LH are 2.2 MHz and 4.6 MHz, respectively. The frequency
stability of these laser heads are < 5x107" 7712 and < 8x107'2 7=/2 between
1-100 s. The microwave source was presented with the phase noise measurement
technique of cross-correlation, and the influence of this phase noise on the clock
especially in the short-term stability was presented quantitatively. For example, at
a modulation frequency f,, = 44 Hz, the phase noise influence on clock instability is
7.5x107 7714 Also, the medium to long-term influence of the power flucutations
of the LO was discussed. These sources will be further used in Chapters 5 & 6. The
CAD drawings of the Laser Heads are shown in Appendix B.






Chapter 3 Vapor Cells and Mag-

netron Resonators

In science, the credit goes to the man who convinces the world, not to the
man to whom the idea occurs.

-Sir Francis Darwin

At the heart of any Rb DR cell clock, including conventional lamp-pumped rubidium
atomic frequency standards (RAFS) [32,118,119], a Rb vapor cell is implemented
inside a microwave cavity resonator that is tuned to resonate at 6.835 GHz. These
cells are usually filled with a droplet of metallic 3 Rb and a mixture of buffer gases
(to avoid ®"Rb atoms in vapor phase from colliding onto the cell walls, as explained
in sections 1.3 & 1.5.3) with known and controlled pressure.

In one of our studies, an alternative approach of wall-coating technology instead
of buffer gases was adopted with the cells of 14 mm diameter. Cavities developed
at Observatorie de Neuchatel [119] were used in the studies of 14 mm diameter wall-
coated cells. In the second approach, to improve the clock performance further, cells
with increased dimensions (¢ = 25 mm) were evaluated. These cells were filled with
buffer gases. In this thesis, new compact magnetron-type cavities that can hold these
cells to resonate at the Rb ground state frequency (~ 6.835 GHz) were developed and
studied in detail.

In this chapter we will discuss on the two kinds of aforementioned vapor cells and
the microwave cavities.

Note that the evacuated cells (¢ = 10 mm) used in our laser heads (cf. Chapter 2)
were fabricated at LTF.

3.1 General features of vapor cells

Vapor cells are usually made of borosilicate or quartz glass. In conventional RAFS,
these cells are of cylindrical or spherical shape in order to facilitate the fabrication
and inserting them in to the microwave cavity resonator. In principle, the two end
windows of a cylindrical cell should be flat to avoid any lensing effect with the light

propogating along the length of the cell. The cells are cleaned on the inside from
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any contaminants and are evacuated before filling them with liquid Rb droplet and
a mixture of buffer gases (see section 1.5.3 for the explanation of the need of buffer
gases). The procedure of cell filling is, in practice customized to particular laboratory
or industry. The general techniques on cell fabrication for buffer gas cells can be
found in [32,120-122] and that of the wall-coated cells in [45,123].

3.2 Vapor cells used in the physics packages

As mentioned above, we study two kinds of cells (wall-coated and BG filled) that are

implemented in our clocks and are explained with details in the following sections.

3.2.1 Wall-coated cell

Figure 3.1: Paraffin-coated cell (Viyc = 1.4 em?) with a reservoir stem on its right-hand

side.

Figure 3.1 shows the wall-coated cell with an inner volume of ~1.4 cm? that is
used in our experiments. This cell’s inner walls are coated with tetracontane (CyoHgz)
[32,124]. The cell has two distinctive regions; a cell-volume, which holds the vapor
of interrogated Rb atoms, and the cell-stem that acts as a reservoir for metallic Rb.
The usefulness of the stem is evident by the fact that one can avoid any metallic
Rb from accumulating on to the cell walls, which otherwise can degrade the coating
and degrade the life-time of the cell and secondly to control the vapor pressure inside
the cell volume by controlling the stem temperature. This cell was procured in an
external collaboration. In the mean time, LTF has upgraded its cell filling system for

the production of wall-coated cells [125].
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Figure 3.2: Buffer-gas cell with an inner volume Vpg = 9.6 cm?®. The buffer gas mixture
has the ratio Ar/Ny = 1.6, with a total pressure of 26 mbar. The stem serves as a reservoir
for metallic Rb.

3.2.2 Buffer-gas cell

The short-term stability is related to the vapor cell size [126], and hence the motiva-
tion towards a bigger cell of 25 mm diameter was initiated [127]. Secondly, the buffer
gas cell has been selected due to its reliability for long operation life times and success
with the previous RAFS. The cells with enriched 8’Rb and buffer-gases (argon and
nitrogen) were filled (courtesy: M. Pellaton, LTF) using the in-house LTF cell filling
system. One ramp of six cells were cleaned and filled. The cells have good optical
quality windows and a stem reservoir to have better control on the vapor density of
atoms. Figure 3.2 shows a filled and sealed cell having the outer diameter of 25 mm
that is used in the spectroscopy and clock studies presented in Chapter 6. The stem
is useful to store the metallic Rb and hence to better control the vapor pressure of
the Rb inside the cell volume, this also helps to increase the operation life-time of the
clock. The design with a bending at the intersection of the stem and the cell allows a
larger beam incidence to interrogate a higher number of atoms to get a better signal.
An estimation of cell-size influence on clock’s short-term stability is presented in the
next section (3.2.3).

3.2.3 Cell size influence on clock short-term stability

We do a first approximation for the cell size and its influence on the clock stability for
buffer gas cells. In this approximation, we consider the similar operating conditions

for two different cell dimensions: i.e. the same cell temperatures and the input
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laser powers. With these considerations, we approximately evaluate the ratio of the
attainable frequency short-term stability between the two cell dimensions as explained
below.

At the clock operating conditions, the DR signal is power broadened due to laser
and microwave input intensities, which in turn influences the short-term clock sta-
bility. From Eqn. 1.35, the discriminator slope D is inversely proportional to the
short-term clock stability. The discriminator D is approximately equal to the ratio
between the DR signal amplitude A and the linewidth Av; /5. With the above consid-
erations, we can write that the linewidth is proportional to the input laser intensity

I;, given as,
1

Al/l/g XX IL ~ ;, (31)

where a is the radius of the vapor cell.

Similarly, the DR signal amplitude is proportional to the input laser intensity I,
and the number of atoms N, in the vapor cell participating to give the signal and
hence can be written as,

1
5 a’- L, (3.2)

A x _[L : Nat ~

where L is the length of the vapor cell.
Now, using the above equations 3.1 & 3.2 for discriminator D in the formula of
short-term frequency stability, we get an approximated expression for the S/N limited

short-term stability that depends on the vapor cell dimensions as,

1
a?- L

(3.3)

ay(T) o

It is important to note that due to the approximations, the above equation (3.3)
does not aim to give the estimated short-term stability value, but is helpful only to
find the ratios of expected short-term stability between two cell dimensions. Few
calculated ratios (c4/0p) for different cell dimensions are shown in Table 3.1. The
bigger cell is considered to be of 25 mm (external) diameter, which is kept constant
(referred as Cell B (cf. Fig. 3.2) in Table 3.1) and different dimensions for the other
cell (Cell A) are considered. Figure 6.18 shows the measured ratio between two buffer
gas cell dimensions that matches well with our calculated value of ‘factor of 5.3" (first
row) in Table 3.1.
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Table 3.1: Short-term stability ratios based on vapor cell dimensions. Cell A’s dimensions
(inner radius and length) are varied, whereas we consider the fized dimensions for Cell B
(25 mm external diameter cell, cf. Fig. 3.2).

Cell A Cell B
oa/oB
a [mm] | L [mm] || ¢« [mm] | L [mm)]
6 16 11.5 23 5.3
6 12 11.5 23 7
10 20 11.5 23 1.5
) 10 11.5 23 12.2

3.3 Magnetron resonator cavity theory

Microwave cavities or resonators have a wide array of applications ranging from
frequency standards (or atomic clocks) [32,128], Electron Spin Resonance (ESR)
[129], Electron Paramagnetic Resonance (EPR) [130], to Nuclear Magnetic Reso-
nance (NMR) [131]. The field homogeneity, robustness and reliability of these devices
makes them well-suited for such applications. For example, in a rubidium standard,
a basic cylindrical cavity having TEgq;; uniform mode [128] along the direction of
the laser field and the quantization field in the atomic sample region guarantees a
good atomic signal. A variant of the cylindrical cavity is a split-ring or slotted-tube
resonator [132], which is also known as loop-gap-resonator (LGR) or a magnetron
cavity [118,133]. The volume of a magnetron cavity is at least a factor of three more
compact in comparison to that of a traditional cylindrical cavity when using Rb cells
of same size. First development of a magnetron cavity that can hold a vapor cell
of 14 mm diameter for a portable rubidium cell standard was done at Observato-
rie Cantonal Neuchétel (ON) [119,134]. An LGR is an open-shield resonator whose
shape, reminiscent of lump circuit model [129], provides a spatial separation between
E and B fields on distances significantly shorter than the microwave wavelength. The
number of gaps/slots can be increased, and its equivalent circuit can be described by
a number of individual inductors and capacities, which is termed as lumped model.
The resonator consists of an inner cylinder (i.e. inductor) of radius r and length Z
with one or several slots (gap between these slots acts as capacitors). This is coaxially

surrounded by a shield tube of radius R (R > r). The lumped elements model to
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estimate the resonance frequency, v, is given by [129] [135],

1 no ot A | 1+AZ)Z
Y DL Y T P el 3.4
" or \/m’%uW \/ * Ay \ 1+ AW/ W (3:4)

LC shield

fringing

where n is the number of gaps with thickness ¢, W is the width as illustrated in
Fig. 3.3, € and u are electric permitivity and magnetic permeability of the free space
coupling between the electrode gaps, respectively. A; = 7r? is the cross-sectional area
of the inner loop cylinder, A, = 7[R? — (r+W)?] —nB, is the area between the outer
shield and the inner loop cylinder with B as the area of one support/slab holding an
electrode. Z is the physical length of the electrode with AZ the equivalent length
extension due to the magnetic fringing fields, similarly with a gap width of W, AW
is the gap width extension due to the electric fringing fields. Mehdizadeh [135] gave
simple approximations for the fringing fields as AZ = 0.18R and AW = 0.54(1 +
0.85¢,)t, where €, is the dielectric constant of the glass cell inside the magnetron [134].
In Eqn. 3.4, we see the contribution due to basic inductor-capacitor (LC) equivalent
model, the correction due to the outer shield and the factor influencing due to electric

fringing fields extending out of the gap edges [135].

Shield

R Electrode

@) (b) (©)

Figure 3.3: (a) Basic Loop-Gap Resonator (LGR), (b) magnetron vertical cross section,
(¢) horizontal cross section with n = 4 gaps. The metallic electrode pieces and their supports
(shown in brick-red) to the external shield are identified. Dashed line indicates the glass cell

outer surface.

The resonant mode electric field is mainly concentrated in the gaps and the mag-
netic field H, is confined within the loop perpendicular to the electric field. We are
interested in TEg;;-like mode due to its magnetic field uniformity across the cell. In

contrast to the TEy;; mode in cylindrical cavities, our magnetron cavities have slightly
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different transverse field distributions, however maintaining the magnetic field unifor-
mity along the cell length, therefore we name this mode from here on as “TEg;;-like"
mode. Equation 3.4 gives a qualitative picture to solve for the required resonance fre-
quency, but fails to give a quantitatively precise picture. The lumped elements model
fails to give a precise estimation of the resonating frequency when the dimensions of
the electrodes structure approaches the limit &~ A/4 [129]. Due to this, in our enlarged
magnetron cavity structure, typically the computed frequency is off by > 3 %, which
has to be considered in order to be precise in resonance frequency [136]. Two more
characteristics that need to be considered include, the openings of the cavity at two
ends of the cylinder to let the laser beam interact with the Rb atoms, and other modes
that need to be suppressed at the resonance frequency to have pure TEq;-like mode.
For a detailed treatment of the above issues the reader is directed to our recently
published paper [136].

R =10.2 mm R =19 mm
8 w \ 8 : :
7.8 7.8
7.6*:| 7.6
— 7.41 — 7.4r
‘g 7.2 g 7.2+
o g
=} 7’ S 7,
o o
o I‘ o
I === mmmmm = IL g ====== == ===
6.8 6.8
1.6% B
6.6 B 6.6
o o - 1 6.4F
6.2 : ‘ 6.2 s ‘
0 5 10 15 0 5 10 15
Relative error [%)] Relative error [%]
Il Basic LGR ___ |Basic LGR + supports
I Basic LGR + cell |Basic LGR + supports + cell

= = == Value from lumped model Eq.

Figure 3.4: Relative error of the simulated [137] eigenmode frequency of the TEyii-
like mode with respect to the value calculated by (Eq. 3.4) for four different geometrical
parameters. Taken from [136].

Further analyses were done using the ANSYS high frequency numerical simula-
tions (HFSS) [137] in a collaboration with Laboratory of Electromagnetics and Acous-
tics (LEMA) - EPFL, Lausanne, Switzerland. Figure 3.4 shows the above discussed

effects on the resonant frequency for two different magnetron geometries considering
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the parameters: R = 10.2 mm & 18 mm; n = 4 & 6; ¢t = 0.841 mm & 2.138 mm;
w= 1.8 mm & 3.8 mm; r = 7.5 mm & 13.5 mm; for 14 mm and 25 mm diameter
cells, respectively. The presence of the dielectric glass cell decreases the resonant
frequency as expected from Eqn. 3.4, and that of the electrode supports increases the
resonant frequency. From Fig. 3.4 one can conclude that the lumped elements model
(cf. Eqn. 3.4) gives an estimation error around 10% between 1 to 10 GHz range over
variations of ¢, w, r, R and Z [129], and the error increases with the increase in above
dimensions of the cavity structure.

The microwave magnetic field distribution inside the cavity can be characterized
by the filling factor ' and the field orientation factor (FOF) &. The filling factor —

as used in the context of active hydrogen masers — is defined as [32],

2
;1 (fy, HeAV)
TI ‘/;611 f‘/cavity |H|2dv 7

(3.5)

where V¢ is the volume of the clock cell occupied by Rb atoms (excluding the reser-
voir, Vitem) and Vgt is the total volume of the cavity. The z-axis is superposed with
the external static dc magnetic field (C-field) that defines the quantization axis and
is parallel to the laser propagation direction [4,22,115]. Hence, n gives the efficiency
ratio of magnetic field energy in H, (that contributes to the clock signal) to the to-
tal microwave standing wave energy inside the cavity. However, for characterizing
the Rb cell clock signal, it is more useful to evaluate the homogeneity of the H-field
orientation in the cell volume. Therefore, in order to optimize the fraction of the
magnetic field component useful for driving the clock transition with respect to the
total field energy over the cell volume, we define field orientation factor & as the ratio
of the magnetic field energy in H.-direction to the total field energy over the entire

cell volume as given in [136],
— fVcen H? av

a fVcen ’HPdV’

The maximum value of £ is 1, which implies the absence of o-Zeeman transitions.

3 (3.6)

In contrast to 1, & accounts only for the useful magnetic field components that are
parallel to the C-field and light propagation vector in the interrogation cell volume.
Therefore, £ gives a good estimation for the DR signal quality, especially for buffer gas
cells, where alkali atoms can be treated as localized in space during the interrogating
time scales. The experimental evaluation of ¢ is done for 14 mm wall-coated cell
magnetron resonator cavity (cf. Section 3.4.4) and two versions of 25 mm BG-cell

magnetron resonators (cf. Sections 3.5.4 & 3.5.5).
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3.4 14 mm magnetron resonator cavity

As mentioned earlier, the basic design, construction and characterization of the
compact magnetron cavity that can hold a cell of 14 mm diameter was done at
ON [119,134]. These compact cavities were later established for RAFS products of
Spectratime, SA, Switzerland.

3.4.1 Cavity assembly

The 14 mm cavity was redesigned with minor modifications to the original prototype;
such as direct injection of 6.8 GHz radiation to the cavity and an opening at the
rear-end for laser radiation to propagate onto a detector placed outside the cavity.

The re-designed cavity assembly is shown in Fig. 3.5.

Figure 3.5: (a) Cavity assembly with the co-azial cable for microwave injection, (b) 14 mm

wall-coated cell attached to the tuning-cap and (c) the magnetron design with four electrodes.

It was noticed that the hole in end cap did not affect the resonant signal, rather
only the presence of the glass cell was crucial. Also, coupling efficiency for direct
injection of 6.8 GHz was improved by several orders of magnitude, which reduces
the power requirements for the microwave source. At a later stage, this cavity was
further developed to integrate a lens at the rear-end opening and was used in high-

performance clock developments [138].
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3.4.2 Tuning and characterization

Tuning a cavity for the right atomic transition frequency is a step-by-step manual
process. Influence of dielectricity (e,) of the glass material (in our case pyrex €, =
4.82) on the fringing fields of AW decreases the resonance frequency v, (cf. Eqn. 3.4).
Figure 3.6 shows the setup to measure the cavity’s resonance frequency v,, the Q-
factor and the reflection coefficient, |T'|2. The reflection coefficient is defined as the
ratio of the reflected power (P,) to the incident power (7)), |T'|? = %ﬁ. These measure-
ments were done in the ambient laboratory conditions (air) at room temperature of
~ 21°C. The RF sweeper gives the output of microwave frequency around 6.835 GHz
with an adjustable sweep (maximum of 4+ 0.5 GHz) that is fed to the cavity through
an attenuator and a directional coupler. The cell is positioned inside the cavity by
threading inwards, such that the cavity resonates around 6.8 GHz. When the injected
microwave frequency is in resonance with the cavity mode, more microwave power
is coupled to the cavity, and thus less microwave power is reflected back to the di-
rectional coupler and detector. Finally the signal is displayed using an oscilloscope
as shown in Fig. 3.6. Typical measured parameters with a 14 mm tuned cavity are:
v, = 6.834 GHz, Q = 341 and absorption coefficient, 1-|T'|> = 76% and a tuned overall
cavity height h = 29 mm.

