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Abstract

Keywords: Miniature atomic clock, double-resonance, rubidium vapour cells, anti-relaxation

wall-coating, frequency stability, metrology.

Nowadays, buffer-gas alkali vapour cells form the heart of essentially all types of compact or

miniaturized atomic clocks. They reliably hold and confine a vapour of alkali atoms, that provides

the atomic transition frequency serving as stable reference for the clock oscillator. The desire to

bring atomic clock stability to portable applications such as telecommunication and navigation

increased the need for more compactness and lower power consumption. This motivated the

present thesis work on the cells miniaturization and the novel clocks that could be realized with

such cells.

In the frame of this thesis, more than 150 glass blown cells were produced and tested and more

than 30 microfabricated cells evaluated. We present the fabrication process for each type of

them. We restrict ourselves to the spectroscopic analysis of certain cell types only, which are

more oriented towards the miniaturization of an atomic clock. Nonetheless, it is worth to mention

that, among the cells produced, cells having a volume of ' 12 cm3 are at the basis of atomic

clocks exhibiting short-term stabilities better than 2× 10−13τ−1/2.

An excellent control of the cell fabrication process is essential, and can only be achieved through

a thorough characterization. We developed and performed spectroscopic tests to validate the

(micro-) cells fabrication processes elaborated at the LTF and SAMLAB in Neuchâtel. In par-

ticular, the buffer gas mixture characterization with a resolution of ± 1%, and the leak rate

detection with a limit of 1.5× 10−13 mbar l/s were achieved. This allowed the validation of two

distinct sealing processes: the classic anodic bonding, and an innovative low temperature sealing

technique using thermocompression of indium.

As an alternative to the buffer gas, the use of certain types of wall coating also allows the atomic

polarization preservation. Four different types have been used: Parylen C and N, Tetracontane

and OTS. While the Parylene appears to be inadequate for use with rubidium atoms, excellent

antirelaxing properties are obtained with tetracontane and OTS. The successful in-house fabri-

cation of wall coated cells allowed the observation of the ripening process by double resonance
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spectroscopy. The results are presented and an interpretation is given. A microfabricated OTS

wall coated cell was produced at Neuchâtel too, by R. Straessle at SAMLAB. We present its

spectroscopic analysis and demonstrate truly antirelaxing properties of the coating in a 4.2 mm3

vapour volume.

Finally, a spectroscopic and metrologic study of an innovative "cell-microwave resonator" assem-

bly is presented. Both the cell and the resonator are microfabricated. The cell vapour volume

is of the order of 50 mm3 only. Systematic shifts limiting the metrologic performances are char-

acterized, with a focus on the light shift. A detailed, theoretical and analytical, analysis is

presented in both, the D1 and D2, lines and for various optical pumping schemes. Frequency

light shift is found to be one of the main stability limiting factor in the medium to long term

regime. The limit is at a level of few 10−12. We demonstrate fractional frequency stability below

10−11 from 1 s up to one day of integration time with a resonator physics package volume of less

than 0.9 cm3. This represents a factor of five in terms of volume reduction compared to European

commercial clocks with similar short term stability performances. An alternative interrogation

scheme, suppressing completely the light shift, is discussed to improve the medium to long term

performances. This scheme would allow the fabrication of an atomic clock extremely compact

with highly competitive stability performances.

This work was done in the Laboratoire Temps-Fréquence at the University of Neuchâtel, in close

collaboration with laboratories from the Ecole Polytechnique Fédérale de Lausanne (EPFL),

in particular, the Sensors, Actuators and Microsystems LABoratory (SAMLAB) for the micro-

fabricated cells, and the Laboratory of ElectroMagnetics and Acoustics (LEMA) for the miniature

microwave cavity.
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Mots-clés: Horloge atomique miniature, double-resonance, cellules à vapeur de rubidium, revête-

ment anti-relaxant, stabilité de fréquence, métrologie.

De nos jours, les cellules à vapeur d’atomes alkalin et gaz tampon sont au coeur de presque

toutes les horloges atomiques commerciales compactes ou miniatures. Elles contiennent une

vapeur d’atomes alkalin dont une des frequences de transition atomique sert de reference stable

à l’oscillateur de l’horloge. Ce travail de recherche porte sur l’étude des phénomènes physiques

se déroulant dans ces cellules et plus particulièrement des effets de miniaturization sur la vapeur

d’atomes, en vue de la réalisation d’une horloge miniature. Il est motivé par le besoin croissant

d’horloges stables, encore plus compactes et moins gourmandes en énergie pour des applications

portables telles que les télécommunications ou la navigation.

Dans le cadre de cette thèse, plus de 150 cellules en verre soufflé ont été produites et caracterisées

et plus de 30 cellules micro fabriquées ont été évaluées. On présentera les méthodes de productions

de chacune d’entre elles, et on se restreindra sur l’évaluation spectroscopique de certains type

seulement, orientés vers la miniaturisation. Néanmoins, il est important de signaler que certaines

cellules produites (d’un volume de '12 cm3) sont au coeur d’horloges compactes affichant des

instabilités à court terme meilleures que 2× 10−13τ−1/2.

Un excellent contrôle des processus de fabrication des cellules est essentiel, et n’est possible

qu’avec une charactérisation minutieuse. On présentera les différents tests spectroscopiques per-

mettant de valider les processus de (micro-) fabrication développés à Neuchâtel pour des cellules

de référence d’horloges atomiques miniatures. Notamment, la caractérisation par spectroscopie

du taux de mélange de gaz tampon avec une résolution de ± 1% ainsi que la détection de fuites

aussi petites que 1.5×10−13 mbar l/s ont été rendues possible. Ceci a permis de valider deux pro-

cessus de fabrication de cellule : le "classique" anodic-bonding ainsi qu’une technique innovante

de scellage à basse temperature par thermocompression d’indium.

L’utilisation de certains revêtements antirelaxants permet également de s’astreindre du gaz tam-

pon pour la préservation du spin des atomes; quatre types différents ont été testés: Parylene N

et C, tetracontane et Octadecyl-Trichloro-Silane (OTS). Alors que les parylenes N et C s’avèrent
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inadéquats en tant que revêtements anti-relaxants, d’excellentes propriétés anti-relaxantes sont

obtenues pour le tetracontane, validant ainsi la méthode ainsi que le système de production

développé au LTF pour des cellules en verre soufflé. La fabrication au sein même du LTF a

également permis l’observation du phénomène dit de ripening d’une cellule revêtue de tetracon-

tane par spectroscopie double résonance. Les résultats sont présentés, et une explication physique

est donnée. L’expérience acquise avec les cellule en verre soufflé a permis la validation spectro-

scopique par double résonance d’une cellule micro-fabriquée avec revêtement OTS. Les résultats

sont présentés et les propriétés antirelaxantes du revêtement sont démontrées pour un volume de

vapeur de rubidium de 4.2 mm3.

Finalement, une évaluation spectroscopique et métrologique d’un assemblage "résonateur micro-

onde-cellule" novateur et micro fabriqué d’un volume inférieur à 0.9 cm3 est présentée. Le volume

de la vapeur de rubidium et de gaz tampon est de l’ordre de 50 mm3 seulement. Les déplacements

de fréquence systématiques limitant les performances métrologiques sont caractérisés, avec une

attention particulière pour le déplacement radiatif (light shift). Une analyse détaillée, théorique

et expérimentale, de ce dernier, dans les lignes D1 (795 nm) et D2 (780 nm) et pour chaque

variante de pompage optique est donnée. le déplacement de fréquence lié aux variations de

puissance micro-onde (power shift) ainsi que le déplacement radiatif en fréquence s’avèrent être

les principaux facteurs limitant la stabilité à moyen-long terme à un niveau de quelques 10−12.

On démontre également des performances d’instabilité d’horloge relative meilleure que 10−11

de 1 seconde à une journée de temps d’intégration. Une variante d’interrogation supprimant

totalement le déplacement radiatif est proposée. Cette dernière permet d’envisager une horloge

rubidium extrêmement compact avec des performances hautement competitives.

Ce travail a été effectué au sein du Laboratoire Temps-Fréquence (LTF) de l’Université de

Neuchâtel, en étroite collaboration avec plusieurs laboratoires de l’Ecole Polytechnique Fédérale

de Lausanne (EPFL), dont le Sensors, Actuators and Microsystems LABoratory (SAMLAB)

pour les cellules micro-fabriquées et le Laboratory of ElectroMagnetics and Acoustics (LEMA)

pour la cavité micro-onde miniature.
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NPI, FNS-Rb and FNS-REQUIP. The cells realized contributed also to the success of several

other side projects: mUSO, ESA-LARC, ESA-POP, SQUATOS, MClocks and DLR. We briefly

describe these projects here below:

• MACQS (2009-2013): Miniature atomic clocks and quantum sensors, Swiss National Sci-

ence Foundation (SNF) Sinergia contract 122693. This project aimed at the development

of innovative miniature atomic clocks and quantum sensors from a multi-group approach.
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– Laboratoire Temps-Fréquence (LTF), Université de Neuchâtel (UniNe). PhD stu-
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line was to perform fundamental spectroscopic studies on existing glass-blown and minia-

ture atomic vapour cells and other innovative components developed by LTF and the project

partners (see Chapters 4, 5 and 6). The study on innovative wall coatings and miniature
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wall coated cells was also part of the research line and is presented in the Chapter 5.

The Chapter 6 presents the realization of a clock based on a miniature atomic resonator

presenting significant gains in term of volume (∼8X) for similar stability performances

(σy(τ) = 1× 10−11τ−1/2).

• NPI (2010-2013): Networking/Partnering Initiative (NPI), Co-Sponsored PhD on Ad-

vanced vapour cells for future atomic clocks, ESTEC contract No.4000101390. The scope

of the activities was the investigation, implementation and validation of advanced vapour

cells for future on-board atomic clocks. The objective was to improve, by at least a factor
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• FNS-Rb (2008-2014): Precision double resonance spectroscopy and metrology with sta-
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ulation trapping) of alkali atoms in, respectively, wall-coated and micro-fabricated buffer

gas cells, for application in atomic clocks and magnetometers.

• FNS-REQUIP (2010-2012): Alkali cells wall-coating systems for atomic clocks, SNF

R’EQUIP contract 128704. This project financed the update of the LTF cell filling system

to allow the fabrication of wall-coated vapour cells for high performance and miniature

atomic clocks. The cell filling is described in the present chapter, and the studies on the

successfully produced cells are presented in the Chapter 5.

• mUSO (2007-2010): Miniature Ultra Stable Oscillators for Secure Telecommunications,
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filling system [5].
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• ESA-LARC (2005-2011): Gas cell laser clock technologies for atomic frequency stan-

dards, ESTEC contract 19392/05/NL/CP. Contractor: UniNe-LTF (no partners). The

project aimed at the development of Laser-pumped Atomic Rubidium Clock (LARC) for

space. The use of laser-pumping instead of lamp-pumping brought a significant short-

term improvement, but required a new recipe for the buffer gas filling of the cells, to

compensate for the light-shift and the temperature shift. This drove the implementa-

tion of an innovative gas mixing technique. Moreover, evacuated cells were required for

the laser frequency stabilization. Several cells have been produced to validate the modi-

fied cell filling system and to finally produce the demonstrator’s cells(buffer gas filled and

evacuated) showing a short-term stability of 5.3 × 10−13τ−1/2 [6]. More information at

http://telecom.esa.int/telecom/www/object/index.cfm?fobjectid=30855.

• ESA-POP (2008-2011): Next Generation Compact Atomic Clocks, ESTEC contract

21504/08/NL/GLC. Prime: Istituto Nazionale di Ricerca Metrologica (INRIM). Subcon-

tractors: UniNe-LTF, Galileo Avionica SpA, Spectratime SA. This project focused on the

development of the next generation of vapour-cells based compact atomic clocks having the

performance of a passive Hydrogen-Maser but a mass-volume-consumption similar to the

commercial compact rubidium atomic frequency standards. Two research lines have been

followed: Continuous DR by our laboratory in 25 mm diameter cells [7] and the pulsed

optically pumped (POP) interrogation by the INRIM in the 22.66 mm diameter quartz

cells [8]. Both interrogation techniques have demonstrated state-of-the-art stabilities for

vapour cell atomic clocks exhibiting σy(τ) < 2 × 10−13τ−1/2 using cells fabricated within

this research work.

• SQUATOS (2011-2012): Space QUalified Assembly Technique for Optical Systems, funded

by the Swiss Space Office in the frame of Swiss Space Positioning Measures, call 2010.

Project coordinator: CSEM SA. Partners: Micos Engineering GmbH, Hexagon Technology

Center, GmbH, UniNe - LTF. This project aimed at the assessment of the Three Dimen-

sional Miniaturized Optical Surface Mounted Device (TRIMO-SMD) technology perfor-

mance in various environmental conditions, identification of the technology’s limits in space

applications, definition of the roadmap toward space qualification of the TRIMO-SMD. A

fibre-coupled stabilization setup at 780 nm using a TRIMO-SMD assembling technique [9]

was developed and realized (see [10] and Figure 2.7). This realization benefited from the

high quality evacuated cells (10 mm diameter) produced.
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• Rb-laser (2010-2012): Compact and stabilized laser head for innovative Rubidium clock,

funded by the Swiss Space Office in the frame of Swiss Space Positioning Measures, call

2010. Partners: UniNe-LTF and Spectratime SA. This project aimed at an update of the

compact and frequency-stabilized laser heads developed by LTF. The goal was to minia-

turize and fully integrate into the redesigned laser head the laser control electronics. This

project also benefited from the high quality evacuated cells (10 mm diameter) produced.
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Introduction

Mastering the time is still beyond human reach today but mastering its measurement has inspired

the humankind since ages. As for every quantity, the measurement of time needs a reference.

Historically, the natural day-night cycle served as the first reference to quantify longer cycles such

as the moon phases and the seasons. This gave rise to the calendars. The need to measure shorter

time scale initiated the clock era1. The first clock is attributed to the Egyptian civilization with

what we call now the shadow clock. It was then followed by the water clock (clepsydra) and the

sand clock which allowed the transport of the time reference and the measurement of time at night

as well. A first revolution happened with the use of oscillating systems such as the pendulum,

and a mechanical system to maintain and count the oscillations. But the main revolution for our

domain came in the beginning of the 20th century, with the use of electric or magnetic resonances

in the frequency domain. The first quartz clock [15] in the 30’s and the first atomic clock [16],

in the 40’s were built. Rapidly, the performances achieved by the atomic clocks surpassed the

ones of the quartz and in 1967 the second was redefined during the 13th Conférence Générale des

Poids et Mesures (CGPM). Initially defined as 1/86’400 of a mean solar day, the definition of

the second became "the duration of 9 192 631 770 periods of the radiation corresponding to the

transition between the two hyperfine levels of the ground state of the caesium 133 atom". The

mission of timekeeping was transferred from the stars to the caesium atoms.