RF Sweeper Directional
(6.834 £ 0.5 GHz) TodB coupler

attenuator

Coupling
loop

detector

Oscilloscope
Display
(reflected signal)

[-wave power

Frequency

Figure 3.6: Cavity tuning by reflection method. Oscilloscope display shows the measured
parameters of the tuned 14 mm cavity using the wall-coated cell. v, = 6.834 GHz, Q) = 341
and absorption coefficient, 1-|T|> = 76%.
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3.4.3 Cavity pulling

For the 14 mm magnetron-type cavity, the measured cavity quality factor (). < 350
(cf. Fig 3.6), the Q, ~ 1x107 (cf. Section 5.3.1). Our 14 mm magnetron cavities
are made of Aluminum and the measured temperature sensitivity shift Av./AT ~
+40 kHz/°C. The temperature variations of our cavity around 10* s is ~10 mK and
therefore the calculated fractional cavity pulling shift from Eqn. 1.48 is Avep/vre
< 6.8x1071°.

3.4.4 Simulation and field mode

Figure 3.7 shows the simulated TEg;-like field mode inside the 14 mm magnetron
cavity. The magnetron resonator cavity has cylindrical symmetry with two parts;
the metallic cap to which the glass cell is attached and the cavity body as shown in
Fig. 3.7. The field mode inside the cell is uniform along z-direction, i.e. the laser
propagation direction to give a good S/N ratio for the clock signal. The irregularities
in the field at the edges of the cell boundaries might influence the clock signal to
a lesser extent in a buffer-gas cell and with that of the wall-coated cell, atoms in

continuous motion give the average of the field distribution as a clock-signal.
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Figure 3.7: Eigen mode simulation showing TEy11-mode. Courtesy: LEMA-EPFL.

We assume that the applied static magnetic field (i.e. the C-field) is uniform and
parallel to the laser propagation direction along z-axis throught the length of the
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cavity. In an external static (directional, z-axis) magnetic field, the hyperfine levels
split into their corresponding Zeeman sub-levels according to Eqn. 1.1. Due to the
selection rules (Amp = 0,+1) for the microwave transition, the projection of the H,
field inside the cavity on to the static C-field gives the m-transitions (Amp = 0),
whereas the o-transitions (Amp = £1) are due to the projection of the transverse
fields (Hy = (/HZ + H2, radial field component) on to the C-field. We are mainly
interested in the w-transitions that are obtained by the homogeneity of the H, field
over the cell volume.

In order to characterize the H, field inside the cell, we quantify for the FOF (&) by
measuring the Zeeman transitions of 8Rb atoms in the clock cell situated inside the
resonant magnetron cavity. The input microwave power needs to be low, such as not
to saturate the microwave Zeeman transitions. Figure 3.8 shows a span of all possible
8"Rb Zeeman transitions between the two ground states (°Sy Fy = 1 and F, = 2)
(cf. Fig. 1.3). The laser was stabilized to Rb F, = 2—F, = 3 transition (cf. Fig 2.3)
with an incident intensity of 36 pW/mm?, a z-directional C-field of ~40 mG was

applied and a microwave power of -40 dBm was injected into the cavity.
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Figure 3.8: (a) Zeeman transitions between ®"Rb ground states (°Sijy Fy=1 ¢ Fy=2)
in the 14 mm wall-coated cell inside the magnetron cavity. Suppression of sigma transi-
tions (arrows) indicate the presence of uniform microwave magnetic field along the laser

propogation azis (z-azis). (b) shows the Zeeman transitions for corresponding peaks in (a).

The experimental field orientation factor, &, is determined using the equation:

J Sx

gemp = fSw T ng (37)

where [ S, and [ S, are the integrated signal strengths over all the corresponding

Lorentzian peaks for Ampr = 0 and Ampr = +£1, respectively. These signal strengths
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S; are proportional to H?, for small microwave powers [85] and thus Eq. 3.7 is an
experimental measure of the FOF (Eq. 3.6). The value of FOF for 14 mm cavity with
wall-coated cell calculated from the data of Fig. 3.8(a) is fgp = 0.993. This proves
that in 14 mm cavity, the TEg;;-like cavity mode has a highly uniform magnetic field
geometry oriented almost exclusively parallel to the laser propagating direction over

the entire cell volume.

3.5 25 mm magnetron resonator cavities

Two 25 mm cavities were designed, fabricated and utilized in building the clocks. The
first 25 mm prototype cavity was designed and fabricated based only on the calcu-
lations using LGR lumped model (Eqn. 3.4). Furthermore, in order to crosscheck the
field mode inside the cavity, numerical simulations were done (see Section 3.5.4) and
found the mode is not TE, but a TM mode. Hence a new cavity was developed by first
performing the geometrical optimization via simulations to get the desired TEq;;-like
mode, and then was fabricated accordingly, which we call as the 25 mm optimized
cavity. Both the cavities (prototype and optimized) are made of aluminum with alo-
dine coating treatment (for better surface conductivity and corrosion resistance), and
are similar in design, however they differ only in the value of gap-width thickness
between the electrodes ¢, and hence in resonant frequencies of TE and TM modes as
contrasted in Table 3.2.

Furthermore, in order to crosscheck the validity of the lumped model (Eqn. 3.4),
the value of t = 2.55 mm was substituted in Eq. 3.4 and we found that the resonant
frequency v, = 6.3 GHz, giving an estimation error of 8 % from 6.834 GHz (the

required Rb resonant frequency).

Table 3.2: Geometrical parameters of the two 25 mm cavities. The values of prototype
cavity were calculated using Eqn. 3.4 and the values of the Optimized cavity are the ones

by HFSS numerical simulation.

Cavity type n| R[mm]|r[mm]|t[mm] | W[mm]| TE [GHz] | TM [GHz]
25 mm prototype | 6 18 12.75 3.48 3.65 7.4 6.7
25 mm optimized | 6 18 12.75 2.55 3.65 6.8 7.1




70 3.5. 25 mm magnetron resonator cavities

3.5.1 Cavity assembly

The cavity assemblies for both of the 25 mm cavities are similar, except for one
prominent change of the gap-width thickness ¢. The fabricated parts of one of the
cavities are shown in Fig. 3.9. The resonator cavity has a compact volume of < 45 cm?
(with a cell of 12 cm?), in comparison to a fundamental-mode cylindrical cavity that
would have a volume of ~ 140 cm?® (to accommodate a similar vapor cell). In Fig. 3.9,
the front- and rear-end caps have openings of ~ 20 mm for the laser beam propogation
in order to interact with maximum number of atoms covering the volume of the cell.
The rear-end cap also holds a plano-convex lens (not shown in the figure) that focuses
the laser beam on to a photodetector. The two end openings and the presence of the
lens however influence the resonance frequency and the field mode inside the cavity
(see Section 3.5.4). In the first 25 mm prototype, these details were not taken in
to account as the design was based only on the lumped model approach. However,
the further improvement of 25 mm optimized cavity considered these effects (see
Section 3.5.5).

Figure 3.9: (a) The rear-end cap with microwave coupling coazial cable and microwave
coupling loop, a plano-convex lens (not shown here) is mounted inside the hole for focussing
the laser beam on to the detector (b) cavity structure with siz-electrodes, and (¢) 25 mm cell

attached to the tuning cap.

3.5.2 Tuning and characterization of 25 mm cavities

The experimental setup and method is similar to the tuning of the 14 mm cavity

(cf. Section 3.4.2). Tuned parameters of the 25 mm prototype cavity and the 25 mm
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optimized cavity are given in Table 3.3. The cavity-QQ < 100 ensures that the effect
of cavity pulling is negligible for RAFS to reach the stability levels below 1x107 in

medium to long-term time scales [32,139].

Table 3.3: Tuned parameters of 25 mm cavities.

Cavity type v, [GHz] | Cavity-Q | 1-|T|? [%] | h [mm)]
25 mm prototype 6.834 ~79.6 35 33.1
25 mm optimized 6.834 ~81.8 93 34.2

3.5.3 Cavity pulling

For the 25 mm magnetron-type cavities studied in this thesis, the measured cavity
quality factor Q. < 100 (cf. Table 3.3), the Q, ~ 2x107 (cf. Section 6.1.1). Our
magnetron cavities are made of Aluminum, the measured temperature sensitivity
shift Av./AT =~ +7 kHz/°C. The temperature variations of our cavity around 10* s
is &b mK and therefore the calculated fractional cavity pulling shift from Eqn. 1.48
is Avep/ve, < 1.5x1071,

3.5.4 Field mode and Zeemans: 25 mm prototype cavity

The HFSS eigen mode simulations for the 25 mm prototype resonator cavity gave
us the insight into the resonating modes present in the cavity. At a tuned height
of h = 33.1 mm, the H-field distribution around 6.8 GHz is shown in Fig. 3.10.
This is a TM-like mode with field mostly oriented along H, direction and is sensitive
to external influences: for example, moving any object (or even hand) close to the
aperture openings shifted the frequency upwards or downwards depending on the
position of the hand with respect to the end-cap hole. We term this as “hand effect".
This effect was more pronounced at the rear-end cap due to the presence of the
lens, which has a high dielectric constant of 10.7. The simulations however revealed
another mode around 7.4 GHz, which was TEg;;-like mode. It was noticed that the
hand effect was prominently influencing the TM-like mode but not that of the TE-like
mode.

The Zeeman measurements (cf. Fig. 3.11) further validate the field mode and in-
homogeneity inside the cavity. For these measurements, the laser was stabilized to
F,=1 — F.=01CO transition (cf. Fig 2.3) with an input intensity of 60 xW/mm?, a
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C-field of ~80 mG was applied and a microwave power of -10 dBm was input into the
cavity. From Fig. 3.11 we compute the experimental FOF for the 25 mm prototype
cavity as, §§£p = 0.26. This low value reflects the TM mode with prominent H; com-
ponents. The inhomogenous broadening observed at the extreme sigma transitions

are due to the C-field inhomogenites.
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Figure 3.10: Simulation of the field mode inside the 25 mm cavity, showing the inhomo-

geneous TM-like mode along the laser propogation direction (z-axis).
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Figure 3.11: The Zeeman signals showing the inhomogeneity in the microwave field inside
the 25 mm prototype cavity. The labels associated for particular transitions are as defined
in Fig. 3.8.
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3.5.5 Field mode and Zeemans: 25 mm optimized cavity

Table 3.4: Simulated microwave performance of the optimized magnetron cavity.

Parameter Symbol | Value
Resonant frequency [GHz| 78 6.831
Filling factor n 0.136
Field orientation factor & 0.877
Volume [dm?] Veavity 0.044
Q-factor (unloaded)® Qo 488

Q-factor (loaded)® Q 185

“From eigenmode simulation
bExcitation, holes and reservoir included

Return
magnetic flux
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Figure 3.12: 25 mm cavity simulation of the modified structure by increasing the electrode

gap widths.

As shown before in Table 3.2, the proper dimensions of the cavities were chosen
by optimizing the geometrical parameters, such that the TE-like mode resonating
around 7.4 GHz was moved to resonate at 6.8 GHz. The simulated results of the

performances of the optimized cavity are shown in Table 3.4. In fact, the value of
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n can be improved by increasing the return flux cross-section (see Fig. 3.12), but at
the price of a larger shield radius. However, our design focuses on the compactness
of the structure, and also provides an excellent working behavior because of its high
¢ as shown in Fig 3.13. Finally, the loaded Q-factor (@ < 200) meets the passive
atomic clocks requirements [32] and ensures a negligible cavity pulling contribution
on the atomic signal [139]. The loaded Q-factor @) is less than half the value of the
unloaded Q-factor because of the presence of the apertures for the optical interaction
that induce losses for the microwave power. Figure 3.12 shows the TEg;-like mode

resonating at 6.834 GHz with the overall cavity height h = 33.7 mm and ¢ = 2.5 mm.

For further validation of the TEq-like cavity mode, the Zeeman measurements
were done (cf. Fig.3.13). For these measurements, the laser was stabilized to F, = 2
— F. = 13CO transition (cf. Section 2.3) with an input intensity of ~25 yW/mm?,
a C-field of ~44 mG was applied and a microwave power of -28 dBm was input into
the cavity. From Fig. 3.11, the experimental value of FOF for the optimized cav-
ity is 560117 = 0.868. The inhomogenous broadening observed at the extreme sigma
transitions are due to the C-field inhomogenities. Notice that the required input mi-
cowave power in the optimized cavity as compared to the prototype cavity is reduced
by about a factor of three at comparable signal contrast. This is due to exclusive
orientiation of the microwave magnetic field along the C-field and that of the laser

propagation z-direction.
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Figure 3.13: Zeeman transitions for an applied C-field of 44 mG. Suppression of sigma

transitions indicate the uniform TEyi11-mode.
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3.6 Field modes comparison and influence on the
clock stability

We compare two similar 25 mm cavities; the protoype cavity and the optimized cavity.
Two cavities differ in their field modes with one having a TM-like mode and the other
having the required TE-like mode. The characterization of these two cavities by
Zeeman measurements also gave us the FOF (§) values that one can compare directly

to know the field orientation along the Z-direction inside the cavity. The FOF of the
o)

cxp = 0.868 is more than a factor of three better compared with that

optimized cavity,
of the FOF of the prototype cavity with g:;p = 0.26. As a first approximation, with
a linear influence of the FOF on the clock stabilities (Allan deviation), we expect to
have a difference of a factor of three between the two phyiscs packages. In Chapter 6
we do a quantitative treatment of the stabilities and compare the results between two

cavities.

3.7 Conclusions

In this chapter, we have seen the vapor cells used in the thesis for spectroscopic and
clock studies: 14 mm diameter wall-coated with an overall volume of ~ 2.1 cm?, and

3. Two types of

25 mm diameter buffer-gas cell with an overall volume of ~ 12 cm
compact magnetron cavities, one accommodating the 14 mm cell with four electrodes
with a volume of 8 cm?® and the other that was newly developed with six-electrodes
having a volume of only 45 cm?®, which can hold the enlarged 25 mm cells and resonates
at the 8Rb ground state frequency, were presented. The field modes of these cavities
with the aid of simulations were shown, and then were also characterized by Zeeman
measurements introducing a new terminology of Field Orientation Factor (£). The
14 mm cavity Zeemans measured with a wall-coated cell shows the £ = 99% and
the optimized 25 mm cavity measured with a BG cell shows the & = 87%. The
25 mm prototype cavity however does not posses the required TE mode (uniform
field along the Z-axis), but thanks to the simulations this was rectified in the 25 mm
optimized cavity, thereby improving the FOF by approximately a factor of three.
The input power required for the optimized cavity (-28 dBm) is also improved by a
factor of three as compared to the power required by the prototype cavity (-10 dBm).
The CAD drawings of the magnetron-type microwave resonator cavities are shown in

Appendix B.
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The next chapter explains how these components are integrated in a physics pack-

age and used in DR spectroscopic and clock experiments.



Chapter 4 The Experimental Setup

An experiment is a question which science poses to Nature and a measure-
ment is the recording of Nature’s answer.
-Max Planck

This chapter gives the details on the general clock and spectroscopic experimental
setup used in this thesis. In Chapter 2, we have seen the two important sources
required for double-resonance scheme: (i) the laser head(s) (in Section 2.2) and (ii)
the Local Oscillator (or 6.8 GHz microwave synthesizer, in Section 2.6). Here, we will
see how these two sources are integrated in an overall experimental scheme (cf. Sec-
tion 4.1). Another important component of the setup is the Physics Package, which
includes: (a) the 8"Rb cells (either with inner walls coated (cf. Section 3.2.1) or filled
with buffer gases (cf. Section 3.2.2) and (b) these cells are mounted inside the mi-
crowave cavities resonating at ~ 6.835 GHz (cf. Sections 3.4 & 3.5). The details on
two physics packages are explained in Section 4.2. Furthermore, in order to minimize
the impact of external magnetic fluctuations on the clock transition, magnetic shields
were required and the characterization of these shields are explained in Section 4.5).

Finally, the setup breadboard is shown in Section 4.6.

4.1 Schematic

The schematics of the clock experimental setup is shown in Fig. 4.1 and is explained
as follows:

In total five modules are used: Laser Head (LH) module, Physics Package (PP) mod-
ule, Local Oscillator (LO) module, Detection module and clock stability measurement
module. The LH module! represents mainly the clock laser head, whereas, the AOM
laser head is optional when detuning is required to suppress the light-shift effect in
the clock cell.

!'The LHs use reference 3"Rb evacuated cell for laser frequency stabilization as explained in
Section 2.3.
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The PP module consists of the clock cell (3"Rb atoms either in wall-coated cell
(Chapter 5) or buffer-gas cell (Chapter 6)), the magnetron resonator cavity, C-field
coils in order to lift the degenerancy of hyperfine ground states and magnetic shields
to suppress the perturbation due to external magnetic fluctuations (cf. Section 4.5).
The LO module consists of an Oven Controlled Crystal Oscillator (OCXO), and the
microwave synthesis chain to generate 6.835 GHz for 8Rb clock transition interro-
gation. The detection module has a photodetector and preamplifier electronics. The
amplified signal is fed to a synchronous detector that generates an error signal by
operating at the modulation frequency f,,, which is used to lock the crystal oscilla-
tor to the atomic resonance frequency. Once the clock loop is closed, the stabilized
10 MHz output from the LO module is compared with the 10 MHz signal from an
active Hydrogen maser and the stability is recorded using a computer interface in
the clock stability measuring module. For DR spectroscopy, the “clock loop" is not
closed, instead the output of the detection module is directly monitored using an
oscilloscope.

Though the experimental setup is generic, it is worth clarifying here that two PPs
were studied in this thesis: (i) 14 mm wall-coated cell PP (Chapter 5), (ii) 25 mm cell
in the optimized cavity PP (Chapter 6). Two microwave synthesizers were used (i)
one for the wall-coated cell studies (characteristics is given in Chapter 5 (Section 2.7))
and (ii) the second for 25 mm cell studies (the characteristics of this LO was already
explained in Chapter 2 (Section 2.6). The basic differences between these two LOs is
that the one used for 25 mm cell studies is an improved version with a lower phase
noise [51,107] as compared with the one used for 14 mm wall-coated studies [116].

This improvement was required as we aim at the high-performances with 25 mm cell
PPs.

4.2 Assembled physics packages (PP)

Here we discuss the two physics packages: one for the wall-coated cell and the other

for the enlarged buffer gas cell.