The innovations were not stopped by that definition and various types of clock have been devel-

oped since the first caesium beam clocks was realized in 1955 [17]. These clocks strongly differ,

from their working principle, performances and thus their applications fields. The state-of-the-art

clocks in terms of precision and accuracy today are the fountain clocks, optical-lattices clocks,

and ion-traps clocks. The time uncertainty is of the order of 1 to 10 ps per day, or 10−17 to

10−16 relative. Their volume, cost of production and power consumption are prohibitive for any

commercial applications, and restrict their use to international time keeping [18] or laboratory

fundamental researches, such as the quantification of the variations of fundamental constants

like the fine structure constant [19], or the electron-to-proton mass ratio [20]. The precision
1According to Lombardi [14], a clock is an instrument that measures time intervals shorter than a day.
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and accuracy achieved are so good that the relativistic effects become significant and have to be

corrected [21].

The commercial needs, less demanding in terms of precision and accuracy, have driven the de-

velopment of more compact, and cheaper clocks. These clocks can be grouped into four different

types: active and passive hydrogen masers, caesium thermal beams and vapour-cell based clocks.

The masers and the caesium thermal beams, having an accuracy of the order of the nano sec-

ond per day, or 10−14 relative, represent a niche market due to their high price and volume.

The applications range from radio astronomy and accurate measurement of the continental drift,

Global Navigation Satellite Systems (GNSS), time keeping, and fundamental physics [22]. The

mass production of smaller and less expensive clocks (several tens of thousands per year [23]) is

represented by the vapour cell based clocks. These clocks answer to the need for reliable, small,

portable and low power consumption clocks with still competitive stability performances and a

moderate price. The time error varies from few nanosecond per day, or 10−14 relative, for the

high performances rubidium clock [24] to the microsecond per day, or 10−11 relative inaccuracy,

for the smallest clocks [25]. As a comparison, the time error for temperature stabilized quartz

oscillators is of the order of one millisecond per day, or 10−8 relative inaccuracy. This error rises

up to the second per day, or 10−5 relative inaccuracy for the quartz used in our wristwatches. The

commercial atomic clocks cover a wide range of applications such as network synchronization for

telecommunication, power grids synchronization, precise timing for financial markets, laboratory

timing, GNSS and secured communication [22]. Most of the current applications for the vapour

cell clock are station-based, but the demand for lower volume, mass and power consumption

for highly portable applications, such as portable GNSS receiver, or distributed underground or

underwater geophysical sensors [26], is increasing. The need for improved and miniature vapour

cells for such applications motivated this thesis work.

In the past recent years, two opposite research lines were followed in the field of vapour cells clock

optimization, either the miniaturization, or the improvement of the clock stability performances:

- An extreme miniaturization down to an atomic resonator volume of few cm3 was achieved

by exploiting micro-fabrication techniques for cell fabrication [27] and by using the coherent

population trapping (CPT)[28], [29] as interrogation scheme [25], [30]–[32]. The cost for

such an extreme miniaturization is a significant degradation in terms of the short-term

frequency stability performances up to σy(τ) ∼ 1 × 10−10τ−1/2 [25] in terms of Allan
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deviation. Most of these studies were carried out in the United States under the Chip-

Scale Atomic Clock (CSAC) project initiated in 2002 and financed by the Defence Advanced

Research Projects Agency (DARPA). The objectives were a frequency stability below 10−11

at one hour for a 1 cm3 atomic resonator [22]. Two independent projects were also developed

in Neuchâtel [32], [33].

- The stability improvement in compact (∼1 litre) cell clocks was exploiting the significantly

improved clock performances obtained with a laser instead of a lamp in the double resonance

(DR)[34] interrogation scheme. Both, the continuous wave [6], [7] and the pulsed approach

[8] were employed. The short-term clock frequency stability could be improved down to

σy(τ) < 2× 10−13τ−1/2 for a compact but non-negligible volume of <1500 cm3 [7].

For this thesis work, we decided to follow both approaches simultaneously: a moderate miniatur-

ization allowing a significant size reduction along with a moderate stability degradation, and the

laser-pumped DR interrogation scheme which is more efficient than the classical lamp-pumped

DR interrogation schemes for similar cell sizes [35], [36]. This interrogation scheme is expected

to allow the compensation of the stability degradation induced by the miniaturization. Beside

the interrogation scheme, the cell fabrication, its alkali vapour and the methods employed to

prevent the depolarization of the alkali atoms also affect the potential stabilities of the clock.

Historically, the researches were carried out using rubidium for one essential reason, its optical

spectral characteristic. Indeed, under proper conditions, the optical spectrum of the 85Rb par-

tially overlaps the one of the 87Rb. This allows a selective optical pumping of the ground state

levels, using only a rubidium spectral lamp; and renders the required inversion of population of

the ground state levels feasible without the use of an appropriate laser, non-existent in the early

decades of atomic clocks. With the venue of suitable lasers, other alkali atoms, such as caesium,

might also be convenient for DR. But, 87Rb still appears more efficient, as its reduced number

of ground states allows a more efficient optical pumping. It is therefore chosen for this work.

Two methods are reported for preventing the depolarization of the alkali atoms due to the

collisions with the inner cell wall: the buffer-gas [37] and the wall-coating [38]. While the

buffer gas method prevents the atoms to collide directly with the inner walls of the cell by

strongly reducing their mean free path, the wall-coating significantly reduces the depolarization

probability of the collisions with the walls. These two methods were investigated.
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Based on these considerations, the Miniature Atomic Clocks and Quantum Sensors (MACQS)

project started in 2009. It was funded by the Sinergia project fund of the Swiss National Science

Foundation. The objective of the MACQS project was to develop and test new technologies

in order to miniaturize the key building blocks of an atomic sensors based on the DR scheme:

the cell, the microwave resonator and the pump-light source. Both, laser and micro-fabricated

spectral lamp [39], [40] were envisaged as the pump-light source. Five Swiss research groups were

involved and many key components have been produced and tested. Among others, miniature

microfabricated cells sealed by anodic bonding or indium bonding with different geometries, an

innovative miniaturized microfabricated magnetron cavity and wall coated cells were fabricated.

This thesis reports on the spectroscopic studies realized on these different components.

This work was also co-financed by two other funds: the European Space Agency’s Networking/-

Partnering Initiative (NPI) with the "Advanced Vapour Cells for Future Atomic Clocks" project

and the Swiss national science foundation with the "Precision double resonance spectroscopy and

metrology with stabilised lasers and atomic vapours: applications for atomic clocks and magne-

tometers" project.

This document is split in six chapters as follow:

Chapter 1

This part presents the theoretical basis required to understand the interaction of an atom with

electromagnetic fields. A short overview of the atomic structure and the diverse splitting, as

well as optical and magnetic pumping through their respective dipole interactions, is given. This

is followed by the presentation of the basic DR principle and its theoretical model for a 3-level

system. Finally the notion of clock frequency stability is discussed, and the limiting factors for

clock stability are detailed.

Chapter 2

We present here the different experimental configurations and setups used for the spectroscopy

analysis. The building blocks of our laboratory atomic clock, laser head and physics package,

are described in detail.
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Chapter 3

We present in this chapter the fabrication methods employed for the fabrication of all the cells

studied and presented in this manuscript. The accent is put on the glass-blown cell technology

and the filling techniques, from the evacuated cells to the wall coated cells, passing by the buffer-

gas filled cells. The micro fabrication techniques are also presented more briefly.

Chapter 4

This chapter treats the spectroscopic characterizations methods, employed to evaluate the newly

developed micro fabrication processes for evacuated and buffer gas filled cells. From the linear

absorption spectroscopy to the double resonance spectroscopy, different methods are used to

quantify leak rates, contamination level and control of the fillings of the cells produced.

Chapter 5

In a similar way to the Chapter 4, this chapter presents evaluations of the produced wall-coated

cells. Four coatings are treated. While Parylen N, Parylen C and tetracontane are tested in

centimetric glass-blown cells, OTS was employed for the realization of a microfabricated wall-

coated cell with a proven operational wall-coating. The real-time observation and monitoring of

the well-known ripening process in coated cell by double resonance spectroscopy is also presented.

Chapter 6

This chapter is dedicated to the metrological study of a newly designed physics package for a

miniature atomic clock. This physics package consists of an innovative subwavelength microwave

resonator, and a thick glass core microfabricated cell. Both are micro-fabricated and allow a

significant size reduction compared to commercially available high performances clocks, without

compromizing too much on the stability. The systematic shifts are measured and optimized and

the ultimate performances are evaluated. A clock frequency measurement over 6 months is pre-

sented and its stability analysis is confronted to the different instability sources. An alternative
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interrogation scheme, potentially improving the long term regime, is also discussed.

Summary and conclusions

Finally the conclusions and future prospects are discussed in this last part.
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Chapter 1

Double resonance rubidium atomic

clock: basic principles

A clock exploits the resonance phenomenon of an oscillating system (resonator) that provides

a frequency reference. Typically, this system can be mechanical, like a pendulum, a balance

wheel, or electro-mechanical like a quartz oscillator. In the case of a microwave atomic clock,

an ensemble atoms-microwave magnetic field serves as a reference for a quartz oscillator; the

resonance phenomenon is a chosen atomic hyperfine transition that occurs when the frequency

of the electromagnetic field, generated by the quartz oscillator, is resonant with the transition’s

Bohr frequency. For a transition between two quantum states of energy eigenvalues, E1 and E2,

the Bohr frequency is expressed as:

νB =
E2 − E1

h
. (1.1)

where h is the Planck’s constant.

This study is on double resonance (DR) rubidium atomic clocks, or rubidium clocks. They be-

longs to the class of passive frequency standards, in which the microwave field serves as a probe

for the resonance1: a quartz oscillator, at the basis of the microwave generation, is locked in

frequency to the atomic resonance by an electronic servo-loop (see Figure 1.1). In a rubidium

clock, the atomic resonator represents the heart of the clock, and is composed of two key ele-

ments: a vapour cell, confining the atoms, and a microwave cavity sustaining the probing field.
1By opposition to active resonators that produce the resonant field through stimulated emission radiation
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Chapter 1: Double resonance rubidium atomic clock: basic principles

This atomic resonator structure presents already strong advantages in terms of cost, size, power

consumption, and reliability, and is widely used for the synchronisation of satellite navigation

systems and telecommunication networks. Yet, it is actually not small enough for highly portable

systems, such as mobile phone, navigation system receiver. The scope of this study is on further
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Figure 1.1: Clock principle of a passive atomic resonator.

miniaturization of this atomic resonator, and more particularly the cell. The atoms, confined in

the cell, are continuously moving, undergo many collisions and are constantly subject to electro-

magnetic perturbations. These effects give rise to shifts and broadening of the atomic resonance

that may be stressed by the cell size reduction. Since the short- and medium- to long-term

stabilities of an atomic clock are intrinsically related to the properties of the resonance line (see

Chapter 1.7) a thorough understanding of these various physical effects appears essential for the

choice and the control required of the experimental conditions minimizing these effects.

In this chapter, we introduce the double resonance principle and the basic physics describing

the various mechanisms involved in it. The structure and the intrinsic splitting of the energy

levels of the rubidium atom is discussed followed by a semi-classical treatment of the effects

induced by the atom-field interaction: Zeeman effect, magnetic dipole transition and electric

dipole transition. Finally, the two types of spectra present in a rubidium clock, the optical

absorption spectrum and the optical-microwave DR spectrum, are discussed. The respective

shifts and broadening and their origins are discussed in details and quantitative predictions are

drawn. A new phenomenological description of the AC-Stark shift is also developed.
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1.1 Motivation

1.1 Motivation

Atomic structure and atom-field interactions are quantum physics problems taught in under-

graduate courses, and the practical case usually concerns the hydrogen atom (see for example

Cohen-Tannoudji’s "Quantum mechanics" [41]). For the general case, and especially the ru-

bidium, other authors like D. A. Steck [42], J. Vanier [37] or A. Corney [43] propose detailed

treatments of the subject. However, the presentation is highly theoretical and relevant informa-

tion for the experimentalist in double resonance spectroscopy is sometimes not straightforward.

The purpose of this chapter is to restrict the theory to the interactions and transitions of interest

for a rubidium clock only. In particular, we calculate all the transition probabilities for the mag-

netic dipole interaction. We also redefine a pure magnetic field polarization since the standard

electromagnetic polarization definition, based on the electric field only (see [43]), is not precise

enough for an unambiguous description of the magnetic field orientation.

1.2 Double resonance principle

The high resolution spectroscopic studies in this thesis are based on the double resonance prin-

ciple: consider an ensemble of three levels systems (as shown on Figure 1.2) confined in an

absorption cell. We name levels 1 and 2, lower and upper ground state levels, and level 3 the

excited level. At thermal equilibrium, the two ground states can be considered equally pop-

ulated and the excited state empty. Indeed, for 87Rb at 60◦C, the ratios of the populations,

n1, n2 and n3, of the states given by the Boltzmann distribution are:

n1

n2
= e−(E2−E1)/kBT ≈ 0.999

n3

n2
= e−(E3−E2)/kBT ≈ 1.2× 10−24 (1.2)

with ((E2 − E1)/h ≈ 6.8 GHz) � (kBT/h ≈ 6.9 THz) � ((E3 − E2)/h ≈ 380 THz). Consider

also two oscillating electromagnetic fields interacting with the atoms. The first, in the optical

domain (780 nm/384 THz or 795 nm/377 THz) is resonant with the transition 2-3. The second,

in the microwave domain (6.834 GHz), can be frequency swept across the Bohr frequency of the

transition 1-2, defined as the clock transition.

The double resonance principle resides in the simultaneous interaction of these two resonant

fields with the atomic population. Figure 1.3 shows the typical interrogation scheme for the

9



Chapter 1: Double resonance rubidium atomic clock: basic principles

DR spectroscopy. The resonant optical field, produced by a laser diode, travels through the

cell containing the atomic vapour in which it is partially absorbed ; the cell’s transmission is

recorded with a photo-detector. The optical interaction induces and maintains a ground state

polarization by depleting the level 2 in favour of the level 1 through the unstable level 3. This

process is called optical pumping and the transmission of the cell is increased under its effect.