4.3 Wall-coated cell PP

Figure 4.2 shows the details of wall-coated cell PP. The 14 mm wall-coated cell along

with the tuned magnetron cavity is mounted inside a thermal isolation and the delrin
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holder and the C-field coils are wound around this assembly. At the rear end of the PP,
the microwave coupling co-axial cable with the SMA connector for the direct 6.8 GHz
coupling, and the electrical connections for the control heater and the C-field coils
are shown. This entire assembly is mounted inside the first magnetic shield that is
held inside a delrin holder surrounded by the second magnetic shield (cf. Fig. 4.2(c)).
This picture also shows the stem heater and the electrical control connections. The
laser beam has a Gaussian profile with an area of ~ 2.8 mm? that enters the clock

cell in the PP through the stem side and exits at the microwave cable side.

Delrin L Heater and C—ﬁel(}
holder 4 1 connectors /

Figure 4.2: Assembled wall-coated physics package (PP). (a) 14 mm wall-coated cell inside
the magnetron cavity that is mounted inside the delrin holder and the C-field coils are wound
around this assembly. (b) The rear end of the PP showing the electrical connectors and the
microwave coupling co-azial cable, and (c¢) The clock wall-coated cell and the cavity along
with C-field coils are mounted inside the first and second magnetic shields. The control
electrical connections for cell volume and stem temperatures and C-field current are shown.
The laser beam enters the clock cell through the stem side and exits at the microwave cable

side.
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4.4 Buffer gas cell PP

Polyethylene
foam i

Figure 4.3: Assembled enlarged buffer gas cell physics package (PP). (a) The assembled
and tuned 25 mm cavity. Notice the Rb droplets at the cell window. This influences the clock
stability, especially in the long-term equilibrium (cf. Section 6.4.3). The delrin holder is
used to reduce the thermal conductivity. (b) The rear end of the cavity showing the focussing
lens that helps in focussing the laser beam on to the photodiode and (c) Assembled PP with
C-field coils and magnetic shields. Control electrical connections for cell volume and stem
temperatures and C-field current are shown. At the laser entrance side, a telescope assembly

expands the beam to interrogate the atoms in the entire cell area.

Figure 4.3 shows the fully assembled Physics Package (PP) with 25 mm proto-
type cavity. The design and construction for 25 mm optimized cavity is identical to
this. This includes the Rb cell, the compact magnetron cavity, the C-field coils and
p-metal magnetic shields. The electrical connections in order to control the temper-
atures and C-field current are also seen. In Fig. 4.3, the telescope assembly expands
the laser beam uniformly to have a flat beam to interrogate the atoms covering al-
most the entire area of the cell cross-section (& 4.91 cm?). The u-wave coaxial cable
serves to inject the 6.834 GHz microwaves. A polyethylene foam having the ther-
mal conductivity of 39x1073 W/m.K is wound around the second magnetic shield
(see Fig. 4.3(c)) to maintain good thermal homogeneity across the physics package.
The outer polystyrene insulator (Gematherm®) covering ensures a thermal homo-

geneity, also serves as a thermal insulator for external variations and attenuates the
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air currents that occur, for example due to air conditioning effects. For a thickness of
20 mm at 283 K, the thermal conductivity of this insulator is only 36 x1073 W /m.K
and almost similar compared with the thermal conductance of air 251072 W/m.K,
however the air convection losses are reduced by this insulator. The base part of the
3D box alone is shown here. The overall physics package (excluding the polystyrene

insulator) has a volume of < 0.8 dm?® and mass of < 1.4 kg.

4.5 Magnetic shielding factor

Though the clock transition frequency in first order is unaffected by fluctuations of
magnetic fields, the second order fluctuations do perturb its frequency and hence it
is necessary to suppress them as explained in Section 1.5.1. In each of our physics
packages, one for the wall-coated cell clock (Chapter 5) and other for buffer-gas cell
clock (Chapter 6), two layers of magnetic y-metal shieldings were used. The measured
values of the longitudinal shielding factors for both the PPs are approximately the
same. Here we explain the procedure to measure the longitudinal shielding factor by

considering the case of 25 mm PP.

1.70 —

1.65 —

1.60 —

1.55

1.50 —

Residual field [mG]

1.45 —

I I I I
400 600 800 1000

External field [mG]

Figure 4.4: Measured shielding factor for two u-metal cylindrical shields using Helmholtz

coils. Inverse of the slope gives the attenuation factor or the shielding factor.

The inner shield has the dimensions of radius » = 44 mm, thickness ¢ = 0.8 mm
and length L = 52 mm and the second (outer) shield has the dimensions of r =
49 mm, ¢ = 0.8 mm and the length L = 100 mm. The shielding factor measurements
were done with the aid of Helmholtz coils. Three set of coils mutually orthogonal

to eachother (in x-, y- and z-axes) were used to apply a known external field on the
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physics package. The zeeman spectra were then recorded as a function of C-field
values. By extrapolating the shift of zeemans to the zero C-field value, one gets
the shift and the associated remnant (or residual) field acting on the atoms; this
gives the indication of the suppression of the external field by the magnetic shields.
Repeating this procedure for different external field values, the longitudinal shielding
factor, Sy, can be known, which has a linear behaviour as shown in Fig. 4.4. Measured
longitudinal shielding factor S;=‘3067" or &~ 70 dB, which implies that the external

magnetic variations are attenuated by this factor.

4.5.1 Influence on clock instability

From Section 1.5.1, we know that the perturbation to the clock signal can occur due
to fluctuations in the applied quantization magnetic field By, the residual field B, (at
zero external field) and the noise field of magnetic shields B;. We apply, typically
a quantization field (C-field) of By ~ 40 mG, and the measured relative stability of
this field due to resonator control electronics is oap, /5, (7)< 107° for time averages
up to 10° s, which implies op,(7) = 40 nG. We measured a residual magnetic field
B, = 1.3 mG at zero external field and with a measured shielding factor of 3067, we
can assume op, (1) ~ 0.4 uG. From [93] and [140], for our external shield with radius
r = 49 mm and thickness ¢ = 0.8 mm, the influence due to the magnetic shield noise
is estimated as op, (1) ~ 132 pG. From Eqn. 1.41, and the above values, the total
influence due to magnetic variations on clock frequency due to second order magnetic
variation is 0,(7) &~ 2.7x107" up to 7 = 10° s, however this value can degrade to

the level of 1074 in pertrubed geomagnetic conditions.

4.6 Setup breadboard

A complete clock breadboard is shown in Fig. 4.5. The physics package shown in
this breadboard is that of 25 mm prototype cavity. However, the 25 mm optimized
cavity PP also has the same overall dimensions. The PP control electrical connections
to the Resonator Control Electronics (RCEs) and the 780 nm laser beam (linearly
polarized) path of the clock laser head are shown. Optional AOM laser head is not
in operation (in the picture). During its usage, the optics (mirrors and attenuators)
can be arranged to align the beam output from AOM LH to interrogate the atoms in
the PP.
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Fully
Assembled .
Physics Package Laser head

Clock I
Laser head m"

Figure 4.5: Ezxperimental breadboard showing the Physics Package, the clock laser head
and the AOM laser head. The laser beam path is seen along with neutral density filters in
order to reduce the laser intensity to the optimized value. The preamplifier electronics box
connects the photodetector and the microwave synthesizer (not in the picture). This setup

corresponds to the block scheme presented in Fig. 4.1.

4.7 Conclusions

In this chapter, we have seen the longitudinal shielding factor measurements with
two p-metal shields and the estimation of the influence of magnetic variations on
the clock transition. Two shields give a longitudinal magnetic shielding factor of
about 3000 and the overall influence on clock transition due to second order magnetic
variations is estimated to be at the level of ~ 3x1071° at the time scales up to one
day. The fully assembled PP for the 25 mm diameter cell has an overall volume of
< 0.8 dm?® with a mass of < 1.4 kg. A generic experimental schematic (for DR clock
and spectroscopy) with all the components was shown and explained along with the
overall setup breadboard. This experimental schematic will be used for the studies of
14 mm wall-coated cell and the 25 mm buffer gas cells in Chapter 5 and Chapter 6,
respectively. The CAD drawings of the Physics Packages are shown in Appendix B.



Chapter 5 Spectroscopy and Clock
with Wall-Coated Cell

Fverything in the Universe takes time to be the way it is, even the time!

-Thejesh Bandi

We recall here that although the idea to use wall-coated cells in an atomic fre-
quency standard was suggested by Robinson [35] in the late 1950’s, it was not realized
due to the limitations in operating temperatures of such cells (incompatible with the
use of lamps for optical pumping) and other technological difficulties, such as con-
trol of the coating quality. Part of these drawbacks is overcome with laser optical
pumping, however a reliable commercial product is yet to be realized. Recently, the
interest in wall-coated cells for high-precision spectroscopy and metrology is growing
again, because coated cells represent good candidates to realize high-performance or
micro-fabricated devices, such as miniaturized atomic clocks and/or atomic magne-
tometers [41,42]. Basic studies on the application of wall-coated cells for Rb frequency
standards are reported in [43-47].

In this work (chapter), we take a step ahead to investigate and demonstrate the
clock along with detailed metrological studies using a 8"Rb vapor cell whose inner
walls are coated with anti-relaxation material (cf. Section 3.2.1). This cell is situated
inside a compact magnetron cavity (cf. Section 3.4) that resonates around vpg,. The
entire PP assembly for this cell was discussed in Section 4.3.

At first a brief theory of atom interaction with wall-coating is presented in Sec-
tion 5.1. The experimental characterization of wall-coating is done by measuring the
hyperfine population relaxation (77) and the coherence relaxation (75) times, respec-
tivey in Section 5.2.2. Following to this, in Section 5.3.1, the optimization of double
resonance signals as a function of laser intensity, microwave power and the cell tem-
peratures is presented. The metrological characterization of medium- to long-term
perturbations on the clock frequency by measuring the AC Stark shifts (light-shifts),
the microwave power shift and temperature coefficients of the coating material is
explained in Section 5.4. The reduction of intensity light-shift coefficient by the de-
tuning method using the AOM LH is also demonstrated. The S/N limited short-term
clock stability is demontrated in Section 5.5.1 along with detailed evaluation on the

above perturbing parameters on medium- to long-term frequency of the clock.
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5.1 Theory of atom interaction with wall-coating

In a Hydrogen maser, the inner walls of the bulb are coated by Teflon (a flurocarbon
polymer) to prevent the polarized atoms from losing their state by colliding on to bare
glass walls [32]. However, with the alkali metals like rubidium, the chemical reaction
occurs with flurocarbon polymer surfaces, therefore coating materials such as paraflint
(CH3(CHs),,CH3, with 40<n<60), Dri-film ((CHj3)2SiCly) and tetracontane (CyoHgs)
are used [32]. In our studies we used a wall-coated cell with tetracontane coating that
is filled with 8’Rb atoms (seen in Section 3.2.1).

Atoms inside the cell are in constant motion with an average velocity depending
on the cell volume temperature given by v = /8kgT /M , where kg is the Boltzmann
constant and M the mass of 8’Rb atom. Due to this motion, the 8"Rb atoms collide
with the coating material mainly in three different ways [141]. Though, an elaborate
theory would consider many other mechanisms involved in relaxation processes, we

confine ourselves to the following main interactions:
(i) adiabatic collisions causing the hyperfine frequency shift and decoherence,

(ii) strong collisions, responsible in randomizing the electron spin but not affecting

the nuclear spin, hence retaining a certain degree of polarization and,

(iii) the inelastic collision by adsorption on to the coated-walls and eventually diffuse

into the coating material itself,

Additionally, due to continuous exchange of Rb atoms in the vapor phase in an

equilibrium from the reservoir stem, we consider another important effect called
(iv) the reservoir effect.

In the processes (i) and (ii), the atom gets adsorbed onto the coated wall for a
short duration (order of few pico-seconds [32,36]) and may hop on to neighboring
sites during this time. The (iii) type of collision not only causes the atom to lose its
polarized state but to also reduce the density of atoms on long-time operation of the
cell. A novel technique to improve the density of atoms by removing them from the
trapping potentials of the coating material is known as Light-Induced Atomic Des-
orption (LIAD). This was first demonstrated independently by Budker and colleagues
in paraffin coated cells [142,143] and Burchianti et al., from porous silica [144]. This
technique uses a non-resonant light source, usually in the ultra violet (UV) region in

order to liberate the atoms that are adsorbed (or trapped) on the walls. Adaptation
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of LIAD for atomic clocks requires a separate dedicated study to accurately determine
its advantages and impacts on the clock frequency stability. The reservoir effect (iv)
mainly accounts for the interaction of polarized atoms with that of the metallic Rb
through the reservoir hole, which will completly randomize the atomic spin.

During the process of adsorption, the alkali atom electronic cloud is deformed by
the van der Waals force of attraction towards the surface and hence reducing the
hyperfine interaction. This produces a negative frequency shift, known as the “wall-
shift” [32]. The wall-shift, Av,, of the clock frequency due to the coating, associated
with the temperature and geometry of the cell can be written according to Rahman
and Robinson [145] as,

Avy = (Ayd)%, (5.1)

c

where Ay, is the difference between the resonant hyperfine frequency while the Rb
is adsorbed on the surface and that in free space, 7, is the adsorption time and 7,
is the correlation time for atom-wall collisions, in other words this characterizes the
average time between collisions with the coating surface inside the cell. Considering
a cylindrical geometry (in our case the length and diameter are same), 7. depends on
the cell radius, R, and the mean velocity, v, of the Rb atoms inside the cell and can
be written as
T, = 4R /30 (5.2)
The adsorption process of the alkali atoms on the coated walls also has a temper-
ature dependance. Assuming a uniform (or average) adsorption energy, F,, in the
overall cell volume, the adsorption time, 7,, of an atom on the walls can be calculated
by a simple formula [141,145-147],

Eq
Ta = To - €*BT, (5.3)

where 79 is the period of vibration of the adsorbed atom in the wall potential typically
having a value ~ 107'? s, kg is the Boltzmann constant, and 7T is the absolute
temperature. If the temperature increases, Rb atom spends less time on the wall,
which results in a smaller frequency shift and broadening, and vice versa. From
Eqn. (5.3) and Eqn. (5.1), the fractional change in frequency shift due to a fractional
change in adsorption time by the influence of the temperature can be written as [141],

dAv,, E, dT

A, Tk 5T T
The temperature coefficient of the cell volume is then, TC, = dAv,,/dT. This allows
to extract the average adsorption energy of Rb on the coating material as shown in
Section 5.4.3.

(5.4)



88 5.1. Theory of atom interaction with wall-coating

Each collision of an atom with the wall-coating causes the phase shift ¢ between

the hyperfine states [32,141,147] and hence an average phase shift ¢ is given by,

b = 217 Ay, (5.5)

The wall-shift Av,, can be measured experimentally (see Section 5.4.1). The statistical

nature of the collisions gives rise to a spread in the phase-shift attained by the atoms.

This adiabatic relaxation contributes to the line width given by,
QEQ

TTe

(5.6)

Vg = 2

5.1.1 Broadening mechanisms

A. Wall-coating collisional broadening

As discussed above, collisions of the polarized atoms with the coated walls give rise
to broadening of the DR linewidth. From Eqn. 5.5, by using the experimentally
measured wall-shift value of -370 Hz at a cell volume temperature T, = 329 K (see
Section 5.4.3, and internal cell volume radius R = 6 mm, we calculate an average wall
shift per collision ¢ = -65 mrad. For our cell dimensions, at the above temperature,
we get T. = 2.8x107° s (from Eqn. 5.2). By substituting this value in Eqn. 5.6 we

get the linewidth contribution due to collisions with the wall-coating, v, = 302 Hz.

B. Spin-exchange collisional broadening

On the other hand, due to the density of Rb atoms (corresponding to the temperature)
the spin-exchange collisions occur (similar to as explained in Section 1.3(c)), which
is also a source of relaxation and contributes to the observed width. With a single
isotope of the alkali metal present (as in our case, only 8’Rb), having a nuclear spin
I, the spin-exchange contribution to the line-width of the DR signal is given by the
formula [75,141],

1
Vse = —R(1)NVye10se, (5.7)
T

where o, is the spin-exchange-collision cross section (g, = 1.6x1071* cm? for ’Rb), n
is the atomic number density that is controlled by stem /reservoir temperature (at the
stem temperature T, = 313 K, n =8.5x10'° cm~3) and the relative velocity of atoms

Uret = \/8KBT/Tlirea = 39085 cm/s, with fi,..q as the reduced mass of the colliding

atoms and R(I) = $+} is known as the nuclear slow-down factor (see [75]) for the



Chapter 5. Spectroscopy and Clock with Wall-Coated Cell 89

0-0 (clock) transition. For instance, with I = 3/2 (for ®'Rb), one gets R(I) = 5/8.
By using the above values in Eqn. 5.7, we get v, ~ 11 Hz.

C. Reservoir effect broadening

The intrinsic linewidths of the DR signal is also affected due to the Reservoir effect (or
hole effect) [32,125]. The polarized atom vanishes through the hole (connecting the
cell volume and the stem) and gets replaced by a non-polarized atom from the reser-
voir, equivalent to a non-coated wall surface area that completely depolarizes the Rb
by collisions. The linewidth contribution due to reservoir effect can be characterized

by the formula,
a

-V’
where a is the surface area of the hole intersection between the cell volume and the

(5.8)

VRes = U

stem, V the volume of the cell. For our wall-coated cell, with @ = 0.8 mm? and V =

1.4 cm?®, we get v~ 51 Hz.

C. Total broadening

Table 5.1 summarizes all the above broadening mechanisms. Therefore, the total
contribution to the line-width is then the sum due to adiabatic collisions ~,, the spin-
exchange collisions 7 and the broadening due to the reservoir effect yg.s, which is
equal to 372 Hz (or Ty = 0.88 ms by using the Eqn. 1.21 at zero light intensity and

Zero microwave powers).

Table 5.1: Summary of the broadening mechanisms in a wall coated cell.