The oscillating magnetic field sustained by a microwave cavity fed by a microwave synthesizer,

is used as a frequency interrogator for the transition 1-2, or clock transition. Indeed, out of

the resonance the magnetic field doesn’t interact with the atoms, and the population stays in

the optically polarized state. On the contrary, when at resonance, the magnetic field induces

transitions between the ground state levels, refilling the depleted level, and thus reducing the

transmission of the optically pumped cell. These pumping effects are illustrated in Figure 1.2.

Typically, the transmission as a function of the microwave frequency, has a Lorentzian lineshape

with a linewidth of few kHz; it is known as the DR signal (see section 1.6). In the case of rubidium

atoms, the approximation by the three levels systems holds but requires the use of an additional

constant magnetic field, the C-field, to lift the degeneracy of the hyperfine ground states (see

section 1.4.2). The states 1 and 2 are associated with the atomic states |52S1/2;Fg = 1,mF = 0〉,
respectively |52S1/2;Fg = 2,mF = 0〉. The state 3 is associated either with the |52P3/2〉 (D2

line) or |52P1/2〉 (D1 line) depending on the chosen optical wavelength. The clock transition

is therefore the ground state |Fg = 1,mF = 0〉 ↔ |Fg = 2,mF = 0〉 transition of 0-0 transition,

with an unperturbed transition frequency or clock frequency of 6 834 682 610.90429(9) Hz[44].

10
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No resonance Laser ON 

Microwave ON Laser ON 
Microwave ON 
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3 

Figure 1.2: Schematic representation of the interactions involved in the DR interrogation
scheme. Top left, the atoms are at rest, they equally populate the two ground states due to
the Boltzmann distribution, the vapour is 50% transparent (first term of eq. 1.74); top centre,
beginning of the optical interaction only resonant with the transition 2→3. the level 3 being
unstable the atoms "fall" back randomly in the ground states 1 and 2, the level 2 is being
emptied and the transmission of the vapour increases (second term of eq. 1.74); top right,
without relaxation within the ground states, the inversion of population is total and the vapour
is 100% transparent; bottom left, magnetic interaction only, the RF field resonant with the
transition 1↔2, induces an oscillation of the populations between the two states. On a time
average, states 1 and 2 are equally populated, the vapour transparency is 50%; bottom centre,
double interaction with the two fields at resonances. Optical interaction empties the state 2
which is repopulated by the magnetic interaction and the transmission of the vapour decreases
(last term of eq. 1.74); bottom right, DR spectrum. The transparency of the vapour is shown

as a function of the RF frequency.
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Figure 1.3: Double-resonance interrogation scheme. The graphic shows the typical transmitted
intensity (DR signal) as a function of the microwave frequency. The z-axis is chosen parallel to

the C-field.
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1.3 Structure of the Rb atom at rest: intrinsic splittings

The rubidium atom (Z=37) is a hydrogen-like atom: the 36 first electrons are completely filling

the atomic subshells as follow: (1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6), where the superscript indi-

cates the degeneracy, i.e. the number of electrons, of the subshell; the first number corresponds

to the principal quantum number n and the letter to the azimutal quantum number l as follow:

s ↔ l = 0; p ↔ l = 1, d ↔ l = 2. These electrons act as a negatively charged shield with no

angular momentum around the nucleus, and the average charge seen by the valence electron is

+e. The central field approximation [41] allows the separation of variables and the same method

as for the hydrogen atom can be applied. The angular part of the Hamiltonian can be expressed

as follow:

H0 = κnl + εnl~L
2 + ξnl~L · ~S + Anl

~I · ~J (1.3)

where ~L, ~S, ~J = ~L+ ~S and ~I are the operators for the orbital angular momentum, the electron

spin angular momentum, the total electron angular momentum, and the nucleus spin angular

momentum, respectively. κnl, εnl, ξnl, and Anl are constants arising from the separation of

variables including also relativistic effects and the vacuum fluctuations [41]. The third element is

called spin-orbit term and is responsible for the atomic fine structure. The last term arises from

the coupling of the nucleus spin with the total electron momentum and induces the hyperfine

structure of the atom. These effects on the energy levels are shown on Figure 1.4. The energy

states are named using the F,mF notation, where F andmF are the quantum numbers associated

to the total angular momentum operator of the atom, ~F = ~J + ~I, and |F,mF 〉 the eigenstates.

1.4 Weak electromagnetic interactions

The interaction of the atom with an electromagnetic field is treated here semi-classically1 as a

perturbation, and the total interaction Hamiltonian is approximated by:

H = H0 +W , (1.4)

whereH0 is the unperturbed Hamiltonian of the atom, andW the perturbation. In the case of a

static field, this perturbation is constant and only modifies the eigen energies of the eigenstates.
1the atoms are treated quantum-mechanically but the electromagnetic fields classically.
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52P3/2

52P1/2

52S1/25S

5P

D1
795.0 nm
377.1 THz

D2
780.2 nm
384.2 THz

Fine structure:
L-S interaction

Hyperfine structure: 
I-J interaction

Relativistic corrections and
Lamb shift

266.65 MHz

156.95 MHz
72.22 MHz

F=4

F=3
F=2
F=1

F=2
F=1

814.5 MHz

6.834 682 611 GHz

F=2

F=1

5S, 5P

Coulomb interaction

Figure 1.4: Splitting of the 87Rb energy levels (J = 3
2 ) in absence of external fields.

This effect is known as the Zeeman effect for a static magnetic field (see section 1.4.2), or Stark

effect for a static electric field. In the case of an oscillating field resonant with ω0, the Bohr

frequency of two of its states |i〉 and |f〉, the atom makes cyclic transitions between these states.

The angular frequency of this cycle is called the Rabi frequency or Ωif , and is expressed as follow:

Ωif =
|Wfi|
~

(1.5)

whereWfi is the matrix element of the amplitude W̃ of the oscillating perturbation Hamiltonian

W :

Wfi = 〈f | W̃ |i〉 . (1.6)

When the lifetime of the excited state is short as compared to the period of the Rabi oscillation,

another quantity, the transition rate, becomes relevant. It is given by the following expression

13



Chapter 1: Double resonance rubidium atomic clock: basic principles

(see [37] for a complete derivation):

Γif (ω) =

(
Ωif

2

)2

2πg(ω − ωif ). (1.7)

where g(ω−ωif ) is a normalized distribution, centred at ωif , the frequency corresponding to the

energy splitting of the two coupled states.

1.4.1 Perturbation Hamiltonian

We saw in section 1.2, that the DR principle involves the interaction between the rubidium

atoms and three different types of electromagnetic fields: a static magnetic field, called C-field, a

microwave magnetic field, and a near infra-red optical field. All these interactions are described

by the same interaction Hamiltonian, but the final expression of the perturbation W , issued

from a second order approximation of H strongly depends on the type of field considered.

1.4.1.1 Magnetic field

In the case of a pure magnetic field, the perturbation Hamiltonian can simply be written as [41],

WM (t) = −~µ · ~B0 cos(ωt), (1.8)

where ~µ is the magnetic moment operator of the atom, given by ~µ = −µB(~L+ gJ ~J − gI ~I), and
~B0 cos(ωt) the magnetic field. In a rubidium clock, the focus is only on the ground state levels

of the atom, for which l = 0. Therefore, the radial part of the total interaction Hamiltonian can

be reduced to:

HM = H0 +WM = An0
~I · ~S + µB(gJ ~S − gI ~I) · ~B(t). (1.9)

1.4.1.2 Light field

In the case of light interaction, both fields interact with the atom through magnetic and electric

dipole interaction, and higher orders terms. For the transitions of interest, we only consider
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the electric dipole term, since it is the dominant perturbation term by more than four orders of

magnitude (the electric dipole approximation). The perturbation Hamiltonian is therefore:

WL = −~d · ~E0(ω) cos(ωt) (1.10)

= −E0(ω) ~d · ~eλ cos(ωt) (1.11)

where E0(ω) is the amplitude of the electric field. ~d = −e · ~r is the dipole operator with e the

charge of the electron, and ~eλ the polarization vector of the field.

1.4.2 Rubidium in a static magnetic field: ground states Zeeman splitting

For a static magnetic field oriented along the z direction1, defined from now on as C-field (with

C0 as its amplitude), equation (1.9) is reduced to:

HC = An0
~I · ~S + (gJµBSz − gIµBIz)C0. (1.12)

For low C-field strength, typically below 100 mG, (gJµBSz− gIµBIz)C0 is considered as a small

perturbation to An0
~I · ~S, and the basis {Fg,mF } is still a good approximation. The eigen energies

for the states |F,mF 〉 are given by the Breit-Rabi formula [37], [45]:

E(Fg,mF ) = −An0

4
− gIµBC0mF ±

An0

4
(2I + 1)

(
1 +

4mF

2I + 1
x+ x2

)1/2

(1.13)

where

x =
2(gJ + gI)µBC0

An0(2I + 1)
, (1.14)

with the convention that the plus sign applies for F = I+1/2, and the minus one for F = I−1/2.

In rubidium clocks, the C-fields used are of the order of 100 mG or below, and A of 10−24 J.

Therefore µBC0

A � 1; in addition, for the rubidium atoms, gIgJ < 5× 10−4, so the equation (1.13)

can be approximated by:

E(Fg,mF ) = An0(2I + 1)

(
−1

4(2I + 1)
± 1

4

)
±mF

gJµB
2I + 1

C0 ±
(gJµB)2

2An0(2I + 1)
C2

0 (1.15)

1In most practical cases, the orientation of the static field determines the z axis, or in other words, the
quantization axis. For a non homogeneous field, this quantization axis is only valid locally.
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or

E(Fg,mF ) =
An0

4
(−1± 4)±mF

gJµB
4

C0 ±
(gJµB)2

8An0
C2

0 (1.16)

for the 87Rb case (I = 3/2). The selection rules for the hyperfine magnetic dipole transitions

impose a change of the magnetic quantum number, ∆mF = 0,±1 (see section 1.4.3). The

corresponding Bohr frequencies of the allowed transitions are thus given by:

E(Fg = 2,mF )− E(Fg = 1,mF )

h
=

2An0

h
+ (mF1 +mF2)

gJµB
4h

C0 +
(gJµB)2

4hAn0
C2

0 (1.17)

The first term of the equation (1.17) induces the hyperfine splitting (EHFS/h = 2An0/h =

6 834 682 610.90429(9) Hz [44]), and the two remaining terms are responsible for the Zeeman

splitting (see Figure 1.5). The corresponding linear and quadratic frequency shift coefficients,

with respect to the magnetic field amplitude, are (mF1 + mF2)0.7 MHz/G and 575.14 Hz/G2,

respectively. For the low C-field strength, (100 mG or below), the linear coefficient spreads

equidistantly all the allowed magnetic transition frequencies over a range of ±420 kHz centred

around the hyperfine frequency. In first order, the |Fg = 1,mF = 0〉 ↔ |Fg = 2,mF = 0〉 tran-
sition frequency is unperturbed by the magnetic field. This first order insensitivity defines this

transition as the clock transition and the two considered states as clock states. A quadratic fre-

quency shift is present and is ∼5.8 Hz at 100 mG. Though it is at least four orders of magnitude

smaller than any other allowed magnetic transition frequency shift, it still has to be considered

as a frequency perturbation (see Chapter 1.7).

1.4.3 Magnetic dipole transitions

In the case of an atom in a RF magnetic field oscillating at frequency ωM , combining equations

(1.5), (1.7) and (1.8), gives the corresponding transition rate:

ΓMif
(ωM ) =

| 〈f | ~µ · ~BRF |i〉 |2

4~2
2πg(ωM − ωif ). (1.18)

The previous section showed that an additional static magnetic field only shifts the energies of

the eigenstates, and has an impact only on the Bohr frequencies of the transitions considered.

It also breaks the isotropy of the problem and generates a quantization axis. Therefore, we split
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52S1/2

6.834 682 611 GHz

F=2

F=1

mF=-2 mF=-1 mF=0 mF=1 mF=2

0.7 MHz/Gauss

Figure 1.5: Schematic weak field Zeeman splitting of the 87Rb ground state energy levels. The
drawing is not to scale with respect to the hyperfine splitting.

~BRF in a parallel field, ~B‖, and an orthogonal one ~B⊥ fields with respect to the local C-field and

consider them separately:

~BRF (t) = ( ~B‖ + ~B⊥) cos(ωM t) with

 ~B‖ =
~BRF · ~C0

|| ~C0||
~C0

|| ~C0||

~B⊥ = ~BRF − ~B‖

(1.19)

Locally, we choose to fix ~ez along the C-field, and ~ex along ~B⊥. Using equations (1.9 and 1.19),

the fact that gI
gJ
< 5× 10−4 and that gJ ≈ 2, the transition rates finally become:

ΓMif
(ωM ) =

(
B‖µB

~

)2

2πg(ωM − ωif ) | 〈f |Sz |i〉 |2︸ ︷︷ ︸
(µπif )2

+

(
B⊥µB

~

)2

2πg(ωM − ωif ) | 〈f |Sx |i〉 |2︸ ︷︷ ︸
(µσif )2

(1.20)

As can be seen in Table 1.1, µπif and µσif are non null only for transitions with ∆mF = 0 and

∆mF = ±1, respectively.
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Table 1.1: Magnetic dipole matrix elements, µπif , left table and µσif , right table, within the
ground state 52S1/2. We use: i↔ mF=1, and f ↔ mF=2.

mF=1

mF=2 -2 -1 0 1 2

-1 0
√
3
4 0 0 0

0 0 0 1
2 0 0

1 0 0 0
√
3
4 0

µπif

mF=1

mF=2 -2 -1 0 1 2

-1
√
3
4 0 1

4
√
2

0 0

0 0
√
3

4
√
2

0
√
3

4
√
2

0

1 0 0 1
4
√
2

0
√
3
4

µσif

From now on, we use the following definition for a dipole transition: a π-transition is a transition

with ∆mF = 0 and a σ-transition is a transition with ∆mF = ±1. On the contrary to the

definition, based only on the polarization vector of the electric field for any transition [43], this

definition distinguishes the type of transition from the change of the magnetic quantum number

and imposes clear and stringent conditions on the field inducing the transitions:

• In the case of an electric dipole transition, a π(σ)-transition is induced by an electric field

parallel (orthogonal) to the local C-field; this is equivalent to the standard definition.