Broadening mechanism | Parameter | Value [Hz]
Wall collisions Vg 302
Spin-exchange collisions Vse 11
Reservoir effect VRes 51
Total broadening > 364

5.2 Characterization of wall-coating

A paraffin-coated (CyHgy) cell shown in Fig. 3.1 with an inner volume of ~ 1.4 cm?

was used in the DR spectroscopic and clock measurements. At first the presence of
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wall-coating was tested by linear absorption spectroscopy (see Fig. 5.1). We note
that in a separate parallel study by Pellaton et al., the tetracontane coated cells
were fabricated at LTF and a thorough studies on ripening process of such cells were
done [125]. In these studies it was seen that the coating undergoes a curing process
to attain a state of stable equilibrium [125].

5.2.1 Absorption spectroscopy

Linear absorption spectroscopy was performed simultaneously in both, the wall-coated
cell and an evacuated 8’Rb enriched cell by scanning the laser frequency (around D2-

line). The schematics of optical pumping is shown in Fig. 5.1(a) corresponding to the
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Figure 5.1: (a) Schematics of optical pumping absorption spectroscopy and (b) absorption
of wall-coated cell in comparison with an evacuated non-coated cell. The labels a, b, c, d
show the absorption peaks for 8T Rb, corresponding to the optical pumping from either of the
ground states with reference to schematics as shown in (a) above. Typical optical pumping
time is 2.4 ps for each peak with an intensity of 28 uW/mm? [50, 92].

This discussion focuses only on the 8’Rb lines (labelled: a, b, ¢ and d in the
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Fig.5.1). The laser frequency was scanned in such a manner that at first it optically
pumps the atoms from F, = 2 state to F, = 1 state (peak-a) via the excited state
F¢. This increases population in F, = 1, which leads to enhanced laser absorption at
peak b. Optical pumping during peak-b also depletes I, = 1 population. Due to the
coating this population imbalance survives during the time At =~ 30 ms. After that,
reversing the direction of laser scan, when F, = 1 is sampled again, population of this
state is still low, leading to a very small peak-c. In the uncoated cell, population is
not preserved over At, thus peaks- b and ¢ have same amplitudes. Furthermore, the
laser at peak-c optically pumps more number of atoms into F, = 2 that is evident in
peak-d corresponding to wall-coated cell absorption. This gives a clear indication of
the anti-relaxation property of the wall-coating. A quantitative measurement of the
relaxation time (or the atomic polarization retaining time) is done by relaxation in

the dark method as explained in the next section (cf. Section 5.2.2).

5.2.2 Relaxation times (T; & T,) measurements

Further detailed characterization of the wall-coating was done by measuring the lon-
gitudinal (77) and transverse (73) (or the coherence) relaxation times. Here, the
longitudinal and transverse terminologies are used in analogy with the nuclear mag-
netic resonance.

The clock laser head (cf. Fig 2.1) emitting at the Rb D2-line (780 nm) optically
pumps the atoms from ¥Rb, F, = 2 hyperfine state as shown in Fig. 5.2(a) (using
a linear light polarization). The excited state (F.) manifold is not resolved due
to Doppler broadening, however the strongest contribution to the pumping process
mainly comes via the F, = 2 state. The laser beam passes through an Acousto Optical
Modulator (AOM), which was used as an optical switch as shown in Fig. 5.2(b). Note
that this external AOM is not the same as one that is integrated in the AOM laser
head (cf. Fig 2.2). The optical pumping time was kept constant, but the dark time was
varied using the on and off time durations of the AOM rf-drive. During the dark time,
T4, the atoms undergo relaxation mainly because of random electronic depolarization
by collisions with the walls [148], and also due to the reservoir effect [146].

The absorption voltage levels of the laser passing through the wall-coated cell
were recorded as a function of the dark time using the photodetector. This gives a
measure of the number of atoms, N2, in the I, = 2 state at the end of the dark time,
as a function of 74, and eventually reaching a saturation termed as N2, in Fig. 5.3.

The longitudinal relaxation time, 77, is extracted by a single exponential fit function
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Figure 5.2: (a) Conceptual diagram of relaxation of population in the ground-state hyper-
fine components, and (b) the schematic setup for measuring the Ty by relaxation in the dark

method, BB: beam blocker. The inset shows the optical switching time.
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Figure 5.3: The experimental T extracted by the exponential fit.
given by [148],
N2(74) = Ny + N2,4(1 — e /™) (5.9)

where 7, is the dark time, Ny is measured to be zero within the experimental errors,

and N2, is normalized to 1 (arb. unit). To the first-order approximation, we calculate
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the number of wall collisions, N as,

A [8kgT
N=T=
W\ aa

(5.10)

where kp is the Boltzmann constant, M is the mass of 8’Rb atom and % = W

is the ratio of volume to area of the cell considering the cylindrical geometry, where
R and L are the internal radius and length of the cell, respectively [32]. Here the T}
relaxation time is measured for the total hyperfine ground state, which includes the
contribution from all the Zeeman levels. The fitted value of T} = 25.1(0.6) ms (at
T = 300 K) gives an estimate of about 2,255 wall collisions before an atom loses its

polarized state.
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Figure 5.4: The DR linewidth as a function of laser intensity for determination of coher-

ence relazation time, T5.

The coherence between two states, measured by the transversal relaxation time,
T,, contributing the linewidth is also an influencing parameter for the clock short-
term stability. Here, the T5 relaxation time is measured only for the clock transition,
by the double-resonance mechanism (explained in Section 1.2). Extrapolation of the
clock transition linewidth (FWHM) Awv, 5 to zero pump-light intensity allows one to
extract Ty from 1.21 [149],

Avyjy = 1/(7Ty), (5.11)

A relaxation time of coherences, To = 0.87(2) ms is obtained from the line-fit as shown
in Fig. 5.4. This is in excellent agreement with the theoretical calculation giving the
value of 0.87 ms (cf. Section 5.1, Eqns. 5.5 —=5.8).
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5.3 DR signals

5.3.1 Optimization of DR signals

In these DR experiments, the clock laser head was stabilized to the 525 pky =2 —
52P3 o F, = 3 (cf. 2-3 in Fig. 2.3) direct transition on the *’Rb D2-line.
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Figure 5.5: Typical DR parameters as a function of laser intensity. Fired microwave
power P,=-40 dBm, cell volume temperature, T,,=323 K and stem temperature, Ts=513 K.
(a) DR linewidth as a function of laser intensity, (b) DR amplitude as a function of laser
intensity, (c¢) DR signal contrast (amplitude/background) as a function of laser intensity

and (d) the DR signal discriminator slope (estimated as amplitude/FWHDM) as a function
of laser intensity.

Primarily, it is worth studying the DR signal parameters and optimize for the
best possible signal-to-noise-ratio (S/N), which in turn determines the clock’s short-
term stability [32,115]. In this view, at first, the DR signal parameters were studied
as a function of laser intensity, while all other parameters were unvaried (constant)
as shown in Fig. 5.5. A laser intensity of 11 uW/mm? was chosen based on this
optimization.

Then, the DR signal parameters were studied as a function of microwave power
(cf. Fig. 5.6). Here, an useful definition of Figure of Merit (FOM), which is a ratio

of the DR signal contrast to the linewidth gives a better estimate of the optimization
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Figure 5.6: Typical DR parameters as a function of microwave power. Fizved laser inten-
sity Ip= 11 pW/mm?, cell volume temperature, T, = 323 K and stem temperature, Ts =
318 K. (a) DR signal linewidth (open circles) as a function of laser intensity on left axis,
and the right axis indicate DR amplitude (open squares) as a function of laser intensity,
(b) Discriminator (amplitude/linewidth) as a function of microwave power, (c¢) Contrast
(amplitude/background) as a function of microwave power, and (d) Figure of Merit (FOM)

(contrast/FWHM) as a function of microwave power.

as it also considers the background noise level. A similar FOM could also be used for
laser intensity. The microwave power input at the cavity coupling of P,=-30 dBm

(or 1 pW) was selected from the optimization.

Finally, the DR signal discriminator was measured as a function of the cell vol-
ume temperature T, and the cell stem temperature, T, as shown in Fig.5.7. The
optimized cell volume and stem temperatures for maximum signal are T, = 329 K
and Ty = 321 K, respectively. Note that the T, could have been increased further,
but it was not done in order to be absolutely below melting point (=~ 253 K) of the
tetracontane coating material. It is important to note that this optimization was
started by first varying the laser intensity and so on. However, it is now clear that
the better approach would be to first study the DR signal as a function of cell vol-
ume and stem temperatures, this is adopted for studying the enlarged cell in the
next chapter (cf. Section 6.1.1). The above optimized parameters were set: an op-

2

tical intensity of about 11 W /mm? on the clock cell; a microwave power of 1 pW
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Figure 5.7: Optimization of DR discriminator signal as a function of, (a) cell volume
temperature, T, at Ts=313 K and, (b) cell stem temperature, Ts at T,=329 K. The laser

intensity and microwave power were set at 11 uW/mm? and -30 dBm, respectively.

injected into the cavity; T, = 329 K and T; = 321 K, respectively. The DR signal
in these conditions is shown in Fig. 5.8. It has a narrow linewidth of 642 Hz with
an amplitude and contrast of 0.62 A and 11%, respectively. The center frequency
is vpr =Vryt+Av = 6.834682330 GHz here, giving an atomic Q-factor of 107 (from
Eqn. 1.2). These values are in good agreement with the estimated ones in Table 1.7. A
narrow DR signal gives a better discriminator slope D and hence a better short-term
stability (see Section 5.5.1). In our DR signals, we do not observe any Doppler-
broadened pedestal, that would be expected when using a travelling microwave field
due to the phase variations over the cell volume [36,141]. In contrast to the use of
a typical cylindrical cavity having TE;;; mode [101] (where the cell volume occupies
different microwave phase regions), in our magnetron cavity the cell only occupies

regions of same microwave phase; therefore the broad pedestal is suppressed.
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Figure 5.8: Double-Resonance signal with a linewidth of 642 Hz and a contrast of 11%.
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In the following sections we will see the measurements on the physical effects

causing perturbations on the centre frequency of the DR signal, vpg.

5.4 Perturbation studies on clock transition

As we came across in Chapter 1.5 in detail, though first-order shifts due to magnetic
field variations are absent on the clock transition frequency, the other parameters,
such as, the 2nd order Zeeman shift, variations in laser intensity and frequency, the
power fluctuations of microwave, and the residual temperature fluctuations can in-
duce shifts on the clock transition and degrade the clock stability on medium- to
long-term time scales. Therefore, control or suppression of the influence of these ef-
fects is needed for improving the clock performance. In Section 4.5.1 we have seen
that the magnetic shields reduce the 2nd order magnetic variations on the clock tran-
sition to a level of < 3x107'%. In this Section, we present quantitative measurements
of AC Stark shift (cf. Section 1.5.2) (also referred to as intensity or frequency light-
shift), microwave power shift (cf. Section 1.5.5) and temperature shifts due to the
temperature dependence of the cell’s volume and stem. The temperature shifts oc-
curing in a wall-coated cell are due to interaction of atoms with the wall as explained
in Section 5.1. This is different to the atom interaction with buffer gases that was
explained in Section 1.5.3. The experimental studies of atom interaction with coated
walls is presented in a dedicated Section 5.4.3. Influences of these perturbations on

the clock instability are also evaluated quantitatively.

5.4.1 Light-shifts

The light-shift (LS) of an electromagnetic field on the clock transition was discussed
in Section 1.5.2. The measurements relevant to the wall-coated cell physics package

are done and presented in the sections below.

(i) Intensity light-shift coefficient («) and its reduction by laser detuning
method

The intensity LS coefficient, o, can be written as o = ‘55” 75 at a fixed laser frequency.
Experimentally, we determine « by measuring the clock frequency as a function of
laser intensity, for the laser frequency stabilized to three different sub-Doppler tran-
sitions on the "Rb D2-line F, = 2 state (see Fig. 2.3), the LS data is shown in

Fig. 5.9(a). The fitted slopes give the intensity LS coefficients « for the particular
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laser frequency as explained in Fig. 1.13. The lowest value, obtained for the laser
stabilized to the F, = 2 — F, = 3 direct transition in the LH evacuated reference
cell, is a = +2.3(1) Hzzmm?/uW.
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Figure 5.9: (a) 8"Rb frequency shift as a function of the interrogating laser intensity,
slope gives the intensity LS coefficient, o, (b) dependence of o on laser frequency detuning
is shown with reference to the locked transitions using an evacuated Rb cell. The inset
labeling of the 3" Rb transitions correspond as follows; 2-3:Fy=2 — F.=3, CO22-23:F;=2
— Fo=2,8 cross-over, and CO21-23:Fy=2 — F,=1,3 cross-over.

Extrapolation to zero laser intensity gives the value of the clock frequency shift,
Av = vpr — Vg, corrected for LS effects, and which is mainly determined by the
wall-coating, in this case it is Av = -370(4) Hz (see Section 5.4.3 for details). The
dependence of the intensity LS coefficient, a, on the laser frequency is shown in
Fig. 5.9(b). One can reduce the effect of intensity LS by detuning the laser frequency,

vy, closer to vy, where « is small [21]. In our experiment, we adopt the AOM laser
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head (cf. Section 2.2.2) for detuning the laser frequency by -131 MHz before stabiliz-
ing the frequency-shifted beam to the F, = 2 — F, = 1,3 cross-over resonance. Using
the unshifted laser frequency for the clock (i.e. detuned by +131 MHz with respect to
F, =2 — F, = 1,3 cross-over), a reduced coefficient o¢q, = -0.057(4) Hz-mm?/uW
was measured, which is a reduction in « by a factor of ‘40’

Influence on clock instability:

Though the intensity LS influences the clock instability at all integration times, main
limitations result on the medium- to long-term time scales. Hence, we estimate the
LS contribution to clock instability at 10* s. When the laser frequency is stabi-
lized to the I, = 2 — F, = 3 direct transition, the intensity LS, is measured to be
la| = 2.3(1) Hzzmm?/uW (cf. Fig. 5.9(a)). The intensity LS contribution on the

clock frequency can be estimated by,

. i

VRb

where the relative stability of the laser intensity in terms of Allan standard devi-
ation at 10* s is measured to be o;, = 5x1073. At the operating laser intensity,
I, =11 pW/mm? (chosen for optimized short-term clock stability, see Section 5.5.1),
the contribution to the clock instability, o, is estimated as 1.8x107! at 10* s. Using
the AOM for reduction of the intensity-LS («/) results in a stability limit of 4.5x107'3.

(ii) Frequency light-shift coefficient () and dependence on laser intensity

The frequency LS coefficient is explained in Section 1.5.2(B), as § = %’TLLS. At different

fixed light intensities, the value of 5 is evaluated as the slope of the line-fits is shown
in Fig. 5.10(a). The zoom-inset at the zero laser detuning frequency again shows the
measure of the clock frequency shift, Av ~ -372+4 Hz, when unperturbed by LS.
Dependence of the frequency LS coefficient 5 as a function of pump-light intensity is
shown in Fig. 5.10(b) and is linear in Iy, as expected from Eqn. 1.42. Frequency LS
can be nullified, e.g. in pulsed mode [56]. In the continuous-wave operation discussed
here, this is not possible, but we can reduce the effect of 8 by operating at low light
intensities as the optical Rabi frequency is reduced (cf. 1.42) [95] or high buffer gas

pressures [96].

Influence on clock instability:
We estimate the influence of the frequency LS on the clock’s instability at 10* s. At a
light intensity of 11 yW/mm?, the value of 3 = 413.8(4) mHz/MHz. The stability of
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Figure 5.10: (a) Clock frequency shifts as a function of the laser frequency detuning
corresponding to optical transitions as shown in Fig. 5.9(b). The slopes give the frequency
LS, B, and (b) the dependence of 8 on laser intensity.

the laser frequency, opr, at 10* s measured by beat note method [106] is < 5x 1072
and vy, = 384.23 THz. Similar to Eqn. (5.12), we find a contribution of frequency LS
to the clock instability as o5 = 1.2x107'3 at 10* s (also see Table 5.5).

5.4.2 Microwave power shift (preliminary)

The microwave power shift on the clock frequency was measured as a function of
microwave power input into the cavity with the laser stabilized to F;, =2 — F, = 3
direct transition. From Fig. 5.11, a linear-fit gives a shift rate or power-shift coef-
ficient, 0, = 3.4(2) Hz/dBm (~ 7.8(4) Hz/uW at P, = 1 uW). This shift is not

negligible, thus requiring a good power stability of the microwave synthesizer.
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Figure 5.11: Frequency shift as a function of microwave power.

Influence on clock instability:

The power stability of our synthesizer is measured to be o, = 1x10~* at 10* s. With
an input power of P, = 1 uW, the instability contribution on the clock at 10? s is
estimated to be o, = 1.1x107" (see also Table 5.5).

We note that the work of Risely et al. [54] shows that the use of wall-coated
cells reduces the microwave power shift to < 0.2 Hz/dBm, which is not observed
here. This discrepancy is yet to be studied in detail in wall-coated cells, but as a
first approximation, we attribute this to the contribution from light intensity effects.
Furthermore, in Chapter 6 we observe that the microwave power shift is influenced
by light intensity, i.e., the value obtained as microwave power shift also includes the
effect of light shift in it. The value at zero light intensity can give a pure microwave
power shift in the ligh-shift free regime; such a measurement was done in Section 6.2.2.
A further validation of this influence of light-shift on the microwave power shift value

is clearly evidenced and presented in detail in Section 6.3.2.

5.4.3 Temperature coefficients

As shown in Fig. 3.1, the wall-coated cell has two regions (7, and T) that are sepa-
rately controlled in temperature. The temperature coefficient (TC) of a wall-coated
cell is an intrinsic property of the coating material [55], where the variations in temper-
ature determine the interaction of atoms with the wall-coating and its impact on their
polarization state (see Section 5.1). The TC experiments were performed below the
paraffin melting point (~353 K) [145]. The laser was stabilized to Fy; =2 — F. =3

(see Fig. 2.3) at an input fixed light intensity of ~ 11 W /mm? and microwave power
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of - 40 dBm. Dependence of the clock frequency shift on T, is shown in Fig. 5.12(a), its
linear-fit slope gives the cell-volume temperature coefficient, 7C,, = +1.39(5) Hz/K
~ 2x10719/K. This behavior is related to the adsorption process of the alkali atoms

on the coated walls according to Eqn. 5.3. Therefore, the temperature coefficient of

the cell volume from Eqn. 5.4, TC, = d%w = —%. The wall shift depends on

the cell temperature, and can vary for different coating materials and this shift can

change over time depending on the modifications in the coating material [141,150].
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Figure 5.12: (a) Clock frequency shift from vgy as a function of cell volume temperature,
T,, when T is kept constant at 313 K. The closed triangles depict the measured data and
the dashed line shows the fit to the data with a cell volume temperature coefficient of TC,
= +1.39(5) Hz/K, and (b) Clock frequency shift from unperturbed level as a function of
stem temperature, Ts, when T, is kept constant at 329 K. Closed diamonds show the
experimental data and the dashed line is a linear fit, with a stem temperature coefficient of
TCs = +0.22(3) Hz/K. The laser intensity and the microwave power were kept constant

during both measurements of the temperature coefficients.

In our case, the wall shift extracted from Fig. 5.9 is Ay, = -370 Hz. The average
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adsorption energy of Rb on the coating is calculated as, F, = 0.036 eV. This value is
in close agreement with previously reported studies [141,145] (see Table 5.2). Part of
T'C, might be due to the Rb-Rb spin-exchange effect due to any metallic Rb present in
the cell volume, but as we have not observed any Rb droplets in the cell volume, this
effect can be neglected. On the other hand, the effect of spin-exchange due to change
of Rb density with the stem acting as reservoir is 10-times smaller in comparison with
TC, (see below).

Table 5.2: Comparison of the adsorption energy values with other works.

Reference | E, [eV]
[141] 0.06
[145] 0.062

This work 0.036

A similar shift of the clock frequency due to the stem temperature is measured
to be TCy, = +0.2(2) Hz/K ~ 3(3) x 107''/K as shown in Fig. 5.12(b). Because
the cell stem contains the reservoir of liquid Rb, we mainly attribute this shift to
the influence of the atomic density and the related spin-exchange effect, as explained
in Section 1.5.4 (also see [75,76,141] and references therein). The shift of the clock
frequency due to spin-exchange can be calculated according to Micalizio et al. [76] by
the Eqn. 1.45 (see Section 5.4.4).

Influence on clock instability:

From measured variations in the cell’s temperature control (o7 = 10 mK at 10* s),
the clock instability due to the temperature coefficient of the cell-volume is estimated
as o¥%ume = 2x 10712, and the contribution on the clock frequency instability due to
stem temperature coefficient is o5&™ = 3.2x107'*. The limit due to the TC of the
cell-volume is thus the dominating one for the clock instability, with the stem’s TC
being one order of magnitude smaller. The influences of physical parameters on the

clock instability in medium to long-term time scales are summarized in Table 5.5.

5.4.4 Spin exchange frequency shift

The spin-exchange collisions that are responsible in giving rise to the frequency shift
of the clock transition were explained in Section 1.5.4 (Eqn. 1.45), as function of

temperature. In our wall-coated cell, the temperature of the stem T, determines
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the density of Rb atoms inside the cell volume and the velocity of atoms in the cell
volume are dictated by the temperature T,. At a fixed T, = 329 K, the velocity
of the atoms inside the cell calculated by the formula 1.46 is ~ 28300 cm/s and the
atomic density at 313 K is n = 8x10'° cm™3. In our case, the atoms are pumped
from Fy, = 2 state, therefore the population difference between two clock levels is
A = -1/3 [76,99]. We calculate the spin-exchange frequency shift from Eqn. 1.45,
Avsp ~ 0.2 Hz or AV—;;“ ~ 3x1071,

The relative shift dependent on temperature locally in our operating range can
be calculated from the Eqn. 1.47. In the temperature range of T, between 313 K to
325 K (cf. Fig.5.12(b)), the increase in every kelvin temperature increases the atomic
density by 6%. Therefore, the calculated temperature related spin-exchange ATsp &~
7x10712 /K.

5.5 Wall-coated cell clock stability

5.5.1 Short-term noise budget

(i) Signal to noise estimation

The short-term stability (1 to 100 s) of a passive rubidium frequency standard can
be predicted [31] by Eqn. 1.35, with a known, total detection noise power-spectral-
density Npsq when microwave and pump laser are switched on (in closed clock loop
condition) and the discriminator slope D of the clock error-signal close to the line
centre. The typical measured parameters, estimated signal-to-noise (S/N) limit and
shot-noise limit are presented in Table 5.3. Measured noise density, N,s, includes the
contribution of PM-to-AM noise conversion in the clock cell [86,87]. Using Eqn. 1.35,
the S/N limited short-term stability is calculated as 1.3x10712 77%/2. The shot-noise
limit of the clock occurring due to the statistical nature of the photons arriving at
the detector [91] can be given by Eqn. 1.38 is calculated as 3.3x 10713 771/2,

(ii) Phase noise estimation

The limit due to LO intermodulation effect is given by Eqn. 2.3 and for the clock loop

modulation frequency, f,, = 193 Hz, considering its even harmonics up to 100 kHz it

is calculated as 0,(7) parnoise = 6x 10713 771/2,
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Table 5.3: Noise budget and estimation of signal-to-noise and shot-noise limits. The

discriminator slope D is measured from the error signal of the DR curve.

Parameter Value
FWHM 642 Hz
Contrast 11.3%
Discriminator, D 0.41 nA/Hz
Npsa 5.1 pA/vHz
S/N limit 1.3x10712 7—1/2
Shot-noise limit 3.3x10713 +—1/2

(iii) Light-shift estimation

The intensity and frequency light-shifts also influence the short-term stability of the
clock (as explained in Section 1.4.4), via the laser’s intensity and frequency instabil-
ities, which perturb the clock transition on short-time scales. Table 5.4 summarizes

these effects and resulting limits on the short-term clock stability.

Table 5.4: Intensity and frequency light-shift contribution to the clock’s short-term insta-
bility.

Physical effect Coefficient Variation Formula | Inst. [r~1/?]
Intensity- 2.3(1) Hz-mm?/uW Laser int. instab.: 1.36a 1.1x107 13
LS effect, |af oar, /1, (1)< 3x107°

Frequency- 413.8(4) mHz/MHz Laser freq. instab.: 1.36b 9.3x10~ 14
LS effect, |3 o1 p=4x 10712 (1-100 5)

Total LS instab., org 2%x10~13

(iv) Sum of contributions on short-term stability

Eventually, the overall short-term clock stability can be estimated from the sum of
the squares of the individual limits by Eqn. 1.37 as 1.5x107'2 771/2,

5.5.2 Measured short-term stability

The experimentally measured short-term stability of the DR clock using the paraffin-
coated cell is shown in Fig. 5.13. The measured short-term stability of 2.75x 10~ 127~1/2
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Figure 5.13: Measured clock stability using the wall-coated Rb cell. Closed (red) circles
show clock stability data without intensity LS compensation; open (blue) circles denote the
clock stability with intensity LS compensation by the detuning method. The dotted line rep-
resents the measured clock short-term stability of 2.75x 10~ 2771/2 the solid line indicates
the estimated total limit, and dash-dotted line shows the shot-noise limit of 3.89x 10~ 3771/2,

is in reasonable agreement with the estimated stability of ~ 1.5x1072 7=1/2. The
short-term stability is mainly limited due to the S/N limit that includes the contri-

bution of laser PM-to-AM noise conversion in the clock cell [87].

5.5.3 Medium- and long-term stabilities

The medium-term stability is influenced by the sensitivities measured before, such
as, the light-shift, and temperature coefficients. The light-shift coefficient is sup-
pressed by the use of AOM detuning method, however the clock stability is limited
to around 2x107!2 at 10* s by the temperature coefficient of the coating material
(1.39(5) Hz/K). This limitation is an intrinsic property of the coating material and
hence gives the ultimate limit for this particular clock, unless improvements on the
temperature control of the cell are implemented. Figure 5.13 shows the clock medium-
to long-term stability without laser detuning (closed circles) limited to 1.8x107 due
to intensity light-shift effect and the second run (open circles) where intensity light-
shift effect is reduced by a factor of ‘40’ by using the AOM LH, as predicted (see
Table 5.5).

A linear drift of +8.5x10712/day was measured, including also the ageing of the

coating material. In order to reach the level of < 1x10~!* after one day integration
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Table 5.5:

transition in medium to long-term time scales.

Summary of instability contributions of physical perturbations on the clock

Physical effect Coefficient Variation Instab. at 10% s
Intensity LS effect |a 2.3(1) Hzzmm?/pyW | 53x10~2 W /mm? 1.8x1071!
Redu. int. LS |ayedul 0.057(4) Hzmm?/uW | 53x1073 W /mm? 4.5x10713
Frequency LS effect, |8] | 413.8(4) mHz/MHz <1.93 kHz 1.2x10713
Cell volume TC |T'C,| 1.39(5) Hz/K 10 mK 2x10712
Stem TC |[TC,| 0.22(3) Hz/K 10 mK 3.2x10713
Microwave PS ¢ |ups| 7.8(4) Hz/uW 2x107™1 uW 2.2x10713
Spin ex. shift |ATsg| 7x10712/K 10 mK 7x10714
Cavity pulling |Avep| 4.6 mHz/K 10 mK < 6.8x10715

®This is to be confirmed. However, it will not be a limiting factor as in wall-coated cells the
microwave PS is reduced [54], and already this reported instability contribution is lower than the

limits arising from the cell’s TC or intensity LS coefficient.

time, further suppression and control on the light-shift effect, and that of the TC to
< 6.8 mHz/K is required. A linear drift possibly due to degradation of the coating
was measured in the D1-line (795 nm, in a parallel study), and -7x107'°/month (or
-2.4x107 /day) was observed [151].

5.6 Conclusions

Investigations on the paraffin coating material characteristics were performed by mea-
suring the 77 = 25 ms and T, = 0.9 ms relaxation times for a wall-coated Rb cell,
and have shown that a polarized Rb atom undergoes about 2,255 wall collisions (at
300 K) before losing its polarized state. The optical-microwave double-resonance spec-
troscopic studies with a paraffin coated cell inside a TEq;; magnetron cavity showed a
narrow linewidth of < 650 Hz with a large signal contrast > 11%. Systematic studies
of the parameters that influence the medium to long-term stability - notably by the
perturbations due to intensity and frequency light-shift effects, microwave power shift
and shifts on clock transition due to temperature variations that occurs due to the
atom-wall interactions were quantified and their instability contributions on the clock

were estimated.

We showed that wall-coated cells can be used for realization of high-performance



108 5.6. Conclusions

Rb clocks even when using small cells (1.4 cm® volume) in view of compact clocks ex-
hibiting the short-term frequency stability of <3x 1072 7=1/2. Measured clock stabil-
ities are in agreement with the calculated limits on both the short-term and medium-
term time-scales. Using detuning of the laser frequency, the limitation to medium-
term clock stability arising from the intensity light-shift effect was suppressed, which
results in the clock stability being limited by the temperature coefficient of the coat-
ing at 2x107!2 level. This temperature coefficient could in principle be compensated
by adding a small amount of suitable buffer-gas to the cell. This possibility was
discussed previously [152,153] for linewidth studies, but not for compensation of the
temperature coefficient of the coating.

Use of wall-coatings also is of high interest to achieve narrow line-widths from
cells of smaller dimensions or even microfabricated cells [154], but better coating
materials allowing for a higher number of wall collisions at higher cell temperatures
are required. Recent work of Seltzer et al. [153] on octadecyltrichlorosilane (OTS)
shows that the coating can sustain higher temperatures up to 170 °C. Surface science
techniques help to characterize the quality of the coating materials to the precision of
monolayers [155,156]. However, the influence of this coating’s temperature coefficient
on the clock transition is not yet known and may be expected to have an important

impact on the achievable clock stability.



Chapter 6 Spectroscopy and Clock
with Enlarged Buffer-Gas
Cell

If I have seen further than others, it is by standing upon the shoulders of
giants.

-Issac Newton

The short-term frequency stability of a clock (in terms of Allan deviation) is in-
versely proportional to the atomic quality factor and to the signal-to-noise (S/N)
ratio [32]. This implies that a narrow linewidth of the atomic clock signal increases
the atomic quality factor and thereby improves the short-term clock stability (cf. Sec-
tion 3.3). A larger dimension of the rubidium cell results in a higher atomic quality
factor and allows interrogating more atoms with the standing microwave field, and
gives a better S/N ratio (see Section 3.2.3). The number of active atoms participating
in giving the DR signal could be increased by increasing the cell volume (considering

the operation at similar temperatures as the conventional clocks).

With the above motivation, this chapter investigates the possibility and poten-
tial of using an enlarged cell of 25 mm diameter (cf. Section 3.2.2) filled with 8"Rb
and a mixture of buffer gases. The magnetron cavity that accommodates this cell
and resonates at 6.835 GHz was especially developed in this work that was seen in

Section 3.5.1 and the overall physics package assembly was shown in Section 4.3.

This chapter is dedicated for metrological investigations of the 25 mm cell physics
package and its clock performance studies in short- medium- and long-term time
scales using the clock laser head (cf. Section 2.2.1). Similar experiments were done
using the prototype and the optimized cavities (cf. Section 3.5). Here we present the
results of the optimized cavity with the clock laser head. However, a comparison will
be made in short-term performance with that of the prototype cavity results. Also,

use of the AOM laser head with prototype cavity is demonstrated in this chapter.
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6.1 Studies using the clock laser head

6.1.1 DR signals
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Figure 6.1: Typical DR parameters as a function of laser intensity (Ip). Fized mi-
crowave power P, = -8/ dBm, cell volume temperature, T, = 336 K and stem temper-
ature, Ty = 321 K. (a) left axis: DR linewidth (open circles) as a function of Iy, and
right azis: DR amplitude (open squares) as a function of I, (b) DR signal contrast (Am-
plitude /background) as a function of Ir,, (c¢) Discriminator slope as a function of I, and
(d) the Figure-of-Merit - FOM (Contrast/FWHM) as a function of I1,. Note that the laser
intensity values on z-scaling is not calibrated after the telescope assembly, rather it is the
intensity at the input of the telescope assembly. The values seen by atoms after the telescope

assembly is approximately two orders of magnitude less.

The characterization of 25 mm buffer gas cell was performed as a function of laser
intensity and microwave power, similar to the procedure explained in Section 5.3.1.
The laser frequency was stabilized to CO10-11 transition (cf. Fig. 2.3). At first, the
cell temperature coefficients were measured (cf. Section 6.2.3) and the cell volume
temperature was regulated at the minimum TC condition, i.e. at the inversion tem-

perature value of T, = 336 K and the stem temperature was set at Ty = 321 K. The
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Rb atomic density inside the cell volume is mainly determined by the stem tempera-
ture T, however if there are any Rb metallic droplets present inside the cell volume,
they contribute strongly to the Rb atomic density. Because we temperature regulate
our clock vapor cell, such that T, < T,, depending on the amount of metallic Rb
present inside the cell volume, it will take up to a duration of few days to couple of
months for this metallic Rb in cell volume to move into the stem (reservoir). This
effect is studied in Section 6.4.5.
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Figure 6.2: Typical DR parameters as a function of microwave power. Fized laser intensity
I = 35 uW/mm?, cell volume temperature, T, = 333 K and stem temperature, Ts = 321 K.
(a) DR signal linewidth (open circles) as a function of input microwave power (up) into the
cavity on left axis, and the right axis indicates the DR amplitude (open squares) as a function
of input up, (b) Contrast (Amplitude/background) as a function of up, (¢) Discriminator
(Amplitude/linewidth) as a function of wp, and (d) FOM as a function of pp.

The DR signal parameters as a function of laser intensity is shown in Fig. 6.1, the
microwave input power was approximately set around -34 dBm. Note that the laser
intensity values on x-scaling is not calibrated after the telescope assembly, rather it is
the intensity at the input of the telescope assembly. The values seen by atoms after
the telescope assembly is approximately two orders of magnitude less. Through-

out chapter 6 the laser intensity values are considered at the telescope input. In
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Fig. 6.1(a), extrapolation of the linewidth (FWHM = Auwy/,) to zero laser intensity,
we get the value of intrinsic linewidth as 180 Hz. This determines the linewidth that
is broadened by the mechanisms discussed in Section 1.3 and compares well with our
calculated value of 160 Hz in Table 1.3, which is approximately two times narrower
than coated 14 mm cell. The coherence relaxation time of the clock transition can
thus be calculated using Eqn. 1.21 as 1.8 ms; this value is a factor of two higher than
that obtained for the wall-coated cell of 14 mm diameter (cf. Section 5.2.2).

Once the optimum value for input laser intensity was obtained, for instance in
the above optimization (Fig. 6.1) it is I;, = 35 yW/mm?, this parameter is fixed
(kept constant) and then the DR signal optimization was done as a function of input
microwave power as shown in Fig. 6.2.

The optimized laser intensity of 35 uW/mm? and microwave power of -34 dBm
were input to the physics package and the measured optimized DR signal is shown in
Fig. 6.3. The DR signal has an amplitude of 0.48 pA, a linewidth (FWHM, Avy )
of 334 Hz, and a contrast of 26 %. The theoretically estimated total broadening
of 350 Hz (cf. Table 1.6) matches well with the measured value of Avy/, = 334 Hz
(cf. Fig. 6.3). The shift of the Rb-hyperfine centre frequency vg, due to buffer gas
pressure (19.5 torr) is measured as 3390 Hz, this is in excellent agreement to the
estimated value of 3385 Hz (see Section 1.5.3). The error signal corresponding to
the DR lorentzian is shown in the inset of Fig. 6.3. This is obtained by frequency
modulating the DR signal as explained in Section 1.4.4. A linear fit to the error signal
gives a discriminator slope of 1.52 nA/Hz, this is in good match to > 90% with the
estimated value of D (~ A/Avy)5) = 1.44 nA/Hz.

6.2 Perturbation studies on clock transition

Similar to the perturbation effects studied in Section 5.4, we experimentally evaluate
the effects due to light, microwave and temperatures on the clock’s frequency in
medium- to long-term time scales. The experiments presented in this section were

performed using the clock laser head (Da-line, no AOM, cf. Section 2.2.1).