• In the case of a magnetic dipole transition, a π(σ)-transition is induced by an magnetic

field parallel (orthogonal) to the local C-field; this differ from the standard definition.

Using equations (1.7) and (1.20), the magnetic Rabi frequencies are finally defined as:

Ωπ
Mif

=
2B‖µB

~
µπif (1.21)

Ωσ
Mif

=
2B⊥µB

~
µσif (1.22)

and especially:

Ωπ
M00

=
B‖µB

~
(1.23)

which is the Rabi frequency of the 0-0 transition.
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1.4 Weak electromagnetic interactions

Figure 1.6: Scheme of the type of polarizations encountered. Indices specify whether a mag-
netic or an electric coupling is involved. It is important to note that in this manuscript, the

name of the field polarization (π, σ) depends on the type of interaction considered.

It is interesting to note that:

1

(B‖)2

∑
i

(Ωπ
Mii

)2 =
1

(B⊥)2

∑
i 6=j

(Ωσ
Mij

)2 (1.24)

Reflecting the fact that neither σ nor π transitions are intrinsically favoured. Thus, only the

direction of the RF magnetic field compared to the C-field weights these transitions.

1.4.4 Electric dipole transitions

In the case of an atom interacting with a light field at an optical frequency ω, combining equations

(1.5), (1.7) and (1.10), gives the following transition rate for a fixed field frequency:

Γif (ω) =
πE0(ω)2

2~2
| 〈f | e~r · ~eλ |i〉 |2g(ω − ωif ). (1.25)
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Figure 1.7: Magnetic transition rates in the 87Rb 52S1/2 state expressed as multiple of(
B‖µB

~

)2
for the π-transitions, in solid red, and

(
B⊥µB

~

)2
for the σ-transitions, in dashed green.

For a physical light source, the transition rate becomes:

Γif =

∫
dωg(ω − ωif )

πI(ω)

2cε0~2
| 〈f | e~r · ~eλ |i〉 |2 (1.26)

where I(ω) = ε0cE
2
0(ω) is the light intensity spectrum. Here we have to consider the fact that

the light is a travelling wave and the atoms are moving, therefore, the Doppler effect. Indeed,

in the laboratory frame of reference, the Bohr frequency of an atom is shifted by ∆ν = −ν vzc ,
where vz is the relative speed with respect to the light source. The frequency distribution of the

atomic transition becomes:

g′(ν) = g(ν −∆ν). (1.27)

Since the atoms are in thermal vapour phase, their speeds follow the Maxwell-Boltzmann distri-

bution. The probability for an atom to have a speed ~v is [46]:

P (~v)d~v = (
m

2πkBT
)
3
2Exp(− m~v2

2kBT
)d~v (1.28)

by integrating over dvxdvy we find the probability for an atom to have a speed vz(it is the only

relevant speed for the Doppler shift):
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P (vz)dvz = (
m

2πkBT
)
1
2Exp(− mv2

z

2kBT
)dvz (1.29)

It is a normalized distribution with a FWHM of 2
√

2 ln 2
√

kBT
m . Integrating the product of

equation (1.27) and (1.29), we obtain the average lineshape for the whole atomic population

g̃(ν) =

∫
g(ν −∆ν)P (vz)dvz. (1.30)

Which is in fact the convolution between the two distributions. For a lorentzian absorption profile

and a gaussian distribution of speeds, the result is called a Voigt distribution: V oigt[σL, σG](ν).

(It is not an analytical function but a precise expression can be found in [47]). σL is the half

width at half maximum (HWHM) of the Lorentzian lineshape and σG = c
ν

√
kBT
mRb

the standard

deviation of the Gaussian distribution. It is normalized due to the properties of the convolution,

and its FWHM is well approximated with an accuracy of 0.02% by [48]:

FWHMV oigt ≈ 0.5346γL +
√

0.2166γ2
L + γ2

G (1.31)

where γL = 2σL and γG = 2
√

2 ln 2 σG are the FWHM of the Lorentzian and Gaussian distribu-

tions.

In the case of a distributed feedback (DFB) laser source, the absorption lineshape is much

broader (∆νDoppler ≈ 500 MHz, ∆νBG > 500 MHz1) than the emission spectrum of the laser

itself (typically ∆νL ≈ 5 MHz). For simplicity, we consider the laser as monochromatic, i.e.,

I(ω) = I0δ(ω − ωL), and the pumping rate becomes2:

Γif = πg̃(ωL − ωif )
I0

2cε0~2
| 〈f | e~r · ~eλ |i〉 |2 (1.32)

The pumping rate is the probability for a irradiated atom to leave its initial state |F,mF 〉 to
any reachable excited state |Fe,mFe〉; it is naturally the sum of all the non zero transition

probabilities. For the low C-field considered, the Zeeman splitting is not resolved by simple laser

spectroscopy, and we treat the substates, |Fe,mFe〉, of the hyperfines states, |Fe〉, as degenerated.
1see section 1.5.1
2This would not be possible for a vertical-cavity surface-emitting lasers (VCSEL) which has typically ∆νL <

100 MHz. Taking the laser linewidth into account would induce an additional broadening through the convolution
process.

21



Chapter 1: Double resonance rubidium atomic clock: basic principles

We thus define

|Fe〉 =
∑
mFe

|Fe,mFe〉 (1.33)

|µ〉 = |Fg = 1, µ〉 (1.34)

|µ′〉 = |Fg = 2, µ′〉 . (1.35)

A schematic representation of these states and the corresponding pumping rates are shown on

Figure 1.8). These definitions have the advantage to simplify the expression of an averaged

pumping rate ΓµFe for every Zeeman sub state of a given hyperfine state of the ground state1.

Using equations (1.32) and (1.33)-(1.35)we get:

ΓFe = πg̃(ωL − ωµFe)
I0

2cε0~2

1

GF=1

∑
µ

∑
mFe

| 〈Fe,mFe | e~r · ~eλ |µ〉 |2 (1.36)

Γ′Fe = πg̃(ωL − ωµ′Fe)
I0

2cε0~2

1

GF=2

∑
µ′

∑
mFe

| 〈Fe,mFe | e~r · ~eλ |µ′〉 |2 (1.37)

The optical frequencies of the hyperfine transitions, ωµFe and ωµ′Fe are given in Table 1.2, and the

dipole matrix elements, | 〈Fe,mFe | e~r · ~eλ |F = i,mF 〉 |2 in Appendix D. Using these coefficients,

and for a light σ-polarized2, the average pumping rates become:

ΓFe = πg(ωL − ωµFe)
I0

2cε0~2
SF=1,Fe

2

3
| 〈Je| |er| |J〉 |2 (1.38)

Γ′Fe = πg(ωL − ωµ′Fe)
I0

2cε0~2
SF=2,Fe

2

3
| 〈Je| |er| |J〉 |2 (1.39)

(1.40)

where | 〈Je| |er| |J〉 |2 is the reduced dipole matrix element and SFFe the relative hyperfine tran-

sition strength factors (given in Table 1.2) [13].
1we made the approximation that for a given hyperfine substate, ωµm = ωνm for all µ and ν.
2i.e. the light propagates parallel to the quantization axis with an arbitrary polarization.
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In turn, the reduced dipole matrix element can be expressed as a function of the intrinsic excited

atom lifetime τ :

1

τ
=

ω3
0

3πε0~c3

2J + 1

2Je + 1
| 〈Je| |er| |J〉 |2 =

26.2348(77)ns for the D2 line [13]

27.679(27)ns for the D1 line [13].
(1.41)

It results for the pumping rates ΓFe (for Γ′Fe , F = 2):

ΓFe = SF=1,Fe

I0

~ω0
πg̃(ωL − ωµFe)

2Je + 1

2J + 1

πc2

ω2
0τ

(1.42)

= SF=1,FeI02πg̃(ωL − ωµFe)
2Je + 1

2J + 1

σ0

12τ
(1.43)

= I0σF=1,Fe(ωL − ωµFe) (1.44)

In which I0 is the photon flux, σ0 = 6πc2

ω2
0
, and

σF=1,Fe(ω − ωµFe) = SF=1,Fe

2Je + 1

2J + 1
2πg(ω − ωµFe)

σ0

12τ
, (1.45)

the absorption cross section1. Note that σ0 depends on the average optical frequency of the line,

ω0. For the D1 line it is σ0 ≈ 2.91× 10−13 m2, and σ0 ≈ 3.02× 10−13 m2 for the D2 line.

1.5 Optical absorption spectrum

According to Beer’s law, the variation of intensity of a light beam travelling through an absorptive

medium of length z is:
dI(ω, z)

dz
= −α(ω, z)zI(ω, z). (1.46)

In the case the light intensity is low enough so that the optical pumping is negligible, the ab-

sorption coefficient doesn’t vary with the intensity. Therefore, α(ω, z) = α(ω) and the solution

of equation (1.46) becomes:

I(ω, z) = I(ω, z0)(1− e−α(ω)) (1.47)
1Γ′Fe

differs from ΓFe only by the Bohr frequencies ωµFe , and the hyperfine transition strength factors SFFe
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 Hyperfine splitting 

Zeeman  
splitting 

Figure 1.8: Schematic representation of the different pumping rates in the D2 line of the 87Rb.
the ’ denotes rates for the upper ground states.

For a vapour of 87Rb at thermal equilibrium, using equation (1.45), the absorption coefficient, α

is given by:

α(ω) = nRb(T )
∑
F

∑
Fe

GF
GJ

σFFe(ω − ωµFe) (1.48)
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1.5 Optical absorption spectrum

where GJ and GF are the degeneracy of the fine ground state level |J〉 and the hyperfine state

level |F 〉, respectively, and nRb(T ) is the rubidium vapour density that is given in m−3 by [49]:

nRb(T ) =


10(9.863−4215/T )

kBT
for T < 312.5K

10(9.318−4040/T )

kBT
for T ≥ 312.5K.

(1.49)

Figure 1.9 shows the spectrum of the absorption coefficient at room temperature. The overlap

is due to the small hyperfine splitting compared to the Doppler broadening.
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Figure 1.9: Absorption spectrum of the 87Rb in the D2 line with hyperfine transitions identi-
fications. From [50]

1.5.1 Buffer gas shift and broadening of optical transitions

In equation (1.7) g(ω) was defined as a normalized lineshape; it is related to the finite lifetime

of the atomic state as follow:

FWHMg(ω) = Γ∗ = 2πγ =
1

τ
(1.50)
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Chapter 1: Double resonance rubidium atomic clock: basic principles

Table 1.2: Frequency offsets (upper lines) from 384 228 115.20 MHz in MHz, and relative
hyperfine transition strength factors, SFFe (lower lines) in the D2 line.

87Rb F=1 F=2

F’=3 -
0

14/20

F’=2
6568.03 -266.65

5/12 5/20

F’=1
6411.08 -423.6

5/12 1/20

F’=0
6338.86

-
2/12

85Rb F=2 F=3

F’=4 -
1126.49

81/126

F’=3
4041.58 1005.85

28/90 35/126

F’=2
3978.18 942.45

35/90 10/126

F’=1
3948.81

-
27/90

This finite lifetime of the atom in the excited state is due to the random vacuum fluctuations

of the electromagnetic field [51]. In addition, confined rubidium atoms within a cell filled with

buffer gases undergo many collisions with the buffer gas atoms; The collisions with the cell walls

are not relevant here since the average time between two collisions, typically few microseconds,

is much bigger than the intrinsic excited lifetime of ∼30 ns. These collisions strongly perturb

the excited states. It results in an increase of the de-excitation rate, inducing a broadening of

the lineshape, as well as a shift of the Bohr frequencies. This phenomenon has been extensively

studied by several authors [47], [52]–[60] who showed that the induced shifts and broadening

factors are linear along with the pressure and depend on the gas type. The relevant coefficients

are listed in Table 1.3.

The equivalent broadening cross section is given by:

σBG =
γBG

nBGv̄rel
(1.51)

where γBG is the pressure broadening, nBG, the density of the buffer gas, and v̄rel the average

relative speed between a rubidium atom and a buffer gas atom:

v̄rel =

√
8kBT

πµ
(1.52)

with kB the Boltzmann constant, and µ the reduced mass of Rb and the buffer gas, atom or

molecule considered. A comparison with other cross sections, such as quenching and kinetic gas
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1.5 Optical absorption spectrum

Table 1.3: Pressure Broadening and shift coefficients (γ and δ) for the optical D2 line of
rubidium induced by collisions with Nitrogen and Argon buffer gases.

N2 shift N2 Broad. Ar Shift Ar Broad.

Author [MHz/mbar] [MHz/mbar] [MHz/mbar] [MHz/mbar]

C. Ottinger et al. [52] -6.09 13.91

S. L. Izotova et al. [53]–[55] -4.27 13.5

P. Y. Kantor et al. [56] -6.15 14.21 -5.34 14.89

M. Têtu et al. [57] -4.64 18.8

G. Mileti [47] -3.55 22.2

M. D. Rotondaro et al. [58], [59] -4.34 13.7 -4.32 13.3

M. V. Romalis et al. [60] -4.51 13.8

Average value ± std. deviation -4.64±0.95 16.55±3.8 -5.01±0.87 13.9±0.7

Table 1.4: Cross sections and corresponding rates of different relaxation mechanism between
the 52P3/2 and 52S1/2 states (σ0 = π(RRb +RN2

)2 with RRb = 4Å and RN2
= 3.7Å[58]).

process cross section [m2] Broad. factor [MHz/mbar]

N2-Rb quenching [37] σq 4.3× 10−19 γ̃q 0.91

Ar-Rb gas kinetic collision [58] σ0Ar
1.72× 10−18 γ̃0Ar

3.20

N2-Rb gas kinetic collision [58] σ0N2
1.86× 10−18 γ̃0N2

3.93

Ar-Rb Pressure broadening σBGAr
7.48× 10−18 γ̃BGAr

13.9

N2-Rb Pressure broadening σBGN2
7.84× 10−18 γ̃BGN2

16.55

collisions is given in Table 1.4.

1.5.2 Generalized optical absorption spectrum and optical pumping rates

The theoretical absorption spectra of a rubidium vapour with and without buffer gases are

plotted using equation (1.48) and the Voigt profile V oigt[σL, σG](ν) as the absorption lineshape.

Considering a cell with a 4 mm long vapour volume, at 80◦C, and filled with:

• rubidium: 91% of 87Rb and 9% of 85Rb
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Figure 1.10: Transmission spectra computed for identical conditions except the buffer gas
pressure.

• Nitrogen-Argon buffer gas mixture: 42% N2 and 58% Ar (the broadening and shift coeffi-

cients for a mixture are the weighted sum of the corresponding average coefficients given

in Table 1.3; in the present case, γ̃BG = 15.44 MHz
mbar and δ̃BG = 4.8 MHz

mbar)

the transmission lineshapes of Figure 1.10 are obtained. A clear reduction of the absorption

coefficient of the cell along with the increase of BG pressure is observed: without buffer gas,

the cell is opaque at 80◦C while the same cell filled with 130 mbar of buffer gas in identical

conditions shows a transmission of ∼20%. In addition to the increase of the cell transmission,

the broadening allows the overlap of two lines of the 87Rb and 85Rb spectra, which is at the

origin of the lamp pumped rubidium clocks.

1.5.2.1 Average optical pumping rates

Figure 1.11 shows the pumping rates spectra. In a similar way to the absorption coefficient,

the increase of the BG pressure reduces the pumping efficiency, and the hyperfine structure is

completely hidden by the broadening mechanisms.

Since the hyperfine splitting is not resolved, Vanier [37] and also Mileti [47], deduce average

pumping rates, Γp and Γ′p, assuming that all the optical transitions share the same average
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Figure 1.11: Pumping rate spectra computed for different buffer gas pressure.

frequency ωµJ ′ . These pumping rates couple every single state |µ〉 or |µ′〉, to all the excited sub

states |Fe〉 of the |Je〉 state (see Figure 1.8).They are expressed as follow:

Γp(ωL) =
∑
Fe

ΓFe(ωL) (1.53)

= I0
2Je + 1

2J + 1

σ0

12τ
2πg̃(ωL − ωµJe) (1.54)

For practical purposes we consider a pure lorentzian lineshape [34],

Γp(ωL) =

(
ΩL

2

)2 Γ∗

(ωL − ωµJe)2 + (Γ∗/2)2
(1.55)

=
(ΩL)2

Γ∗
at resonance, (1.56)

where Γ∗ is the excited state decay rate; typically this rate is, Γ∗ ≈ 2× 109 s−1 for the pressures

considered in this manuscript.
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Finally, using equation (1.7) and (1.54), a simple expression for the Rabi frequencies in the D2

line is obtained:

ΩL = Ω′L =
√

I0

√
2σ0

3τ
(1.57)

= 2.72× 10−3

√
I0

[
Photons
s m2

]
(1.58)

= 5.39× 106

√
I0

[
µW
mm2

]
(1.59)

1.6 Optical-microwave double resonance spectrum

We have considered up to now the magnetic and the electric interactions separately. In an

atomic clock, both interactions act simultaneously on a huge number of atoms. In addition to

the quantum probabilities of each atom, one has to consider the statistical distribution of the

atomic population among the quantum states. Therefore, we use the density matrix formalism

for which the evolution of the whole system is governed by Liouville’s equation:

d

dt
ρ =

1

i~
[H̃,ρ]. (1.60)

ρ is the density operator in the interaction representation and H̃ the total interaction Hamil-

tonian. This equation contains n(n + 1)/2 coupled linear differential equations, where n is the

number of states considered. Ideally, the system consists of a total of 24 states in the D2 line

of 87Rb (3+5 in the 52S1/2 and 7+5+3+1 in the 52P3/2), so potentially 300 coupled differential

equations. Under proper hypothesis (see below), the number of states can be strongly reduced,

and we follow here a simplified three level approximation based on Vanier’s paper, "The passive

optically pumped Rb frequency standard: the laser approach" [34]. It provides a good and quali-

tative understanding of the various phenomena observed. The extension to a nine-levels analysis,

taking into account the multiplicity of each ground state level, is developed and discussed in [37],

[61], and [47]. It mainly results in an alteration of the pumping rates and a reduction of the

resonant atomic population. Figure 1.12 shows a schematic representation of these models.

Hyp. 1 The clock cell is filled with Nitrogen. The purpose of Nitrogen is to strongly reduce

the lifetime of the excited states |Fe〉, and to quench the spontaneous emission of light
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1.6 Optical-microwave double resonance spectrum

Figure 1.12: DR models; left, Vanier’s [34] 3-level approach; centre, Mileti’s [47] and Vanier’s
[37] 9-level approach; right, ideal approach. Straight arrows represent pumping rates, curved

arrows, Rabi oscillations inducing coherences.

that is normally emitted by the excited Rb atoms decaying back to the ground states.

The reduction of the excited lifetime results in an overlap of the optical resonances

justifying the use of a single excited state |Je〉 and the corresponding average pumping

rate calculated in section 1.5.2.1).

Hyp. 2 The excited Rb atom de-excitation takes place only via collisions with Nitrogen. The

selection rules of this relaxation process are not known and we assume they randomly

fill the ground state levels with equal probability. We name this rate of de-excitation Γ∗.

It is of the order of 2− 5× 109 s−1 for the pressure considered in this study.

Hyp. 3 The use of buffer gas significantly reduces the mean free path of the rubidium atoms

so that the nature of motion is a diffusion. The atoms are restricted to a region much

smaller than the wavelength of the microwave, and for our purposes appear motionless.

Thus, the Doppler broadening almost completely disappears. This effect is named after

Dicke who analysed it first [62].

Hyp. 4 The laser light is monochromatic and σ-polarized (see section 1.4.4). It couples only one

of the two hyperfine level of the S state to the P state. The light intensity is uniform

across the beam.
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Hyp. 5 Within the ground state, different mechanisms such as wall collisions, buffer gas collisions,

and Rb-Rb collisions among others tend to equilibrate the populations of all the different

ground state levels. We treat them in a phenomenological way and characterize them

by two relaxation rates, Γ1 and Γ2 for the populations and the magnetic coherences,

respectively.

With these hypothesis and the Vanier’s model, equation (1.60) takes the following form:

dρ11

dt
=

1

i~
[H,ρ]11 +

Γ∗

2
ρJeJe − Γ1(ρ11 − 1/2) (1.61)

dρ22

dt
=

1

i~
[H,ρ]22 +

Γ∗

2
ρJeJe − Γ1(ρ22 − 1/2) (1.62)

dρJeJe
dt

=
1

i~
[H,ρ]JeJe − Γ∗ρJeJe (1.63)

dρ12

dt
=

1

i~
[H,ρ]12 − Γ2ρ12 (1.64)

dρ1Je

dt
=

1

i~
[H,ρ]1Je −

Γ∗

2
ρ1Je (1.65)

dρ2Je

dt
=

1

i~
[H,ρ]2Je −

Γ∗

2
ρ2Je (1.66)

where H = WL +WM is the interaction Hamiltonian of the optical and RF fields.

This system of equations is solved in details in [34], from which is extract the following solution

for the state being depopulated at optical resonance:

ρ11 =
1

2

Γ1

Γ′1
+ ΓL1

S

4

(Γ′2)2

Γ′1

1

(ωM − ω′12)2 + (Γ′2)2(S + 1)
(1.67)

where

Γ′1 = Γ1 +
ΓL1

2
(1.68)

Γ′2 = Γ2 +
ΓL1

2
(1.69)

ω′12 = ω12 −∆ω (1.70)

S =
Ω2
M

Γ′1Γ′2
(1.71)
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1.6 Optical-microwave double resonance spectrum

ΓL1 is the optical pumping rate given by equation (1.56), ΩM the clock transition’s Rabi frequency

(see equation (1.23)), ωM the microwave frequency and ∆ω an additional frequency shift to the

unperturbed Bohr frequency ω12 (see section 1.7.2). S is called the saturation factor.

These equations are valid locally. Therefore, the total absorption of the vapour for a resonant

light field, is given by equation (1.48):

dI(z)

dz
= −α(z)ρ11(z)I(z) (1.72)

This is a non linear equation, and has to be solved numerically; This point is discussed in [34]. For

the present manuscript, we assume the intensity to be much lower than the saturation intensity

of the rubidium (Isat ≈ 17µW/mm2 [13]), and ρ11 and α constant along the beam. The following

expression for the transmitted intensity is then obtained:

Iout = I0e
−αρ11∆z ≈ I0(1− αρ11∆z) (1.73)

≈ I0

(
1− α∆z

(
1

2
− ΓL1

4Γ1
+
S

4

ΓL1

Γ′1

(Γ′2)2

(ωM − ω′12)2 + (Γ′2)2(S + 1)

))
. (1.74)

The second term describes the absorption of the vapour as a function of the optical and magnetic

fields; it is the DR signal. Its first term represents the absorbed light by the atomic population

at rest. The second term, the optical depumping, is a correction term and describes the effect of

optical pumping: for significant optical pumping rates ΓL1 with respect to the longitudinal re-

laxation rate Γ1, the state being pumped out is depopulated and the transmission increases. The

last term, the magnetic repumping can be seen as a correction term of the optical depumping:

the magnetic interaction repopulates the state being emptied, and the transmission decreases.

The DR signal has a lorentzian lineshape characterized by four quantities: amplitude (A), back-

ground level (Bck), central frequency (νclock =
ω′12
2π ) and linewidth, or full width at half maximum

(FWHM). The linewidth is expressed as:

FWHMω = 2Γ′2
√
S + 1 [rad/s] (1.75)

or FWHMν =
Γ′2
π

√
S + 1 [Hz]. (1.76)
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Using equations (1.68), (1.69) and (1.71) we obtain:

FWHMν =

(
Γ2 + ΓL

2

)
π

√
Ω2
M

(Γ2 + ΓL
2 )(Γ1 + ΓL

2 )
+ 1 . (1.77)

For a small microwave Rabi frequency compared to the population and coherence relaxations

rates and the optical pumping rate, equation (1.77) can be approximated by:

FWHMν ≈
Γ2

π
+

ΓL
2π

=
Γ2

π
+

2.9× 1013

Γ∗
I

[
µW
mm2

]
, (1.78)

which shows a linear behaviour as a function of the optical pumping rate, ΓL. Equations (1.56)

and (1.59) have been used for the right hand side of the equality. The first term represents the

intrinsic linewidth of the DR signal,

FWHMνIntr =
Γ2

π
(1.79)

and shows the equivalence between the intrinsic linewidth and the coherence relaxation rate

within a factor of π. The second term shows the optical pumping as a complementary loss process

for the coherence, as it induces additional broadening to the DR signal. It is proportional to the

light intensity.

The Amplitude of the DR signal is given by

A = I0
ΓL1

4(Γ1 +
ΓL1

2 )

Ω2
M

Ω2
M + (Γ2 + ΓL

2 )(Γ1 + ΓL
2 )

(1.80)

and its background level,

Bck = I0(
ΓL1

4Γ1
− 1

2
). (1.81)

When it comes to atomic clock evaluation, the Figure-of-Merit (FoM) is the parameter to optimize

(see section 1.7). It is defined as:

FoM =
C

FWHMν
(1.82)

where C is the contrast of the DR signal given by the ratio between the amplitude and the

background level: C = A/Bck.
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1.6 Optical-microwave double resonance spectrum

Figure 1.13 shows the evolution of the DR signal parameters along with the laser intensity for

various microwave power. Although only three levels are considered, and the non linearity of

equation (1.72) is not considered, the predictions of this model are valid qualitatively. Indeed,

in his comparison between the 3-levels and 9-levels models, Mileti [47] demonstrated typical

corrections factors of the order 5/8 for the amplitude and the background level. The central

frequency and the intrinsic linewidth are not affected by the multiplicity of the ground state

levels.

The signal amplitude shows a peaking as a function of the light intensity. This peaking is

accentuated for the contrast and the FoM by the linewidth and background increases. The light

intensities required are typically one order of magnitude smaller than the saturation intensity of

the rubidium which complies with the hypothesis made for the linearisation of equation (1.72).

The graphic of the linewidth shows the limits of validity of the linear approximation made for the

equation (1.78) at low intensities dominated by the RF power broadening (see equation (1.77)).

Nevertheless, a linear behaviour is still observed at higher intensities, and a linear extrapolation

of this portion to zero light intensity provides overestimated values of the coherence relaxation

rate, Γ2. This overestimation becomes smaller as the RF power is reduced.

As opposed to the contrast which shows a peaking along with the light intensity only, the FoM

shows a peaking as a function of the RF power too. This implies to optimize the light intensity and

the RF power simultaneously, since optimizing only one parameter at a time doesn’t guarantee

the determination of the global optimal condition.

Note for the evacuated and wall coated cells: The hypothesises 1-3 are not valid in the

case of a pure vapour of rubidium which is typically encountered in wall coated or evacuated

cells: the atoms are moving freely from wall to wall at an average speed of 300 m/s, and the

quenching cannot occur. No particular theoretical treatment exist for this situation, so we

extend phenomenologically the Lorentzian lineshape and the trends of its parameters (Amplitude,

Linewidth, FoM) to the evacuated and wall coated cells. We limit this extension for a standing

microwave wave, and a cell smaller than λRF /2 ∼ 2 cm to ensure a proper Dicke narrowing

[62]. Otherwise, the Doppler effect comes into picture and creates a typical pedestal below the

lorentzian lineshape as observed in [63].
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Figure 1.13: Three-level model’s qualitative predictions of the various measurable parameters.
Top left: amplitude; top right: linewidth; middle left: contrast; middle right: background
level; bottom: figure-of-merit. The population and coherence relaxation rates are Γ1 = Γ2 =

π × 1200s−1.

1.6.1 Relaxation mechanisms: homogeneous line broadening

In the fifth hypothesis of section 1.6, we have introduced phenomenologically the population and

coherence relaxation rates, Γ1 and Γ2. These rates have well defined physical origins and are

consequences of various collision types the rubidium atoms undergo. The type depends on the

confinement method. From equations (1.61),(1.62) or (1.64), the relaxation rates are additive

quantities. Therefore, the equivalent rate of two independent relaxation processes is the sum of

the individual broadenings.
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1.6 Optical-microwave double resonance spectrum

At first, we present the spin exchange (SE) broadening present in all practical cases. The discus-

sion is then extended to the confinement of the atoms inside an evacuated cell with non negligible

wall depolarization probability. It is followed by the buffer gas case, in which the cell containing

the Rb vapour is additionally filled with buffer gases (this is the only case satisfying the hy-

pothesises 1-3 of section 1.6). Finally the case of a cell having walls coated with antirelaxation

material is treated.