6.2.1 Light-shifts

The AC Stark shift of the electromagnetic field on the clock transition is an un-
avoidable phenomenon when in CW operation as explained in Section 1.5.2. Further,

we measure the effect separately as a function of laser intensity, known as intensity
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Figure 6.3: DR spectroscopic stgnal with the 25 mm BG cell. It exhibits an ampli-
tude A = 0.48 pA, background level Bk = 1.82 uA and contrast C = 26% and linewidth
Avy sy = 334 Hz. The microwave centre frequency was set to 6.854686 GHz that is higher
than vgy by 3390 Hz due to a buffer gas pressure of 19.5 torr. The inset shows the de-
modulated error signal with a discriminator slope of D = 1.52 nA/Hz, to which the mi-

crowave synthesizer is stabilized at the centre.

light-shift coefficient, a and as a function of laser frequency, the frequency light-shift

coefficient, 5.

(i) Intensity light-shift coefficient, «

Figure 6.4(a) shows the relative clock frequency shift as a function of laser intensity
impinged on the physics package. The intensity light shift coefficient was measured
for the laser stabilized to three optical reference lines in the evacuated reference cell,
i.e., 2-3; CO22-23; and CO21-23 on F, = 2 and one transition CO11-01 of F; = 1 (see
Fig. 2.3). The clock shift (y-scaling) is in relative frequency units referred to active
H-maser. Note that the y-scaling of all the graphs in this chapter are in relative
frequency shift; referred to the active H-maser reference frequency. The lowest value
obtained for CO11-01 transition is -2.85(2)x 1072 mm?/uW.

Figure 6.4(b) shows the intensity light-shift coefficient, o as a function of laser
frequency detuning. This quantifies the detuning required in laser frequency from
a given sub-Doppler transition, in order to reduce the effect of intensity light shift,
a on the clock transition (similar to as discussed in Section 5.4.1). For example,
for the CO22-23 transition, a detuning of 102+5 MHz is required to substantially
reduce the effect of intensity LS. Furthermore, the detuning of laser frequency has

been experimentally demonstrated using the AOM laser head in Section 6.3.1. It is
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also possible to tune the optical line by buffer gas pressure [21,96]. From Fig. 6.4(b),
we need a negative detuning of ~ 23 MHz to CO21-23 line in order to reach almost
zero intensity LS coefficient «, this can be achieved by reducing the BG pressure
by ~ 1.3 torr [67]. This reduction in pressure would also impact in reducing the
FWHM and § (by operating at lower light intensities to get similar DR signal). The

contribution due to « on clock’s frequency is evaluated in Table 6.4.
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Figure 6.4: (a) Clock frequency shift as a function of laser intensity for different Rb sub-
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is referred to active H-maser. (b) Estimated detuning required to suppress the intensity LS.
Zero on the x-scale represents the zero on Fig. 1.13 and defines the reference point to which

the detuning from optical transitions is required to get zero LS coefficient .

(ii) Frequency light-shift coefficient,

The frequency LS coefficient is explained in Section 1.5.2(B), as § = 5(;’ Ls = By fixing

VL
the laser intensity, the value of § evaluated as the slope of the line-fit is shown in
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Fig. 6.5(a). The frequency LS can be nullified, e.g. in pulsed mode [56]. In the
continuous-wave operation discussed here, this is not possible. However, one can
reduce the effect of § by operating at low light intensities as shown in Fig. 6.5(b),
which is linear in Iy, as expected from Eqn. 1.42. Unlike the wall-shift explained in
Fig. 5.10, here the zoom-inset at zero laser detuning frequency shows the uncertainty
in measuring the BG shift. At the operating intensity of I;, = 35 uW/mm?, the value
of 8 =12x10"'® Hz~! (or 82 mHz/MHz), and its effect on clock frequency instability
is evaluated in Table 6.4
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excited state transitions [21].
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6.2.2 Microwave power shift

The microwave power shift in buffer gas cell is an unavoidable phenomenon, because
the atoms are relatively motionless during the interaction, thereby causing the de-
tected overall signal to be an inhomogeneous integration over the occuring spatial
gradients (cf. Section 1.5.5). This is measured by fixing the laser intensity and by
quantifying the dependence of clock frequency as a function of the microwave power
input to the cavity. The process is repeated for different laser intensities and at each
microwave power, the value was extrapolated to zero laser intensity, I, hence it is
light-shift free measurement. Finally, the slope of these values as a function of mi-
crowave power gives the pure microwave power shift on the clock frequency. A shift
of < 5x107!3/dBm was measured, as shown in Fig. 6.6. Its effect on medium to

long-term clock frequency is evaluated in Table 6.4.
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Figure 6.6: Clock frequency variation as a function of injected microwave power into the

cavity (MWR).

This value of microwave PS (reported in Fig. 6.6) is three orders of magnitude
lower than that reported for wall-coated cell (cf. Section 5.4.2), where we had not
nullified the effect due to the light shift. Also, note that the intensity light shift value
for wall-coated cell (e.g. o = 2.3 Hz-mm?/uW) is two orders of magnitude higher than
that for the buffer gas cell case (o = 19.5 mHz-mm?/uW). At this reduced intensity
light-shift coefficient (a/), the microwave PS coefficient (in Hz/dBm) depends on the
interrogating laser light intensity as shown in Fig. 6.7. For instance, at an input laser
intensity of ~ 8 uW/mm?, one can nullify the effect of microwave power shift. A clear
experimental validation of this dependance of LS on microwave PS is done using the
AOM LH at reduced light-shift values in Section 6.3.2.



Chapter 6. Spectroscopy and Clock with Enlarged Buffer-Gas Cell 117

25 T

o | R 1
s

15 1

05 T

0.0
/E Optimum:

2

05 -8 #W/mm
1

T T

-10 0 10 20 30 40 50 60 70

Laser intensity, I, [uW/mmﬁ

Microwave PS [x10 "~ dBm]
5
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+8.9(6)x 107 mm2uW=t-dBm=t. The laser was stabilized to the CO11-01 transition
(cf. Fig.2.3) and had an intensity LS o = -19.5 mHzmm? /uW.

6.2.3 Temperature coefficients

A major drawback of the use of paraffin coated cells to get a better medium and long-
term stability was the temperature coefficient due to the coating material (tetracon-
tane, in our case). In the 25 mm cell studied here, the mixture of argon and nitrogen
are used as buffer gases with a ratio, r = g—;‘r; = 1.6, and a total pressure of 26 mbar
(19.5 torr). From Table 1.4, argon has a negative linear temperature coefficient,
whereas nitrogen has a positive linear temperature coefficient and due to their (much
smaller) quadratic temperature coefficients, the mixture of these two at a certain
temperature can give, in principle a “zero” (or inversion point) temperature coeffi-
cient [32,98]. For our gas mixture we calculate a zero temperature coefficient around
63+1 °C (or 336+1 K) from Eqn. 1.44. The inaccuracy in determining the TC value
is because of practical reasons that when sealing the cell, the pressure can vary by

about 5% and also due to the uncertainties of the BG coefficients [157].

When the stem temperature was fixed (Ts = 321 K), a good temperature coef-
ficient value of T'C,, = -1(1)x1072/K has been achieved at the inversion tempera-
ture point by a linear fit (cf. Fig. 6.8(a)), and the quadratic TC gives a value of
-4.34(4)x10712 /K2 The temperature coefficient was also measured as a function
of the stem temperature changes (cf. Fig. 6.8(b)), at fixed T, of 336 K. Table 6.1
shows the measured temperature coefficients for the Ar/Ny buffer gas mixture in our

enlarged 25 mm cell having a total pressure of 26 mbar (19.5 Torr).
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Table 6.1: Measured coefficients (from Fig. 6.8) of Ar and No BG mixture contributing to
the temperature coefficient of the Rb vapor cell. This measured data matches well with the

calculated ones in Table 1.5.

B [Hz-Torr~!]
175.25

§' [Hz-Torr—!.°cC~!]
9%x10~2

7" [Hz-Torr—!.°cC~2]
-0.74x1073

Measured

6.2.4 Spin exchange frequency shift

The spin-exchange collisions that are responsible in giving rise to the frequency shift
of the clock transition were explained in Section 1.5.4 (Eqn. 1.45), as function of
temperature. In our BG cell PP, at an operating cell volume temperature T, =
336 K, v, =~ 2.86x10* cm-s™!, and at the stem temperature of Ty = 321 K the Rb
atomic density n = 2x 10" em=3. For the condition in which atoms are pumped from

F, = 1 state, A = 4+1/5. Therefore, with the above values in Eqn. 1.45, one gets an
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absolute frequency offset of Avgg ~ -0.3 Hz or AV”—;E = -4.6x107. The dependance
on temperature in our stem operating range around 321 K, we can consider that the
Rb density increases 10% for increase in every kelvin, hence we calculate ATsp ~
-5x 1072 /K. This value is about a factor of two smaller than the observed stem TC
shift of TC, = ~1.2x107" /K (cf. Fig. 6.8(b)) and also has an opposite coefficient.
We call the observed effect, which is not due to Rb density changes as stem “fast”
effect and analyze by attributing it to the geometrical effect of the cell and stem as
discussed briefly below and quantified in Section 6.4.4.

This “fast” effect may be interpreted as a standard temperature coefficient re-
sulting from the unavoidable overall cell temperature gradient, resulting from any
temperature change in the stem. This effect could also occur due to the presence of
any metallic Rb in the cell volume. The TC effect observed due to stem is termed
as “fast effect” to distinguish the effect that will be observed further over long-time
scales (cf. Section 6.4.3). A change in Rb density was recorded by measuring the
Doppler absorption profiles by changing the stem temperatures. It was verified that
at the short timescales (few minutes to 1 hour), no change in the Rubidium density
was observed. Such a change in Rb density was however seen by waiting sufficiently
long (> few hours to days) as shown in Fig. 6.9. This we term as “slow effect” due

to stem temperature changes, which will be explained in Section 6.4.3.
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Figure 6.9: Change of Doppler absorption of the clock cell by changing the stem temper-
ature from 323 K (dotted line) to 330 K (solid line). The trace of 330 K was measured

1.5 days after the change of stem temperature was made.

The above analyzed perturbing parameters and their influence on the clock’s sta-

bility at 10* s is summarized in Table 6.4. The consideration of 10* s is optimal in
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view of accessing the medium- to long-term stability of clock, and is also accesible

via relatively short data sets of one to few days only.

6.3 Studies using the AOM laser head

The spectroscopic studies using the AOM laser head are presented in this section.
We have not used the AOM laser head for the clock stability studies, as the intensity
light-shift value obtained by the clock laser head (cf. Section 6.2.1) is sufficiently
small to reach medium- to long-term time scales below 1x 10714 level (cf. Table 6.4).
The prototype cavity was used in these studies (purely due to logistical reasons of the
availability of the cavities). This however will not affect the kind of studies done here,
except for the microwave power shift, which can have values further reduced by using

the optimized cavity.

6.3.1 Reduction of intensity LS effect by detuning method

The intensity LS contribution can be significantly reduced to a negligible value by
detuning the laser frequency using an Acousto Optical Modulator (AOM). To facili-
tate this possibility, a stabilized laser head with integrated AOM was developed (cf.
Section 2.2.2). The detuning required from a particular sub-Doppler transition was
estimated in Fig. 6.4(b). The a LS coefficient measured for different laser frequency
fine detunings with respect to the CO22-23 atomic transition using the AOM laser
head is shown in Fig. 6.10(a). At a detuning of 108.5 MHz, we observe a minimal
value of a giving 6.6(4)x 107 mm?/gW. This value is lower by a factor of ‘43’ com-
pared to that measured with the clock laser head (cf. Section 6.2.1). By carefully
adjusting the frequency detuning, one can reduce the intensity LS coefficient o value

to be even less.

Figure 6.10(b) shows the laser frequency light shift, 8 as a function of the laser
input intensity. Here, for example, the value at 35 W /mm? is increased by a factor
of ‘1.5” in contrast to the value obtained by the clock laser head (cf. Fig. 6.5(b)). This
could be due to the tricky task of precisely measuring the incident intensities in the
two cases studied. It is useful to quantify for this additional noise at future stages,

when AOM is required for the clock operation.
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Figure 6.10: (a) Intensity LS, o measured using the AOM laser head for CO22-23 tran-
sition corresponding to estimation done (see Fig. 6.4(b)), and detunings are shown in the

inset. (b) Frequency LS, B as a function of input laser intensity, extracted from graph (a).

6.3.2 Microwave power shift

At a reduced intensity light-shift condition, it was appropriate to study the depen-
dence of clock frequency shift upon the microwave power. Figure 6.11(a) gives the
microwave power shift coefficients ppg (clock frequency change as a function of in-
jected microwave power into the cavity).

The dependence of microwave power shift on light intensity is clearly demonstrated
in Fig. 6.11. At an input laser intensity of 68 yW/mm? we get a positive microwave
PS of 1.56(5)x 107! /dBm and for 29 W /mm?, we get a negative microwave PS of
-1.1(5)x107' /dBm. In this case, with AOM LH the intensity LS « is reduced by
a factor of ‘40’ compared to that of the «a obtained by the clock laser head (cf. Sec-
tion 6.2.1). Therefore, the dependance of the microwave PS on input light intensity of

~29 W /mm? is clearly demonstrated and seen that it is possible to operate the clock
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at higher input light intensity to reach the condition of zero microwave PS (compare
Fig. 6.7 and Fig. 6.11(Db)).

Because the intensity light-shift contribution is substantially reduced, this behav-
ior we believe is similar to the “pseudo light-shift” effect, as observed in pulsed optical
pumped clocks [56,158]. This is also called as the “position shift”, as it is dependent
on the microwave field inhomogeneites in the physics package. This inhomogeneous
behavior is due to the reason that the resonant frequencies of Rb atoms inside the
cavity depend on their position inside the cell during their interrogation with the
microwave field. Hence, the observed microwave PS is a weighted average of the indi-
vidual frequencies along the length of the cell, and this weighted average is dependent

on the laser intensity, hence mimicking the off-resonant light-shift behavior [56].
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Figure 6.11: (a) Microwave power shift for C022-23 transition at reduced intensity
light shift detuning of 108.5 MHz and (b) its dependence on light intensity with a slope
of +8.9(2)x 10~ mm2uW=t-dBm™1L.

It is important to recall that the measurements with AOM LH were made using the
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prototype cavity physics package, where the microwave PS will have higher values due
to field inhomogenities compared to the values obtained with optimized cavity physics
package. This higher inhomogeneity effect can be clearly observed in the microwave
PS values of Fig. 6.7 and Fig. 6.11(b). However, the effect of light-shift dependance is

quite strong that it can be observed even in a cavity with inhomogeneous field mode.

6.3.3 Temperature coefficients
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Figure 6.12: (a) TC of the cell by reducing the LS and microwave effects, (b) similar
studies on the TC of the stem.

Exploiting the reduced light-shift and microwave power shift conditions, the tem-
perature coefficient of the resonance cell was evaluated with improved accuracy. The
clock’s frequency shift as a function of the cell volume temperature is shown in
Fig. 6.12(a). And, Fig. 6.12(b) shows the stem (fast) temperature coefficient. The
TCs of cell volume and stem are measured to be almost the same as with the clock

laser head (within the error bars). In principle, one can conclude that there is no



124 6.4. 25 mm buffer-gas cell clock

substantial effect due to the light-shift coefficients (« and ) and microwave power

shift on the cell and stem’s temperature coefficients.

6.4 25 mm buffer-gas cell clock

In this section, we present the frequency stability results of the 25 mm optimized
cavity physics package obtained by closing the clock loop (see Section 4.1). Here, we
used the clock LH.

6.4.1 Short-term noise budget

As mentioned in Section 1.4, we consider 1 to 100 s averaging time range for short-
term analysis. The noise budget analysis is done in few steps as explained below.
At first, the discriminator slope of the clock error signal is measured (cf. inset of
Fig. 6.3). This will be useful in estimating the contribution of the instability caused
by the respective sources on the clock’s frequency. The shot-noise limit is estimated
by considering the dc photocurrent, ;. = 1.585 pA at the FWHM of the DR signal
by using the formula shown in Eqn. 1.38. In the following section, the complete
noise budget analysis is presented, by estimating the contributions of the S/N and

shot-noise limits.

(i) Signal to noise estimation

Table 6.2 gives the details of the noise sources and their contribution to the clock
frequency instability. Detector dark noise was measured when the laser and microwave
were off. The shot-noise limit was estimated by using the Eqns. 1.38 and 1.35. Impact
of the microwave noise on the photodetection noise was measured using the FFT
(SR770) in the following condition: the difference in noise was taken between two
measurements - when microwave was on and microwave was off, the laser was kept
on in both cases. This noise includes detector dark noise + stray light between
physics package and detector assembly. LO input noise was measured by recording
the Allan stability. This was done by using dividers (100 and 1000) before feeding the
clock signal input to the LO, and the corresponding Allan stabilities were measured
using picotime comparator referenced to 10 MHz H-maser. It was also important to
change the gain of the clock loop accordingly with the divider used. Finally, knowing
the stability at 1 s for each measurement (once using 100x divider and then with
1000x divider), we estimate the contribution to the clock by the LO. This will give
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Table 6.2: Signal to noise (S/N) short term budget of the 25 mm cell clock with, FWHM
(Avyp) = 334 Hz, C = 26%, D = 1.5 nA/Hz (cf. Fig 6.3).

SL. no. | Source Noise (pA/VHz) | Inst. 04, (y) 7 /2
1 Detector dark noise 0.362 2.49x 10714

2 Shot-noise limit 0.712 4.91x107H

3 Microwave noise 0.736 5x10714

4 LO input noise 0.075 5.17x1071°

5 Total due to microwave (3+4) 0.74 5.1x10~ 14

6 Laser noise (microwave off) 1.46 1x10713

7 Total S/N limit (1+5+6) 1.676 1.15x10713

8 S/N measured (clock loop) 1.7 1.17x10713

the noise not only by the microwave loop but it takes into consideration of all the

other electronics used in the microwave synthesizer. The laser noise was measured,

when the microwave was off. Eventually, the total noise is estimated by taking the

square root of the sum of the squares of all the above noises (detector dark noise +

microwave noise + LO input noise + laser noise). The total signal-to-noise (S/N)

limit was measured when the clock loop was closed at a modulation frequency of
fm = 44 Hz (see Fig. 6.13). The optimum modulation depth is set to 100 Hz (i.e. 0.3
times the FWHM [157]).
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Figure 6.13: Noise power spectral densities measured using an FFT analyzer (SR770).

Fig. 6.13 shows the measured noises corresponding to the values given in Table 6.2.

One can clearly distinguish the peaks at beat frequencies between the f,, and 50 Hz

electronics noise.
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(ii) Phase noise estimation

Additional instability arises from the LO PM noise, see Section 2.6.2. By using the
Eqns. 2.3 and 2.4, at f,, = 44 Hz and considering the even harmonics up to 100 kHz,
we estimate the contribution of the phase noise due to aliasing effect to be o, (1) =
7.46x1071 7712,

(iii) Light-shift estimation

The intensity and frequency light-shift coefficients also influence the short-term stabil-
ity of the clock (as explained in Section 1.4.4), via the laser’s intensity instability and
laser frequency instability, which perturb the clock transition on short-time scales.
Table 6.3 summarizes these effects and resulting limits on the short-term clock sta-
bility.

Table 6.3: Intensity- and frequency light-shift contribution to the clock’s short-term insta-
bility. I, = 35 pW/mm? and v, = 384.23 THz.

Physical effect Coefficient Variation Formula | Inst. [771/?]
Intensity- 19.5 mHz-mm? /W Laser int. instab.: 1.36a 3x1071°
light shift, || oar, 1, (1)< 3x107°

Frequency- 82 mHz/MHz Laser freq. instab.: 1.36b 3.7x10~ 1
light shift, |3| orLr=< 8x1071%(1 - 100 s)

Total LS instab., org 4x10~ 4

(iv) Sum of contributions on Short-term stability

The overall short-term clock stability can be estimated from the sum of the squares of
the individual limits of S/N, LO phase noise and LS by Eqn. 1.37 as ~ 1.4x 10713 771/2,
The major contribution comes from the S/N limit, mainly due to laser FM-to-AM

noise conversion in the atomic vapor [86,159] (see laser noise in Table 6.2).

6.4.2 Measured short-term stability

The LO output microwave frequency was locked to the center of the clock discrim-
inator signal (slope of inset error signal in Fig. 6.3) with an optimized modulation
frequency f,, = 44 Hz and a modulation depth of 100 Hz, satisfying the quasi-static
model (1/f,, > Ty ~ T3) by giving enough time for the atoms to interact (adjust
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Figure 6.14: Short-term frequency stability with the optimized cavity having TFEyi1-like
mode. This stability is approzimately a factor of ‘3 better than previously measured result
of 4x10~13 7712 with the prototype cavity [31].

to the changing conditions) [32]. The modulation frequency was adjusted depending
on the coherence life-time Ty of the optically pumped polarized atoms. For mea-
surements of the clock stability, the 10 MHz output from the LO’s Oven Controlled
Crystal Oscillator (OCXO) stabilized to the atomic clock transition is compared with
a 10 MHz reference signal from an active H-Maser [160] using a frequency comparator
(cf. Fig. 4.1). The clock frequency is recorded using a computer interface and the
Overlapping Allan deviation plot of the frequency data is shown in Fig. 6.14. Short-
term clock stability dominated by white frequency noise (cf. Fig. 1.9) is seen between
1-100 s. The solid line shows the fit to the experimental data (red dots) exhibiting
an excellent clock stability of 1.36x107'3 77/2, Dotted line (1.4x107'3 7=1/2) and
the dashed line (4.9x107* 771/2) show the short-term S/N and the shot-noise limits,
respectively. It is worthwhile to mention that the above stability result was achieved

in a good equilibrium condition of the PP temperature.

This clock was operated in standard laboratory conditions (no vacuum enclosure
or thermal chambers used). This short-term stability is comparable to the pulsed-
optical-pumping clock operated under vacuum [107], is about a factor of five better
than for a passive H-maser [20], a factor of ‘two’ better than previously reported
state-of-the-art CW DR clock [86], and is approximately one order of magnitude
better than the best lamp-pumped Rb clocks [161].

The stability of < 1.4x107'% 771/2 is in excellent agreement with the estimated
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short-term limit (cf. Section 6.4.1). This stability is approximately a factor of ‘three’
better than the previously reported result [31], using the prototype cavity. The im-
provement is clearly due to the improvement of electromagnetic field distribution
along the C-field (z-axis) in the optimized cavity (i.e., high field orientation factor
(FOF)). This comparison matches well with our prediction by the ratio of the FOF
(€9 /&P ) in Section 3.6.

exp/ Sexp

6.4.3 Medium- and long-term studies

Figure 6.14 also shows the medium-term stability ranging from 100 s to 1000 s reaching
the level of 1.5x107* due to flicker noise (cf. Fig. 1.9), after this the dominant noise
sources cause limitation in the stability also giving rise to frequency drifts. In order to
account, for the overall range of medium-term and long-term stabilities, we estimate
the influences of the perturbations due to light shift, microwave and temperatures at
10* s, as explained in Section 1.4. Especially, this time scale of 10* s, is essential in

view of clock error prediction and synchronization for navigation clocks [31].

Table 6.4: Summary of instability contributions of physical perturbations on the clock
transition in medium to long-term time scales. The estimation is done for 10* s. The

intensity and frequency stabilities of the laser heads are taken from Table 2.1.

Physical effect Coefficient Variation Instab. at 10* s
Intensity LS effect, || 19.5(2) mHz-mm?/uW | 3.5x107% uW/mm? 9.9x1071%
Reduced int. LS,* |apequ| | 0.45(3) mHz-mm?/pW | 10.5x1073 pW/mm? 6.9x10~16
Frequency LS effect, || 82 mHz/MHz <3.1 kHz 3.7x10714
Microwave PS, |ups| 15.3 mHz/uW 0.4x1073 uW 8.9x10716
Cell volume TC |TC,| 1x10712/K 3.5 mK 3.5x10715
(linear fit)

Cell volume TC |TC,| 4.34x10712 /K? 3.5 mK? 5.3x10717
(quadratic fit)

Stem TC |TCq| 1.2x107 1 /K 4.6 mK 5.52x 10714
Spin ex. shift |ATsg| <5x10712/K ~5 mK <2.3x10714
Cavity pulling |Avep| 0.2 mHz/K ~5 mK < 1.5x10716

?Using AOM LH, refer table 2.1

The influences due to intensity-LS («), frequency-LS (), microwave power shift
(ups), and temperature coefficients due to cell volume (7'C,) and cell stem (7T'Cs)

are summarized in Table 6.4. This detailed analysis of each effect gives the limits
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reached in the clock stability. From Table 6.4, we see that the clock instabilities
arising due to frequency light-shift coefficient () and cell stem TC (T'Cy) are the
main limiting factors for the clock’s performance to go below 1x10~'* over medium
to long-term time scales. The influence due to § can be reduced by operating the
clock with a lower light intensity (cf. Fig. 6.5(b)). For instance, at an input laser

intensity of 17 yW/mm?

, one can estimate the influence of S on clock instability
to be 9.6x107. However, the present limitation is due to the 7'C,. This effect is

further studied quantitatively as explained in below Section 6.4.4.

6.4.4 Vapor cell geometric effect

As pointed out recently by Calosso et al., [162] a simple model of ideal gas law
vindicates that the temperature fluctuation in the stem results in redistribution of
buffer gas particles in the entire cell, they call this effect as Enhanced Temperature
Sensitivity (ETS). This effect is not due to changes of interaction between Rb and
buffer gas atoms, rather because of the buffer gas density variations between the
cell body and the stem volumes, which is purely a geometrical effect (the stem part
stays outside the microwave cavity and hence does not contribute in the microwave
interrogation). In other words, one can say that the temperature gradient between
the cell volume and the stem is responsible for this effect of ETS. We quantify the
“fast stem effect” according to [162] as,
Ovs/Vrp nsaé Vs

= . 6.1
8CTS VRb Ts ’ ( )

where, the total volume of the cell (including stem and cell body) is given as V =
Vs+V., defining v,=V;/V and the average buffer gas density ny, = N/V. T is the
stem operation temperature. At the cell filling temperature in our case of 293 K with
a total buffer gas pressure of 26 mbar, we obtain n, ~ 1.5x10'"/cm?, and v, = 0.029.
From [162], the ay, denotes the buffer gas mixture in the cell volume and is related
to 3 coefficient in Eqn. 1.44 and is estimated as ~ 5x 107! Hz-cm?.

Using the above values in Eqn. 6.1, we obtain %TZM ~ 1.1x107" /K, matching
well with the measured value (cf. Fig. 6.8(b)). It is clear from Eqn. 6.1, by reducing

the stem volume v; (e.g. the reservoir length), we can reduce the fast stem effect [162].



6.4. 25 mm buffer-gas cell clock

130

0I0P T10G°TL Ve PUD [108 TT 66 Uaomiaq 1fiLp a1yl ul uoyn)a.Llio ay) bugpniour smotun fig sjurod pa1ia)as v umoys a4 fiouanbayy puv
WIS 77 Y7 UPIMNIDG U0D]LLO) “YHSVIN-H 201390 surnbv fiouanbaif 40010 a1y fo aunsvows :fiouanbasy puv ‘dd ay) 423fv 1099292p 320)0
Y} 10 paunsvaw, 26000 bl pagprusuDL) gndul ()7 SUOUDIIDA 2UNIVIAW] WIS Y] TPV N Su0YDIIDA 24ngDLdwd) fii09DL09D)

YT, QD)L "S2IDIS 2] WAoI-buo) -07 ~wnipows Ui figr)iquis fiouanboif 30010 oy buooffv siogowvind bulfiuva PoUNSVI QL9 d4nb

awi| pue areq

TOC'TT0E TTOC'TT'6C¢ TT0C'TT'8C TI0C'TT'Z¢ TIOCTT9C TTI0C'TT'GC TTOCTT'¥¢ TI0C'TT'EC TT0C'TT'¢C TTOCTT'TC

Z,\/\/S?\/\/ —9¢C
/\\f\// \\tz /\/\(\(.\ .?/\/\/l oo nqﬂ_
% G€ ¥ = Aep/D, 10 F Hmmw 3
Ay
86TV
g
66T«
[}
B
* W —00¢vy .m_
%G00 F =Aep/w 9y F | | A W —102Y
| WeIs |y A A A —G6'T 5
.\(s)\lll\.ilsl\l{)l?\!i —96'T .w
NI, S —.6'T m_
%Z0'0% %Eye €8F qtl)z}l o .
0 = — H
Hndul 0V ' gt . 3
; | c
Vo f :
W Y 1\0})\5&\.\\. -3
—F 0%
% _N F = >MU\%.wa 6F .>o¢m:cm¢< |, W




Chapter 6. Spectroscopy and Clock with Enlarged Buffer-Gas Cell 131

It is important to note that in Fig. 6.15 the LO input voltage (or the measure
of light intensity transmitted through the clock cell) does not exactly follow the fast
stem fluctuations and hence does not correlate with clock frequency. This is because
the changes in light intensity through the cell require variations in the density of
Rb atoms inside the cell volume. However, in the fast effect the density changes of
Rb atoms do not take place, therefore we treat this effect separately and call it as
“slow stem effect” (as treated in Section 6.4.5). The experimentally measured clock
frequency long-term stability in terms of Allan deviation is shown in Fig. 6.16. The
limit at 10 s of ~ 5x107 is in excellent agreement with the limit due to |T'C,| in

Table. 6.4. The clock frequency was measured over a period of 9 days along with
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Figure 6.16: Medium- to long-term clock frequency (Fig. 6.15 data) in terms of Allan

deviation, showing the limit due to the stem TC as estimated in Table. 6.4.

other relevant parameters that could affect the instability of the clock. It is to be
noted that the clock was operated in typical ambient laboratory conditions; in air
and not under vacuum. The stem temperature coefficient (T'Cy or “fast effect”) had a
strong effect on the clock frequency affecting the medium- to long-term stability. This
is evident by a well-matched correlation between the stem temperature changes and
that of the clock frequency in Fig. 6.15. In [162], Calosso and colleagues operate their
physics package under vacuum in well-controlled laboratory conditions, the stability
level of their active temperature control is 100 uK, where as in our case (in air, or
ambient laboratory conditions) this is measured to be 4.6 mK (factor of ‘46’ higher)

as shown in Fig. 6.15.
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6.4.5 Stem slow effect
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Figure 6.17: Clock frequency and transmitted light through the clock cell, after a temper-
ature step of the resonance cell stem. The “fast” and “slow” stem effects are demonstrated.
The slow stem effect has a time constant of 1.3 days. Note absence of the “fast effect” in
LO input voltage substantiating that there is no “fast” change in Rb atomic density in the

cell volume.

Further investigation was done to quantify the effect of stem temperature on the
clock frequency instability over a period of one day or more. By keeping the cell
volume temperature, T, constant at 336 K, the stem temperature, Ty was changed
from 330 K to 323 K and the transmitted intensity through the clock cell along with
the clock frequency were recorded (cf. Fig. 6.17). The “fast” (almost instantaneous)
and the “slow” (over one day) stem temperature coefficients are clearly demonstrated
in this better controlled situation where, for instance, the light-shift and the mi-
crowave power shift related effects are almost one order of magnitude smaller than
the observed clock frequency changes. The fast stem effect is due to stem geometric
influence as discussed in Section 6.4.4. In Fig. 6.17, note absence of the “fast effect” in
LO input voltage substantiating that there is no “fast” change in Rb atomic density
in the cell volume and thus indicating that this effect is due to BG atoms. Hence, it
is clear that the influence of day cycles on clock frequency is due to the stem “slow”
temperature effect. The slow stem effect has a time constant of ~ 1.3 days (30 hours).
For any change in stem temperature, the Rb atomic density in the cell volume takes

about 4 days to reach equilibrium, but in principle this steady state is never reached
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due to thermal fluctuations on the stem temperature control. The effect in Fig. 6.17
over a period of one day timescale has an influence on the clock frequency stability.
This effect plays a major role in influencing the density of the Rb atoms in the cell
and hence over a period of one day a change in the clock frequency by ~ 41x 10712
(see Fig. 6.15). This could be improved by: (i) a better stem temprature control
and/or (ii) a better thermal isolation of PP (for example, by operating the PP inside

a vacuum chamber).

6.5 Conclusions

As demonstrated in this chapter, increasing the number of “active” atoms is immedi-
ately obtained considering a bigger cell of 25 mm diameter inside a newly developed
magnetron-type microwave cavity, in contrast to the 14 mm vapor cells used in previ-
ous studies [157,163] while operating at same cell temperature. This results in larger
volume where the light, microwave field and atoms can successfully interact.

A comparison graph of estimated and measured stabilites as a function of cell
radius are presented in Fig. 6.18: measured ratios between two buffer gas cells of
different dimensions- cellA (¢ = 6 mm, L = 16 mm from [163]) and cell B (a = 6 mm,
L = 23 mm, this work) of a factor of ‘6.4’ (ratios of S/N limits) is in reasonably good

agreement with our estimated factor of ‘5.3” in Table 3.1 (see values in first row).
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Figure 6.18: Comparison of stability values obtained with PPs using different cells: 1}
mm diameter wallcoated cell (cf. this work Chapter 5), 14 mm buffer-gas cell (from [165]),
and 25 mm buffer-gas cell (this work Chapter 6).
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The spectroscopy of DR optimized signal, and the perturbing effects such as light
shifts, microwave power shift and temperature coefficients were studied in detail us-
ing both the laser heads (clock and AOM). It is to be noted that the stability we
have shown in this chapter 6 was obtained after several days of temperature stabi-
lization. Excellent state-of-the-art short-term stability, typically achievable with our
high-performance clock of <1.4x107 771/2 using the clock laser head was presented
here. A clock stability of 6x10~'% 771/2 was achieved using the AOM integrated laser
head and was presented elsewhere [164]. Medium- to long-term responsible physical
sensitivities were quantified and their influence on the clock was discussed. An impor-
tant effect of the temperature gradients and stem “fast” geometric effect dominating
the medium-term stability of the clock was demonstrated. This leads us to the con-
clusion of having a smaller stem volume to have a better thermal control [162]. On
the other hand, the diurnal cycles affect the clock frequency stability in long-term
over one day time scales due to stem “slow” effect by changing the density of Rb
atoms in the clock cell. This limitation could also be overcome by a smaller stem
volume and a better thermal control of the stem.

We conclude that the best clock performances were obtained using the Laser Head
without integrated AOM, but the Laser Head with integrated AOM proved very
useful for reducing the intensity LS effect, as well as the independent optimization of
some parameters such as the dependence of microwave power on input light intensity.
Eventhough the AOM Laser Head allows higher resolution studies, the AOM itself is
also a source of instabilities, particularly in medium and long term, in CW-optical
pumping approach. A better control of the thermal conditions for AOM-related

elements and overall optical system should be aimed to reduce this effect.



Summary, prospects and potential

applications

For a successful technology, reality must take precedence over public rela-
tions, for nature cannot be fooled.

-Richard Feynman

This thesis presented detailed spectroscopic and clock studies on high-performance
state-of-the-art improved rubidium cell standards for next generation applications,
by adopting the Continuous-Wave (CW) Double-Resonance (DR) principle in two

variants: wall-coated cells (¢ = 14 mm) and enlarged buffer-gas cells (¢ = 25 mm).