1.6.1.1 Spin exchange broadening

Due to the thermal nature of the vapour, the rubidium atoms collide with each other. During

such a collision the atoms can exchange their spin states [37]. This process is called spin-exchange

(SE) and in the case of the 0-0 transition, this exchange is equivalent to an electron-randomizing

collision [64]. Therefore the relaxation rates are similar to the collisional rate obtained from the

gas theory. The population and coherence SE relaxation rates, ΓiSE are expressed as follow [65]:

Γ1se = nvrelσse (1.83)

Γ2se =
6I + 1

8I + 4
Γ1se =

5

8
Γ1se (1.84)

where n is the density of the rubidium vapour, I = 3/2 the nuclear spin for the 87Rb, σse =

1.6× 10−18 m2 [66], the 87Rb-87Rb spin exchange cross section, and vrel =
√

16kBT/(πM) the

relative mean velocity between the colliding rubidium atoms of mass M . As a comparison, the

elastic collisional cross section is one order of magnitude bigger: 13.97 × 10−18 m2 [37]. It was

observed that σse does not vary much with the temperature [37], and we consider it constant.

Nevertheless, due to their atomic density dependency, the relaxation rates become significant

as the temperature is raised. At temperatures of 50, 70 and 90◦C the contributions to the

linewidth of the clock signal (FWHMν = Γ2se/π) are calculated to be 18 Hz, 95 Hz and 412 Hz,

respectively.

1.6.1.2 Bare wall broadening

Collisions of the rubidium atoms with the bare walls of the container, typically made of glass or

quartz, have a significant probability, ε [67], to fully randomize the polarization of the ground
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state of atom. The associated relaxation rate is defined as the bare wall relaxation rate, Γibw .

From the kinetic gas theory, the mean free path inside a pure rubidium vapour is of the order of

few cm at the temperatures considered1. The rubidium atoms move therefore freely from wall

to wall inside a cell of size below the centimetre. And the rate of collisions with the walls of the

cell, Γw, is given by the inverse of the average wall-to-wall time of flight, τw [37]:

Γw =
1

τw
(1.85)

where, for a cylindrical cell,

τw =
4V

vA
(1.86)

A denotes the inner surface of the container, and V its volume. The atom’s mean velocity v is

given by the Maxwell-Boltzmann distribution:

v =

√
8kBT

πM
(1.87)

and is of the order of v =∼290 m/s for the range of temperature considered (60-90◦C).

Taking into account the probability of depolarization per collisions, the coherence and population

relaxation rates are finally expressed:

Γ1bw = Γ2bw = Γw =
ε

τw
. (1.88)

ε was measured to be ε =0.5 for Na-glass and Cs-glass collisions [67], [68] and only ε =0.05 for

Rb-silicon collisions [69]. No precise data exists for Rb-glass collisions and we will assume for this

manuscript 0.5 ≤ ε ≤ 1. The corresponding broadenings are tens of kHz for sub-centimetric cells,

and scale linearly with the characteristic length of the cell lcell = 4V/A. Table 1.5 summarizes the

calculated collision rates and their corresponding broadening for the four different cell geometries

studied in this thesis (see Chapter 3). Compared to typical DR linewidths on the order of 100

Hz to few kHz, these broadenings are more than one order of magnitude bigger. Circumventing

this issue requires to reduce either the collision rate, τw, by the use of a buffer gas, or the ε factor
1∼3 cm at 80◦C assuming a collisional cross section of 1397×10−20 m2 [37]
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1.6 Optical-microwave double resonance spectrum

by the use antirelaxation coatings. Consequences of these methods are discussed in the following

sections.

Table 1.5: Atom wall collision rates and correspond relaxations rates for bare walls.

γibw (FWHMν)

Cell type lcell Coll. rate ε =1 ε =0.5

[mm] [kHz] [kHz] [kHz]

2D-Ina 1.2 243 77 39

2D-ABb 2.2 130 41 21

3Db 2.7 108 34 17

14 mmc 8.0 35 11 6

aIndium bonding
bAnodic bonding
cGlass-blown

1.6.1.3 Buffer gas broadening

The use of buffer gases prevents the atoms to collide directly with the inner walls of the cell

by strongly reducing their mean free path: from few cm in a pure Rb vapour down to few µm

or even below in a BG at the pressures considered. On the one hand, these collisions prevent

electron randomization collisions on the walls of the container through the diffusion motion, while

on the other hand, they perturb the ground-state wave function of the valence electron of the

alkali-metal atom [70]. This perturbation induces relaxations in the population difference and in

the coherence of the ground state clock transition. The corresponding relaxation rates are given

by [37], [47]:

Γ1BG = κcellD0
P0

P
+ vrelσ1BG

n0P

P0
(1.89)

Γ2BG = κcellD0
P0

P
+ vrelσ2BG

n0P

P0
. (1.90)

κcell is a geometrical factor depending on the shape of the cell, D0 the diffusion constant of the
87Rb atoms (D0 = 35 × 10−6 m2

s ) 1, P0 the standard atmospheric pressure, P the pressure

of the BG, n0 the Loschmidt constant (n0 = 2.6867774 × 1025m−3), and σiBG the relaxation
1For simplicity we consider here an average diffusion constant for a mixture of Nitrogen and Argon at 60◦C.

The diffusion constants are both 16 × 10−6 m2

s for Argon and Nitrogen at 32◦C, and scale with T 3/2 [37].
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cross section (see Table 1.6). For a cylindrical cell, the geometrical factor is expressed as κcell =
1
D2

(
(4.81)2 + π2D2

L2

)
, where D is the diameter of the cell, and L its length.

The first terms of equation (1.89) and (1.90) correspond to the relaxation rate due to the remain-

ing collisions of the rubidium atoms with the cell walls; it scales down with the total buffer gas

pressure. The second parts represent the effect of the Rb atoms’ collisions with the BG atoms or

molecules on the population and the coherence within the rubidium vapour; it scales up with the

total buffer gas pressure. These opposed trends with respect to the pressure impose a non zero

minimum for the relaxation rate. The optimal buffer gas pressure and the corresponding mini-

mum relaxation rates depend on the cell geometry. Figure 1.14 shows the theoretical behaviour

of the BG contribution to the DR signal linewidth as a function of the total pressure of the BG

for the four different cell geometries used in this thesis (see Chapter 3). The predicted optimal

pressures minimizing the linewidth for each cell geometry are presented in Table 1.7 along with

their corresponding linewidths.
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Figure 1.14: theoretical behaviour of the BG contribution to the DR signal linewidth as a
function of the total BG pressure, for three typical cell geometries studied in this thesis. The
mixture used is 58%Ar and 42%N2. Diameter and length in mm of the cells are: In(5;0.78),

2D(5;2), 3D(4;4.05), 14 mm(12;12).

1.6.1.4 Broadening in wall coated cells

The use of a proper wall coating can significantly reduce the depolarization probability, εcoat,

or the longitudinal relaxation rate, of a rubidium atom during a collision with the wall of the
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1.6 Optical-microwave double resonance spectrum

Table 1.6: Cross sections for the coherence and the populations relaxations, respectively σ2
and σ1, for 87Rb in Argon and Nitrogen gases from [37], [71].

[m2] Argon Nitrogen

σ1 49×10−27 8.0×10−27

σ2 37×10−27 350×10−27

Table 1.7: Optimal pressures and linewidths for buffer gas filled cylindrical cells.

Cell type Diameter Height Optimized Presure Linewidth contribution

[mm] [mm] [mbar] [Hz]

2D-In 5 0.78 486 796

2D-AB 5 2 216 354

3D 4 4.05 168 275

14 mm 12 12 92 56

cell. Values down to 10−6 for an alkene [72], 10−4 [73] for a paraffin and 3 × 10−2 for a self-

assembled-monolayer- (SAM) octadecyltrichlorosilane (OTS)1 coating [75] have been reported so

far.

The resulting coating electron randomization relaxation rate,

Γercoat =
εcoat
τw

, (1.91)

contributes to a linewidth well below 10 Hz, for alkene and alkane, and below 3 kHz for SAM-

OTS in any of the cells considered in Table 1.5. As a comparison, in our experimental conditions,

the spin exchange linewidth contribution is of the order of few hundreds Hz (see section 1.6.1.1).

Although the details of atom-coating interaction are not yet fully understood [76], the relevant

features of a coated cell are well described by qualitative analysis given by Goldenberg [77],

Bouchiat and Brossel [38], [73] and Vanier and Audoin [37]. All analysis are similar and based

on the fact that the atom gets adsorbed momentarily (about 40 ns [77]) on the coated surface

before being released back in the vapour.
1 A value of 5 × 10−4 has been reported for a thick OTS film, but potassium instead of rubidium was used

[74].
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The average time the atom spends adsorbed on the coating surface, τad, is related to the adsorp-

tion energy Ead through the following relation [78]:

τad = τ0e
Ea
kBT (1.92)

where τ0 is the period of vibration of the adsorbed atom in the wall potential typically having

a value ∼ 10−12 s, kB the Boltzmann constant, and T the temperature of the coating. Typical

values of adsorption energies for rubidium on paraffin are of the order of few tens meV (see Table

5.2).

During the adsorption process, the attractive van der Waals forces perturb the ground-state wave

function of the valence electron inducing a negative phase shift to the atom [37]. The average

phase shift per collision, Φcoat, is expressed as follows:

Φcoat = δωadτad (1.93)

where δωad is the difference between the resonant hyperfine frequency while the Rb is absorbed

on the surface and that in free space [79]. For paraffin coatings, the average phase shifts are

found to be negative and of the order of few tens of mrad
coll [63], [78], [80], [81].

Due to the statistical nature of the adsorption, a dispersion of the average phase shifts among

the atomic population is created, inducing a coherence loss. The induced broadening is called

adiabatic broadening, and its equivalent relaxation rate is expressed as follow [78]:

Γ2ad = 2
(Φcoat)

2

τw
. (1.94)

where τw is the average atom wall-to-wall time-of-flight defined in section 1.6.1.2. Typical values

for the adiabatic broadening are few tens of Hz (see Table 1.14).

In addition to the coating electron randomization relaxation rate, and the adiabatic relaxation

rate, other processes contribute to the relaxation rate of the coherence of the atomic population.

We identify and describe them here below:

• Polarized atoms can be absorbed into the coating for a sufficiently long time that all po-

larization is destroyed [78]. Since the vapour is saturated, the adsorbed atoms are replaced
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by "new" random atom from the reservoir to balance the pressure of the vapour with the

saturation pressure. This gives rise to the adsorption losses rate, Γlossads .

• The covering of the coating may not be 100%, resulting in bare glass surfaces. Collisions

with such surfaces is equivalent to a loss process, although the atom is not replaced. We

call this process the covering factor effect [82]. acov being the total uncovered surface, the

covering factor rate is given by:

Γcov =
vacov
4V

(1.95)

• Polarized atoms can enter the reservoir of the cell. Similarly to the adsorption loss, they

are replaced by "new" random atoms from the reservoir. This process is called reservoir

or hole effect [83]. ahole being the surface of the reservoir’s hole, the hole effect rate is

expressed as follow:

Γhole =
vahole

4V
(1.96)

• The collision with metallic rubidium droplet present in the interrogation chamber is similar

to the hole effect since the metallic rubidium act as a reservoir. Using amet, as the total

metallic surface in the interrogation chamber, we obtain for the metallic droplet relaxation

rate:

Γmet =
vamet

4V
(1.97)

V is the volume of the cell, and v is the average thermal speed of the rubidium atoms.

Although these processes have different physical origins, they are completely equivalent for the

population and the coherence; from an experimental point of view and for a given cell, they are

undistinguishable.

1.6.1.5 Broadening in wall coated cell with buffer gas

Mixing antirelaxing coating and buffer gases might appear as an interesting idea. A study by

Masnou-Seeuws and Bouchiat [84] concluded a potential reduction of the population relaxation

rate along with a moderate buffer gas pressure [37]. This effect was confirmed experimentally

by Boulanger [85] and more recently by Knappe and Robinson [86]. Nevertheless, these two

other studies focused as well on the coherence relaxation rate, responsible for the DR lineshape
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broadening (see equation (1.78)). They measured an increase of the broadening even at moderate

pressure, and attribute this effect to the existence of two classes of atoms accumulating different

phase shifts [86]. At higher buffer gas pressure, the relaxations appears to be dominated by

the collisions with the buffer gas, and no significant difference between coated and uncoated

cell was observed. As a conclusion, the improvement of the coating with a buffer gas does not

appear efficient. On the contrary this technique might be interesting for reducing the buffer gas

pressure required in microfabricated cells, by reducing the contribution of the walls in the buffer

gas model.

1.7 Atomic Clock frequency stability

An atomic frequency standard, or atomic clock is quantitatively characterized by its frequency

(in)accuracy and (in)stability. The accuracy represents how close from an ideal frequency the

produced frequency is, while the stability is the ability of the clock to produce the same frequency

over a given time scale. Since it is not caesium based, a rubidium clock does not realize the SI-

definition of the second, hence it is considered as a secondary frequency standard and requires

a proper calibration against a primary frequency standard (e.g. caesium fountain). The clock

accuracy becomes the accuracy of the calibration and is not considered in this study. The key

parameter of a rubidium clock is therefore its stability. Since the clock output is the quartz

frequency stabilized to the DR signal of the atomic resonator (see Figure 1.1), the frequency

stability of the clock reflects that of the DR clock signal. Therefore, understanding the underlying

physical effects causing instabilities to the clock transition is essential to improve the clock

frequency stability and identify the limiting factors.

In this section, we present the mathematical tool commonly used for the clock frequency sta-

bility analysis, the overlapping Allan deviation. We then discuss in details the sources of the

instabilities in the short-term (1-100 s) and in the medium- to long-term regimes (100− 105 s),

which are respectively the line broadening and the clock frequency shift instabilities, conceptually

introduced in equations (1.70) and (1.77).
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1.7 Atomic Clock frequency stability

1.7.1 Overlapping Allan deviation

A clock frequency analysis allows to distinguish the different noise processes present in its fre-

quency output. Such analysis is typically done in the time domain in terms of frequency deviation.

The phase of the clock, x(t), is measured at regular time intervals of length τ0, and the mean

clock fractional frequency yi, is given by:

yi =
1

ti+1 − ti
(x(ti+1)− x(ti)) =

1

τ0
(xi+1 − xi) . (1.98)

The standard deviation of the clock mean frequencies is not adapted to the analysis of a clock

stability, since it diverges for the common noise processes present in frequency sources. The

problem arises from the average value, which is not constant for processes other than white

frequency noise [87]. That problem is overcome by the use of the two-sample deviation or Allan

deviation [88] which allows to distinguish between various frequency noise processes such as

white, flicker and random walk frequency noise (see Figure 1.15). It is expressed as follow:

σy(τ)Allan =

√
1

2
〈(yi+1 − yi)2〉 =

√√√√ 1

2(N − 1)

N−1∑
i=1

(yi+1 − yi)2 (1.99)

In order to extend to longer averaging time τ and improve the statistical confidence, a variant of

the Allan deviation is commonly used: the overlapping Allan deviation. As its name indicates

it considers a set of overlapping subsets of samples instead of consecutive ones. It is defined as

follow [87]:

σy(τ) = σy(mτ0) =

√√√√ 1

2m2(N − 2m+ 1)

N−2m+1∑
j=1

j+m−1∑
i=j

(yi+m − yi)2 (1.100)

where N is the total number of samples, and m = τ
τ0

the size of a subset of samples. Figure

1.15 shows the behaviours of most typical frequency noises present in a rubidium clock in term

of overlapping Allan deviation along with a simulated data set. The white frequency noise

deviation is proportional to τ−1/2 and the flicker frequency noise deviation is constant; it is

commonly called Flicker floor. The deviations due to a drift (1 × 10−16 /s on Figure 1.15) and

a random walk frequency noise process, are proportional to τ . The simulated data also include

a periodic frequency oscillation (2× 10−12 of relative amplitude and a period of 5000 s) creating

the bump around 2000 s.
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Figure 1.15: Thick red: typical behaviour of a clock frequency presenting white frequency
noise at a level of 10−11 × τ−1/2, flicker frequency noise at a level of 10−12 and a linear drift of
1× 10−16/τ , in terms of overlapping Allan deviation. Thin blue: overlapping Allan deviation of

a simulated data set including an additional periodic frequency oscillation.

We split the frequency stability of a clock into two regimes: the short-term stability, based on

averaging time scales between 1 and 100 seconds, and the medium to long term stability, based

on averaging time scales comprised between 100 up to 105 seconds (∼ one day). The short

term regime is dominated by the white frequency noise process, it is equivalent to a statistical

averaging of the frequencies: the longer the data set, the more precise the mean frequency is.

While the medium- to long-term is degraded by random or "slow" frequency fluctuations and

drifts.

1.7.1.1 Short-term frequency stability

The short term frequency (in)stability in term of Allan deviation (σy(τ)), is governed by the DR

signal lineshape and the detection noise. It is estimated by [89]:

σy(τ) =
N · L√

2 ·A · νRb
τ−1/2 (1.101)

where N is the total detection noise power spectral density within the feedback loop, A the

amplitude of the clock signal, L, the DR signal linewidth and νRb the frequency of the clock

transition. For a detection noise approximated to be proportional to the background level, the

instability becomes:

σy(τ) ∝ 1

FoM
τ−1/2 (1.102)
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where FoM is the figure of merit defined by equation (1.82).

The detection noise is intrinsically lower limited by the stochastic properties of the light. The

corresponding shot-noise current noise density is expressed as,

Nshot =
√

2eIDC , (1.103)

where e is the charge of the electron, and IDC the photocurrent of the DR signal at half amplitude.

Combining equations (1.101) and (1.103) one obtains the intrinsic shot noise limit of the short

term stability:

σShot(τ) =

√
eIDC · L
A · νRb

τ−1/2 (1.104)

providing an ultimate lower limit of the clock short term stability.

1.7.1.2 Medium- to long-term frequency stability

The medium- to long-term frequency stability region concerns the slow fluctuations/drift of the

clock transition frequency. It is dominated by the different unstable physical processes inducing

a shift to the clock transition. By a simple error propagation and assuming the fluctuations are

uncorrelated we have:

σy(τ) =

√∑
i

σyi(τ)2 =

√√√√∑
i

(
∂y

∂pi
σpi(τ)

)2

, (1.105)

where y is the fractional clock frequency, and σpi(τ) the overlapping Allan deviation of the

parameter pi in subscript. Improving the medium- to long-term frequency stability of a clock

requires to reduce either the individual fluctuations of the various parameters through a better

control, or the relative sensitivity of the clock transition frequency to the parameter fluctuation,
∂y
∂pi

.

1.7.2 Clock frequency shifts and corresponding coefficients

In equation (1.70) we introduced ∆ω as an additional frequency shift to the unperturbed Bohr

frequency ω12. This total shift has well defined and additive physical origins that we list and
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Table 1.8: Order of magnitude of the spin exchange shifts and temperature sensitivity for
87Rb at different vapour temperature. ∆ = −1/3 corresponds to an ideal population imbalance
when the vapour is optically pumped from |Fg = 2〉 state and ∆ ≈ −0.07 to a typical population

imbalance reached in clock operation [65].

Shift Temperature sensitivity

∆ ∆νSE TCSE

[Hz] [Hz/K] [K−1]

50◦C
-1/3 -0.5 0.05 6.7× 10−12

-0.07 -0.1 0.01 1.4× 10−12

70◦C
-1/3 -2.7 0.2 3.1× 10−11

-0.07 -0.6 0.04 6.5× 10−12

90◦C
-1/3 -11.9 0.8 1.2× 10−10

-0.07 -2.5 0.17 2.5× 10−11

describe here below. An estimation of each relative shift coefficient is also given. At first, we

mention the spin exchange (SE) shift present in every case. The discussion is then extended to

the shift induced by the confinement method (buffer gas shift or wall coating). Finally the shifts

induced by the various electromagnetic fields are also treated.

1.7.2.1 Spin exchange shift

In addition to a broadening, Rb-Rb collisions also induce a small shift to the atomic magnetic

moment that results in a global shift of the clock transition. This shift is expressed as follow

[65], [66]:

∆νSE = −1

8
nRbvrelλSE∆, (1.106)

where nRb is the density of the Rb (see equation (1.49)), λSE = 6.9×10−19 m2 [65], [66], the colli-

sional cross section characterizing the frequency shift, and ∆ the difference in population between

the two clock levels: ideally, when the atoms are completely pumped from |Fg = 2〉(|Fg = 1〉),
∆ = −1/3 (1/5). Table 1.8 summarizes the calculated value for the SE shift, ∆νSE , and its

temperature sensitivity, TCSE = ∂∆νSE
∂T , for the typical operating temperatures and population

difference (∆ ≈ −0.07 [65]) found in this manuscript.
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1.7.2.2 Buffer gas shift and temperature coefficient

The clock frequency shift induced by the collisions with a buffer gas has been extensively stud-

ied from both experimental and theoretical points of view [90]–[98]. It depends on both the

temperature of the vapour and the density of the BG, and can be expressed for a single BG as

follow:

∆νBG = P (β + δ(T − T0) + γ(T − T0)2) (1.107)

where P is the pressure at the sealing temperature, T the temperature of the cell, T0 a reference

temperature set at 60◦C, and α, β, γ the pressure shift coefficient, the linear temperature

shift coefficient and the quadratic temperature shift coefficient of the gas, respectively. These

coefficients are given in Table 1.9 for the two gases (N2 and Ar) commonly used in Rb clocks.

The sensitivity coefficient to the temperature, or BG temperature coefficient, TCBG is calculated

from equation (1.107) as:

TC
(1)
BG(P, T ) =

∂∆νBG
∂T

= P (δ + 2γ(T − T0)) (1.108)

For a single buffer gas, this coefficient is zero at a given temperature: around 300◦C for Nitrogen

and below -200◦C for the Argon. The interest in mixing these two gases, comes from the fact that

the temperature at which TC
(1)
BG is zero (this temperature is called the inversion temperature,

or Tinv) can be steered to the usual temperature of operation for a rubidum atomic clock (see

Figure 1.16). For a given gas mixture, the equivalent shift coefficients are the weighted sum of

the respective gas coefficients according to their relative densities [93]. For a two gas mixture,

these are written as:

β = pβAr + (1− p)βN2 (1.109)

δ = pδAr + (1− p)δN2 (1.110)

γ = pγAr + (1− p)γN2 (1.111)
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Table 1.9: Buffer gas shift coefficient for 87Rb in Argon and Nitrogen gases. [93]

β
[

Hz
mbar

]
δ
[

Hz
mbar K

]
γ
[

Hz
mbar K2

]
Argon -49.93 -0.255 −4.265× 10−4

Nitrogen 400 0.401 −9.075× 10−4

Table 1.10: Order of magnitude of the Buffer gas shifts and first and second order temperature
sensitivities at different buffer gas pressure. The mixture is chosen to be 59% Ar and 41% N2

and the temperature is set 1 K off the inversion temperature.

59% Ar
Shift Temperature sensitivity

∆νBG TC
(1)
BG TC

(2)
BG

T = Tinv ± 1 K [kHz] [Hz/K] [K−1] [Hz/K2] [K−2]

60 mbar 8 0.075 1.1× 10−11 0.037 5.5× 10−12

100 mbar 13.5 0.12 1.8× 10−11 0.062 9.1× 10−12

150 mbar 20.2 0.19 2.7× 10−11 0.094 1.4× 10−11

where p is the fraction of Argon in the mixture. From equation (1.108) the inversion temperature

is then given by:

Tinv = T0 −
δ

2γ
(1.112)

= T0 −
p(δAr − δN2) + δN2

2 (p(γAr − γN2) + γN2)
. (1.113)

In optimized condition, the first order temperature coefficient being null, we have to consider the

second term of the Taylor expansion of equation (1.107) given by :

TC
(2)
BG(P ) = P (pγAr + (1− p)γN2) (1.114)

Table 1.10 summarizes the calculated value for the BG shift, ∆νBG, and its linear and quadratic

temperature sensitivities, TC(1)
BG and TC(2)

BG, respectively. The mixture and pressure are chosen

to be similar to the one used for the clock demonstrator (see Chapter 6). The temperature is set

1 K off the inversion temperature to enhance the consequences of a poor determination of the

inversion temperature.
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Figure 1.16: Theoretical buffer gas inversion (Argon-Nitrogen) temperature as a function of
the percentage of Argon.

1.7.2.3 Wall coating shift

The average phase shift the atoms undergo during their adsorption time (see equation 1.93, and

Table 5.2) induces a shift to the clock transition frequency:

∆νcoat =
Φcoat

2πτw
(1.115)

For the known efficient coatings, this phase shift is negative as a consequence of the predominance

of the attractive van der Waals forces between the alkali atom and those of the coating [37].

Typical values are found to be of the order of few tens of mrad
coll (see Table 5.2).

From the temperature dependence of the adsorption time (see equation (1.92)) a temperature

sensitivity is induced to the total shift of the clock transition frequency. The corresponding

coating temperature coefficient is given by:

TCcoat =
d(∆νcoat)

dT
= − Ea

kBT 2
∆νcoat (1.116)

Typical values are found to be of the order of TCcoat ≈ 1 Hz
K . Within the allowable experimental

temperature this sensitivity factor is intrinsic to the coating properties only, and cannot be
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minimized. However, Rahman and Robinson [79] observed two turnover points in the temperature

dependence close to the melting point of the coating. But this temperature is not viable for long

term operation of the coating since its quality quickly degrades [76].

1.7.2.4 Second order Zeeman shift

The second order Zeeman shift has already been treated in section 1.4.2. We recall here its

numerical expression for the completeness of this section. The second order Zeeman shift of the

clock transition is given by:

∆νZeem(C0) = KC · C2
0 (1.117)

with KC = 575.14
[

Hz
G2

]
, and C0 the C-field amplitude. For a C-field generated by a current I

through a coil of length L with N turns, the second order Zeeman shift of the clock transition

becomes:

∆νZeem(I) = KC

(
µ0N

L

)2

I2 (1.118)

The first order sensitivity coefficient to the magnetic field, or magnetic coefficient MCZeem is

calculated from equation (1.117) as:

MCZeem =
∂∆νZeem
∂C0

= 2 ·KC · C0 (1.119)

and a similar derivation of equation (1.118) provides the sensitivity coefficient to the current, or

current coefficient CCZeem:

CCZeem =
∂∆νZeem

∂I
= 2 ·KC

(
µ0N

L

)2

I = 2 ·KC · C0

(
µ0N

L

)
(1.120)

Table 1.11 summarizes the calculated value for the Zeeman shift, and its sensitivities to the

magnetic field and current, MCZeem and CCZeem, respectively. The conditions are chosen to be

similar to the one used for the clock demonstrator (see Chapter 6).
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Table 1.11: Order of magnitude of the Zeeman shift and sensitivities to magnetic field and
current for the clock demonstrator of Chapter 6: C0 = 125 mG, N = 35, L = 7 mm, I = 2 mA.

Quadratic Shift Magnetic sensitivity Current sensitivity

∆νZeem MCZeem CCZeem

[Hz] [Hz/G] [G−1] [Hz/mA] [A−1]

9 144 2.1× 10−4 9.1 1.3× 10−6

1.7.2.5 Light induced shift

The light shift (LS) effect, or AC Stark shift, is a well known process, and is one of the main

sources of instability in the different types of atomic frequency standards [99]. It is a consequence

of the states’ energy shifts induced by the coupling through the electric dipole operator. These

energy shifts are induced by virtual transitions (off-resonance transitions) [34], [37], [100] allowed

by the short lifetime of the excited state. A red shifted coupling pushes away from each other

the coupled states, and the opposite effect occurs for a blue shifted coupling (see figure 1.17).

The theoretical expression we present here is similar to the one developed by Mathur et al.

[101], but the hypothesises are slightly modified: instead of considering the average effect on

the degenerated hyperfine states, we restrict ourselves to the clock states only. This leads to

significant changes, especially on the dependency of the LS to the light polarization. The buffer

gas shift and broadening are also considered, giving a global picture of the light shift effect in

laser pumped vapour cell atomic frequency standards.