The 14 mm wall-coated (tetracontane) cell was characterized by measuring T4 and
Ty relaxation times; quantifying the hyperfine population relaxation time T; = 25 ms
during which atoms undergo about 2300 collisions with the coated wall before losing
their ground-state polarization, and a coherence relaxation time of the clock transition
Ty = 0.9 ms, during which the phase of the polarized atoms is retained. The DR spec-
troscopic studies and optimization of DR signals were presented. Metrological char-
acterization of the clock was performed by quantitatively measuring the important
sensitivities such as the intensity and frequency light-shifts, microwave power shift and
temperature coefficients. Limitations of these perturbing effects on the clock’s short-
and medium- to long-term frequency stabilities were quantified. Finally, the clock
stability was measured that exhibits a short-term stability of < 2.8x10~2 7=/2. To
our knowledge, this constitutes the first ever wall-coated clock stability reported with
laser pumping, and also shows a good short-term stability. Though the wall-coated
cells give intrinsically a narrow DR signal [36], there is no significant improvement on
the S/N ratio and therefore we cannot expect to have better clock performance com-
pared to the similar sized buffer gas cell clock. The dominating effect on S/N is the
laser PM-AM converted noise, by reducing this one can get closer to the shot-noise
limit. The wall-coated cells are advantageous for spectroscopic studies, for instance
the spin-exchange relaxation measurements etc. It was found that the limitation in
medium- to long-term stability of this tetracontane coated cell clock is due to the
temperature coefficient introduced by the coating that limits the stability to 2x 10712

at 10* s time scale, which is an intrinsic property of the coating material itself [110].
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The drift of clock’s frequency due to degradation of the coating material was quanti-
tatively measured to be an additive limitation for the paraffin (tetracontane) coating
making it difficult to reach a long-term stability below 1071*/day, that is relevant for
next generation navigation applications in order to reach the accuracy of < 1 ns/day.

The compact magnetron-type microwave cavities that can hold the cell with a
diameter of 25 mm and resonate at the Rb ground state frequency of 6.835 GHz were
designed, manufactured, assembled, tuned and tested. The field modes inside these
cavities were presented, both by simulations and spectroscopic Zeeman measurements.
A cavity characterizing factor, called as Field Orientation Factor (FOF), £ was intro-
duced and corresponding values by simulations and Zeeman measurements agree to
within < 1%. Finally, the influence of field modes on clock stability was seen with a
quantitative picture by matching the ratio of FOF 62513 / Sé;p = 3.3 to the short-term
stability ratio of ~‘3” obtained between the prototype cavity (4x107 7713 [31]) and
the optimized cavity (1.4x107!3 7713 Chapter 6) .

The spectroscopic and clock studies on the enlarged 25 mm vapor cell filled with
8"Rb and buffer gases (Ar+N2) were presented. Similar to the wall-coated cell studies,
the DR signal optimization was presented along with the studies on medium- to long-
term instabilities, such as, the intensity and frequency light-shifts, microwave power
shift and the temperature coefficients of the cell volume and stem. The limitations
to the clock stability due to these perturbing effects were analyzed and discussed. A
detailed short-term noise budget analysis was established by estimating the limits due
to signal-to-noise ratio (laser AM and FM-AM converted noise), shot-noise, the LO
phase noise and the light-shift contributions. A state-of-the-art short-term stability
for cell standards exhibiting < 1.4x107'3 77/2 was demonstrated. It is to be noted
that the stability we have shown here was obtained after several days (> 10 days)
of temperature stabilization. An important effect of the temperature gradient across
the clock cell was identified, mainly due to the stem “slow” temperature coefficient,
which is dominating the long-term stability of the clock over a period of one day due
to diurnal cycles. This leads us to the conclusion that having a shorter stem will
result in a better thermal control. However, in a good equilibrium condition of the
stem temperature, a stability of < 1x107'* has been achieved at 10* s integration
time using a similar clock setup [31]. It is important to note that the clock studied
in this thesis was operated under ambient laboratory conditions (not under vacuum).
The operation of just the physics package under vacuum (=~ 10~° torr) can substan-
tially reduce the dependence on ambient temperature fluctuations by cutting down

on conduction losses. This eventually can improve the clock stability by at least a
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factor of five and hence is possible to reach below 1x107!4 level at 7 = 10* to 10° s.

Table C1: Comparison between the wall-coated cell and buffer gas cell results.

Short-term stability

<3x10712 771/2

Parameters Wall-coated cell clock | Buffer-gas cell clock
Cell external diameter 14 mm 25 mm

Cell internal volume 1.4 cm3 9.6 cm?
Intrinsic FWHM 366 Hz 180 Hz
Optimized FWHM 642 Hz 334 Hz
Optimized D 0.41 nA/Hz 1.5 nA/Hz
Background level 5.65 A 1.82 pA

Total noise, Npsq 5.1 pA/VHZ 1.7 pA/VHZ

<1.4x10~13 7=1/2

<5x1071 71/
19.5 mHz-mm? /W
0.45 mHz-mm? /W

<3.3x10713 771/2
2.3 Hz-mm?/uW
57 mHz-mm? /W

Shot-noise limited stability

Intensity LS effect, |«
Reduced int. LS, |aredu]

Frequency LS effect, |S] 413.8 mHz/MHz 82 mHz/MHz
Microwave PS, |pups| 7.8 Hz/uW ° 15.3 mHz/uyW
Cell volume TC |TC,| 1.39 Hz/K 6.84 mHz/K
Stem TC |T'Cs| 0.22 Hz/K 0.082 Hz/K
Spin ex. shift |ATsg| <48 mHz/K <34 mHz/K

®This is to be confirmed. However, it will not be a limiting factor as in wall-coated cells the
microwave PS is reduced [54], and already this reported instability contribution is lower than the

limits arising from the cell’s TC or intensity LS coefficient.

Table C1 gives the summary comparing the results obtained from two different
approaches studied in this thesis; the wall-coated cell case and the buffer-gas cell
case. Note that the cell sizes for these two cases are different. It is evident that the
enlarged vapor cell used for BG approach gives an improved stability as compared
with the wall-coated cell, due to the active participation of more number of atoms
in the cell volume. The background level is higher in case of the wall-coated cell as
compared with the buffer gas cell. This is partly due to the fact that in a buffer gas
cell (as explained in Section 1.2) due to the buffer gas collisions with the 3"Rb atoms,
the excited state relaxation rate I'* is more than two orders of magnitude higher as
compared with the relaxation rate in the wall-coated cell. The perturbing effects
due to laser intensity and frequency variations, microwave power fluctuations and the
temperature influences on the buffer gas and wall-coated vapor cells that affect the

clock’s medium- to long-term stabilites are quantified by metrological analysis. Due
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to lower input laser intensities for an optimized DR signal in the BG cell case, the
values of intensity and frequency LS coefficients obtained are smaller than that for
the wall-coated cell case. The TC in BG cell case is determined by the ratio of the
buffer gases whereas, in the wall-coated cell it is the coating material that determines
the value of the TC.

Table C2 compares the work presented in this thesis on 25 mm diameter BG cell
high-performance clock (highlighted in yellow) to other kinds of reported compact,
portable clocks around the world, including both, commercial and laboratory-based

ones.

Table C2: Budget analysis on volume, mass, power and clock stabilities for different types

of other reported clocks realizations, compared to the clock developed in this thesis.

Clock* Stability Stability Volume | Mass Power
at 1s at 10* s (dm?) (Kg) (W)
Galileo RAFS [20] 3x10712 4x10~ 2.4 3.3 <18
Galileo SPHM [20] 7x10713 <1x10~ | 28 18 80
LPCs beam [17] 1.5x10712 | <3x107M | <5 7 <30
Active H-maser [167] 2x10713 2x10715 ~ 540 90 150
Laser-Rb (LARC) [168] | 5x10~1!3 <4x107 | <3 <4 <18
PHARAO [169] 1x10713 1x1071° 1200 227 450
HORACE [57] <3x10713 | <1x1071 | >20 NA? NA
Optical-POP [107] 1.6x10713 | <4x107'® | 2.1 3.86 <25
(PP only) | (PP only)
5071A Cs-beam [170] 6x10~12 <6x1071* | 34 30 40
GPSII Rb [171] 3x10712 <3x1071* | 4.6 <6 <15
This work <1.4x1071 | <4.2x1071% | <1.5 <2 <18
(LH+PP) | (LH+PP)

“Note: The Integrated Miniature Primary Atomic Clock Technology (IMPACT) clocks are be-
ing developed at NIST [165], Symmetricom [166] and JPL [27] under Defense Advance Research
Projects Agency (DARPA) contracts aiming the best accurate miniature clocks with V< 5 cm?,

power < 50 mW and timing error of < 32 ns/month (~ 1x107 @ 2.7x10° s).
Not available
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I. Future prospects

A. Wall-coated cell approach

Alternative coating materials have to be studied especially by measuring their tem-
perature coefficient limits. Adding a small amount of buffer gases (eg. ~ 1.5 torr
of Ny) in the wall-coated cell in order to counter-balance the coating’s TC could
also improve the performances of the wall-coated based vapor cell clocks. Potential
implementation of large (~ 25 mm ¢) vapor cells with integrated approach of wall-
coating and mixture of buffer gases may be very promising line to be studied, as the

short-term stability could be improved due to reduced reservoir-effect (hole effect).

B. Buffer gas cell approach

The 25 mm BG cell clock’s medium- to long-term stability can be improved by:
(a) shortening the stem length, (b) improving the PP’s temperature control/thermal
design or alternatively operating the physics package under vacuum, as discussed
above and (c) increasing the Ar/Nj, ratio (in new batch of cells) to operate at reduced
temperature will have multiple advantages. For instance, operating the clock around
45 °C could reduce the temperature dependent spin-exchange relaxation and this also
allows operating the clock at reduced input laser intensities which in turn reduces the
frequency light-shift coefficient .

As a new possible line of investigation for the future, a combination of both the
above approaches may prove valuable: the Pulsed Optical Pumping (POP) with
a magnetron-type microwave cavity. The future avenues for such a compact pulsed
optical pumping (POP) clock have a strong potential. First possibility is to use the 14
mm TEg;; mode cavity with BG cell for POP operation. Simulations have shown that
there is a possibility of interrogating with 12 mm beam width for achieving good signal
contrast and reaching excellent short-term stability [172]. The second possibility is to
use the larger cavity with an enlarged cell (25 mm) for POP operation to have even
better performances. Improvement of the field mode (TEg;) of the larger cavity has
made this option more reliable for POP operation.

In parallel, the space qualification of key components such as the laser diode and
the Acousto-Optical Modulator (for POP approach) needs to be pursued, in view of
space qualified clocks for future satellite navigation applications. A recent elaborate
long-term study of DFB laser performance has shown positive signs of reliability under

vacuum operation conditions [173]. The clock laser head used in the studies of this
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thesis work is also in constant operation from over a period of three years in ambient
laboratory conditions.

The theoretical and experimental studies on microwave power shift and its depen-
dance on input light intensity and the intensity light shift-coefficient « is interesting
to be pursued. This will be important in the view of further improving the medium
to long-term stabilites of Rb standards.

Finally, it is worthwhile to mention the high potential of combining the vapor-cell
standards technologies developed in this work with the technology of optical combs
that may result in various configurations providing, for instance, as compact optical
frequency references or synthesizers. This high-performance reference oscillator will
be useful for portable applications in contrast to the active H-masers which are bulky

and non-portable.

II. Potential applications

Compact high-performance clocks have a wide range of applications from telecom-
munications, satellite navigation, and basic science experiments to space probes [2,4,
174,175]. In particular, the next generation navigation systems such as, GALILEO,
where the level of < 1x1071* (equivalent to 1 ns) around 6000 s and up to 1 day
is relevant for precise positioning due to the synchronization times involved [20, 31].
Timing accuracy of 1 ns is equivalent to locating the position on ground to 30 cm dis-
tance. Other aspects of everyday life also have numerous uses with precise time and
frequency synchronization requirements [176]. Power companies require precise time
for power regulation and phase adjustments in system grids and thereby to reduce
the power losses [8]. Radio and television broadcasting stations need the precise time
and frequency for broadcasting the programs. Mobile phone base stations need stable
and accurate references to handle the massive amount of data receiving and transmis-
sion in a synchronous way [177]. Interplanetary and deep space travel missions need
reliable and accurate time monitoring, either for scientific experiments or in order
to position the space probe precisely [174]. The basic studies on understanding the
Einstein’s special theory of relativity, fine structure constant etc., need more stable
and accurate clocks [175]. The further development of work presented in this thesis
by improving mainly on the thermal control towards a device can essentially address
many of the needs of aforementioned applications to a reasonable extent, in terms of

clock stability performance, cost, reliability and portability.
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APPENDIX A: Fundamental phys-

ical constants and 3"Rb properties

This appendix gives essential values of fundamental physical constants and important

physical, optical and chemical properties of the 8"Rb atom.

Fundamental physical constants [178]. Table taken from [179]

Speed of Light c 2.997 924 58 x 10% m/s (exact)
Permeability of Vacuum | puo 47 x 1077 N/A? (exact)

(oc?)™1 (exact)
=8.854 187 817...x 10712 F/m
6.626 068 96(33) x 1034 J.s
4.135 667 33(10) x 10715 Vs
1.054 571 628(53) x 1034 J-s
6.582 118 99(16) x 10716 Vs
Elementary Charge e 1.602 176 487(40) x 10719 C
9.274 009 15(23) x 10-2* J/T
h-1.399 624 604(35) MHz/G
Atomic Mass Unit u 1.660 538 782(83) x 10727 kg
5.485 799 0943(23) x 10~* u

Permittivity of Vacuum | ¢€g

Planck’s Constant

Bohr Magneton s

Electron Mass Me 9.109 382 15(45) x 10~3! kg
Bohr Radius ap 0.529 177 208 59(36) x 1071° m
Boltzmann’s Constant ks 1.380 6504(24) x 10723 J/K

Rubidium-87 physical properties. Table taken from [179].

Atomic Number Z 37
Total Nucleons Z+ N 87
Relative Natural Abundance | 7(3"Rb) 27.83(2)%
Nuclear Lifetime T 4.88 x 1010 yr
Atomic Mass m 86.909 180 520(15) u
1.443 160 648(72) x 10725 kg
Density at 25°C Pm 1.53 g/cm?®
Melting Point T 39.30 °C
Boiling Point Ts 688 °C
Specific Heat Capacity Cp 0.363 J/g-K
Molar Heat Capacity Cp 31.060 J/mol-K
Vapor Pressure at 25°C P, 3.92(20) x 1077 torr
Nuclear Spin 1 3/2

33 690.804 80(20) cm ™!

Tonization Limit FEy
4.177 127 06(10) eV
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Energy level diagram of the 8" Rb atom [59,180]. Table taken from [179].

F =
9p=2/3 3
(0.93 MHz/G)
193.7407(46) MHz
266.6500(90) MHz
2
5P, Y S— A
72.9112(32) MHz
\ —
‘ 9r=2/3 F=2
229.8518(56) MHz (0.93 MHz/G)
|
302.0738(88) MHz 156.9470(70) MHz
A gp=2/3 =1
\ 72.2180(;10) MHz (0.93 MHz/Q)
780.241 209 686(13) nm
384.230 484 468 5(62) THz
12 816.549 389 93(21) cm™!
1.589 049 462(38) eV
gp=1/2 F=2
(0.70 MHz/G)
2.563 005 979 089 109(34) GHz
v
57S, /2
6.834 682 610 904 290(90) GHz
4.271 676 631 815 181(56) GHz
F=1

gr==1/2
(—0.70 MHz/G)
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Rubidium 87 Dy transition optical properties. Table taken from [179].

Frequency wo 27 - 384.230 484 468 5(62) THz
Transition Energy T 1.589 049 462(38) eV
Wavelength (Vacuum) A 780.241 209 686(13) nm
Wavelength (Air) Aair 780.033 330(23) nm
Wave Number (Vacuum) k. /27 12 816.549 389 93(21) cm ™!
Isotope shift wo(®"Rb) — wo(®*Rb) 27 - 78.095(12) MHz
Lifetime T 26.2348(77) ns
Decay Rate/ r 38.117(11) x 10% 571
Natural Line Width (FWHM) 27 - 6.0666(18) MHz
Absorption oscillator strength f 0.695 77(29)

Recoil Velocity Ur 5.8845 mm/s

Recoil Energy Wy 2 - 3.7710 kHz
Recoil Temperature T: 361.96 nK

Doppler Shift (Vatom = vr) Awq (Vatom = Vr) 27 - 7.5419 kHz
Doppler Temperature 15 145.57 uK
Frequency shift for standing wave Avs (Ve = 1) 97 - 15.0839 kHz

moving with vy = vy

Rubidium 87 Do transition dipole matriz elements, saturation intensities and resonant scat-

tering cross sections. Table taken from [179].

D5 (5284 /o — 52P. 7Transition Dipole 4.227 52(é7) eag

Nt Blment” =l =32 |
atrix Elemen 3.584 24(74) x 1029 Com

2.042 09(42) eay

Effective Dipole Moment, Saturation disoet(F =2 — F' = 3)
Intensity, and Resonant Cross 1.731 35(36) x 10 C-m
Section (F =2 — I’ = 3) Liat(iso,etty(F =2 — F' = 3) 3.577 13(74) mW /cm?

(isotropic light polarization) Goisonetty (F = 2 — F/ = 3) | 1.356 456 704 270(31) x 10~° cm®

2.440 76(50) eaq

Effective Far-Detuned Dipole Moment, ddet,eff,Ds
Saturation Intensity, and 2.069 36(43) x 10~ C-m
Resonant Cross Section Lsat(det,off, D) 2.503 99(52) mW /cm?
(D line, m-polarized light) OOt oftDa) 1937 795 291 814(44) x 10~ cm?
Dipole Moment, Saturation Intensity, and A pt2— mly—t3) 2.989 31(62) eay
Resonant Cross Section 2.534 44(52) x 107*% C'm
|F =2,mp =42) = |F' = 3,m} = +3) Lyt (mp—mt2 — miy—t3) 1.669 33(35) mW /cm?

cycling transition (oF-polarized light)

O0(mp==42 — m/, =+3) 2.906 692 937 721(66) x 1079 cm?
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Vapor pressure of rubidium as a function of temperature. The vertical line shows the melting
point. Table taken from [179].
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APPENDIX B: CAD designs of laser

heads, cavities and physics packages

CAD designs (courtesy: P. Scherler, LTF) of the laser heads, assembled cavities and
phyiscs packages that were used in this thesis are presented in this appendix with

details on the components in each of them.

—_—
g
(=]
Q
(&)
] _‘

CAD diagram of the clock laser head indicating important components and

the laser beam paths (red lines).

Figure 6.19:
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Figure 6.21: CAD diagram of the compact magnetron type cavity with four electrodes,

capable of holding the 14 mm diameter vapor cell.
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Figure 6.23: CAD diagram of the newly designed enlarged magnetron type cavity with siz

electrodes, capable of holding the 25 mm diamter vapor cell.
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