For a three-level system (see Figure 1.17), the LS is expressed as follow [34]:

∆νLS =

(
ΩL

4π

)2
(

δν ′L
(Γ∗

4π )2 + (δν ′L)2
− δνL

(Γ∗

4π )2 + (δνL)2

)
. (1.121)

where ΩL is the optical Rabi frequency, and Γ∗ the intrinsic decay rate of the excited states. The

frequency detunings, δνL, are given by:

δνL = νL − ν0 (1.122)

δν ′L = νL − ν ′0 (1.123)
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for which νL is the laser frequency, and ν0, ν ′0 are the optical frequencies for the atomic transitions

|Fg = 1〉 → |Fe〉, |Fg = 2〉 → |Fe〉, respectively.

The first term of equation (1.121) represents the energy shift of the upper ground state |2〉 and
the second terms the energy shift of the lower ground state |1〉. The opposite signs are due to

the definition of the Bohr frequency of the clock transition (see equation 1.1; hence, a negative

shift of the lower (upper) level results in a positive (negative) shift of the transition frequency,

and vice versa. The Figure 1.17 illustrates this effect.

Figure 1.17: Effect of the optical detuning on the energies of a three level system.

Equation (1.121) gives a good insight of the phenomenon and allows for a qualitative understand-

ing of the light shift effect. But in the case of the 87Rb in vapour-cell frequency standards, the

situation is more complex: the ground state clock levels (|Fg = 1;mF = 0〉 and |Fg = 2;mF = 0〉)
are coupled to several partially resolved excited states, and the contribution of each has to be

taken into account. Moreover, the light polarization comes into picture through the selection

rules of the electric dipole transitions. Such complexity of the excited level was already consid-

ered by Happer and Mathur [102], Mathur et al. [101] and Arditi [103], but their theoretical

expression stands for an average shift induced to the degenerated hyperfine ground states and

not specifically to the clock states. It is expressed as follow (for clarity the Doppler shifts are

here omitted):

∆νhfs =

(
ΩL

4π

)2∑
Fe

(
η2FeδνL2Fe

(Γ∗

4π )2 + (δνL2Fe
)2
−

η1FeδνL1Fe

(Γ∗

4π )2 + (δνL1Fe
)2

)
, (1.124)
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where

ηFgFe = 2(2Fe + 1)W 2(Je I 1 Fg;Fe
1

2
), (1.125)

and

δνLFgFe = νL − νFgFe . (1.126)

W 2(JeI1Fg;Fe
1
2) are the Racah coefficients [104], and νFgFe , the optical frequency for the atomic

transition |Fg〉 → |Fe〉.

This expression is insensitive to the light polarization. It allows a qualitative match between

theory and experiment for 133Cs, explaining the asymmetry observed in the experimental data

[103], but fails in explaining recent measurements from our group in the D1 line [105] as well

as the data presented in Chapter 6. We follow here the same approach, but consider only the

allowed transitions from the ground state clock levels to the excited states’ Zeemans sub levels,

as Miao Zhu does [106]. The consequences are essentially changes in the η-coefficients, to include

an induced dependence on the polarization of the pumping light:

η̃FgFe =
1∑

i=−1

εiξ
i
FgmF=0Fe . (1.127)

The i index corresponds to the polarization of the pumping light (−1 : σ−, 0 : π, 1 : σ+), εi is

the proportion of that given polarization, and ξiFgmF=0Fe
the relative transition strength factor

for the transition |Fg;mF = 0〉 → |Fe;mF = 0 + i〉 expressed as multiple of | 〈J = 1/2| |er| |J ′〉 |2.
These factors are given in Table 1.12. It is worth to mention the following relation:

1

Fg + 1

∑
mF

ξiFgmFFe =
1

3
ηFgFe ∀i, (1.128)

which explains why the polarization of the optical field has no incidence on equation (1.124).

We include here the effects of the buffer gases. As measured by Rotondaro [59] and others [52]–

[55], [60], the use of buffer gases induces a shift as well as a broadening of the optical transitions.
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Table 1.12: Relative transition strength factors expressed as multiples of
| 〈J = 1/2| |er| |J ′ = 1/2〉 |2 and | 〈J = 1/2| |er| |J ′ = 3/2〉 |2 for the D1 and D2 line, respectively.

Fg = 1 Fg = 2

∆mF −1 0 1 −1 0 1

D1: Fe = 1 1/12 0 1/12 1/12 1/3 1/12

Fe = 2 1/4 1/3 1/4 1/4 0 1/4

D2: Fe = 0 1/6 1/6 1/6 - - -

Fe = 1 5/24 0 5/24 1/120 1/30 1/120

Fe = 2 1/8 1/6 1/8 1/8 0 1/8

Fe = 3 - - - 1/5 3/10 1/5

Both effects are proportional to the pressure. The broadening being a direct consequence of the

excited state decay rate increase, it affects only the Γ∗ parameter as follow:

BGΓ∗ = Γ∗ + 2πγBGPBG, (1.129)

where γBG is the pressure broadening coefficient, and PBG the pressure of the buffer gas.

The shift itself affects only the optical transition Bohr frequencies as follow:

BGνFgFe = νFgFe + δBGPBG (1.130)

where δBG is the pressure shift coefficient. In case of a buffer gas mixture, we consider the

broadening and the shift induced by each gas weighted by its partial pressure. The coefficients

for Argon and Nitrogen are given in Table 1.13.

Table 1.13: Optical pressure and shift coefficients for D1 and D2 line in MHz/mbar. From
Rotondaro’s thesis [58].

D1 D2

δ γ δ γ

Ar -5.08 -13.6 -4.32 13.3

N2 -5.56 -12.2 -4.34 13.7
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1.7 Atomic Clock frequency stability

Including finally the Doppler effect, the total expression for the light shift becomes a weighted

average over the whole population according to the Maxwell distribution. Combining equations

(1.124), (1.127), (1.129), (1.130), and the Doppler shift νD, we obtain the following expression

for the light shift:

∆νLS =

(
ΩL

4π

)2∑
Fe

∫
dνDg(νD)

(
η̃2FeδνL2Fe

(
BGΓ∗

4π )2 + (δνL2Fe
)2
−

η̃1FeδνL1Fe

(
BGΓ∗

4π )2 + (δνL1Fe
)2

)
, (1.131)

where g(νD) is the Gaussian distribution of the frequencies. Figures 1.18 and 1.19 show the clock

frequency light shift as a function of the laser frequency for an intensity of 1 µW/mm2 and a pure

σ-polarization. The comparison is made with Mathur’s model in both, D1 and D2 lines. The

similarity of both models prediction in the D2 line comes from the unresolved excited hyperfine

splitting and a certain symmetry of the transition strength factors. This is not the case in the

D1 line and the two models differ. Both models on both lines predict two laser frequencies at

which the light shift is zero.
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Figure 1.18: Theoretical frequency light shift predictions in the D1 line for a light intensity of
1 µW/mm2 with a pure σ-polarization. Solid line: our model; dashed line: Mathur model.

The light intensity sensitivity coefficient, or α light-shift coefficient (αLS) is calculated from

equation (1.131) as:

αLS(νL) =
∂∆νLS
∂IL

=
∆νLS
IL

(1.132)

Using equation (1.59), this coefficient does not depend on the light intensity, IL, but only on the

laser frequency. It is null for the two same laser frequencies cancelling the total light shift.
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Figure 1.19: Theoretical frequency light shift predictions in the D2 line for a light intensity of
1 µW/mm2 with a pure σ-polarization. Solid line: our model; dashed line: Mathur model.

The light frequency sensitivity coefficient, or β light-shift coefficient (βLS) is calculated from

equation (1.131) as:

βLS(νL, IL) =
∂∆νLS
∂νL

=
∂αLS(νL)

∂νL
· IL (1.133)

On the contrary to the αLS coefficient the βLS coefficient is proportional to the light intensity;

it also depends on the light frequency, and cannot be cancelled close to the optical resonances

for a σ-polarized light (see section 6.5).

1.7.2.6 Cavity Pulling

The cavity pulling effect arises when the resonant frequency of the cavity sustaining the microwave

field is detuned from the atomic resonance. The frequency of the clock transition is "pulled" so

that the offset is reduced. This effect is non negligible and transfers the temperature sensitivity

of the microwave cavity frequency to the clock transition. The corresponding cavity pulling

temperature coefficient (TCCP ) is expressed as follow [37]:

TCpulling =
d∆νCP
dT

≈ 3× 10−3QL
Qa

d∆νcavity
dT

(1.134)

where ∆νcavity is the cavity detuning of the microwave cavity and QL and Qa are the quality

factor of the loaded cavity and of the atomic transition, respectively. TCcavity =
d∆νcavity

dT is the

temperature shift coefficient of the cavity resonance frequency.
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1.7.2.7 Microwave power shift

From the model used here, the clock frequency shows no dependency to the microwave power as

opposed to the light. Nonetheless, microwave power sensitivity of the clock transition frequency

is commonly reported for BG rubidium cells [7], [107]–[109]. This dependency, called the power

shift, is most likely a consequence of field inhomogeneities within the cell, emphasized by the

relative immobility of the atoms due to the BG. In other words, each atom has its own transition

frequency defined by its local environment. Applying the microwave, or modifying its strength,

modifies the local conditions, especially the absorption, thus the light intensity. Therefore any

residual light shift will induce a power shift. This dependency was put in evidence recently by

Bandi [7] who demonstrated a linear dependency of the microwave power shift coefficient to the

light intensity. Two other methods were also proven to efficiently reduce the power shift: by

introducing a C-field gradient along the quantization axis, Mileti [108] could reduce significantly

the power shift sensitivity down to 3×10−12/µW. Letting the atoms freely evolve by the use of

wall coating vanishes the inhomogeneities through spatial average; with this method Risley et

al. [80] demonstrated a complete suppression of the power shift.

1.7.2.8 External pressure shift

According to Riley, the variation of the external pressure induces a typical shift of about

1 × 10−10/atm [110]. This phenomenon is attributed to the "oil-can" deflection of the end

windows modifying the internal pressure of the buffer gas. This effect "scales with the 4th power

of the cell diameter and inversely with the cube of the window thickness" [110]. Assuming the

dimensions of the cell were 12 mm diameter and 1 mm thick (similar to the LARC cells, see

Table 3.1), one obtains 1× 10−11/atm, or 1× 10−14/hPa for our 3D cell design (one has (4/12)4

and (1/0.5)3 as scaling factors for the window diameter, respectively thickness).

1.7.3 Summary of the broadenings and shift coefficients

Tables 1.14 and 1.15 show the summary of the intrinsic broadening mechanisms and the shift

sensitivities to environmental parameters. The values for the broadening are purely theoretical.
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The values for the sensitivity coefficients are typical for a BG cell in the experimental conditions

encountered in Chapter 6.

Table 1.14: Summary of the various intrinsic broadening in buffer gas cells for four cell ge-
ometries.

Cell type

Dimensions Spin exchange Bare glass BG + Wall Optimized

� h broadening broadening (ε = 1) broadening pressure

[mm] [mm] [Hz] [kHz] [Hz] [mbar]

2D-In (70◦C) 5 0.78 95 77 796 486

2D-AB (70◦C) 5 2 95 41 354 216

3D (70◦C) 4 4.05 95 33 275 168

14 mm (50◦C) 12 12 18 11.5 91 57

Table 1.15: Sumary of the perturbing shift coefficients for the 3D buffer gas cell. Light shift,
microwave power shift are measured quantities (see Chapter 6).

Physical effect sensitive variable Coefficient Approx. value Rel. approx. value

Spin exchange

Temperature

TCSE -0.04 Hz/K −6.5× 10−12 K−1

Buffer gas
TC

(1)
BG ±0.1 Hz/K ±1.5× 10−11 K−1

TC
(2)
BG -0.06 Hz/K2 9× 10−12 K−2

Cavity pulling TCCP ±0.03 Hz/K ±4.4× 10−12 K−1

Light shift
Light intensity αLS ±4 mHz/% ±5.9× 10−13 %−1

Light frequency βLS ±0.35 Hz/MHz ±5.1× 10−11 MHz−1

Zeeman
Magnetic field MCZeem +144 Hz/G +2.1× 10−4 G−1

C-field current CCZeem +9.1 kHz/A +1.3× 10−6 A−1

Microwave power Microwave power PoCMW -0.17 Hz/dBm −2.5× 10−11 dBm−1

Oil-can External pressure PrCAtm +70 µHz/hPa +1× 10−14 hPa−1

N2 leak (sct. 4.2.2) N2 int. pressure PrCN2
+400 Hz/mbar +5.9× 10−8 mbar−1

1.8 Conclusion

In this chapter, we covered the theoretical aspects required to explain the basic properties of a

DR rubidium atomic clock. The models we introduced provide excellent qualitative prediction
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for the various interactions affecting the rubidium atoms, and their consequences on both the

optical absorption spectrum and the DR spectrum. The discussion was focused on the induced

broadening and shifts, providing powerful spectroscopic tools for the characterization of rubidium

vapour cells. The origin of polarization types (π, σ±) of the electromagnetic fields interacting

with the atoms was redefined. The electric field orientation as well as the magnetic one are

considered now whether the interaction is magnetic or electric. A ∆mF = −1, 0, 1 electric-

(magnetic-) dipole transition defines respectively, a σ−, π, σ+ polarization of the corresponding

field inducing the transition.

The notion of stability was introduced along with the statistical tool for its characterization, the

Overlapping Allan deviation. The stability limiting factors were identified: broadenings of the

DR spectrum limits the short term stability, and induced shift by fluctuating parameters restrict

the medium- to long-term stability. A detailed description of all the significant broadening and

shifts coefficients was presented with a particular focus on the light-shift effect: we proposed an

innovative theoretical model which allows qualitative and quantitative predictions of the light-

shift coefficients. The summary of all the potential shifts provides a simple and rapid tool for

the evaluation of the required constrains imposed on the environmental parameters stabilities.

As an example, for a 10−12 stability goal in the medium to long term regime, the linear BG

frequency shift temperature coefficient, resulting from an operating temperature off by one K

of the inversion temperature (TC(1)
BG = ±1.5 × 10−11 K−1), imposes a challenging temperature

stability of ±70 mK for the same time scale.
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Chapter 2

The experimental setups

This chapter describes most of the spectroscopic experimental setups used in this thesis except

the miniature double-resonance atomic clock presented in Chapter 6. The three spectroscopic

schemes, linear absorption, Doppler-free saturated absorption and DR are described in detail,

and their application briefly discussed. The two key components of the setup, the stabilized

laser source and the atomic resonator, are introduced and detailed. The role of the laser head is

double. It provides a tunable narrowband light source allowing the acquisition of optical spectra

without the use of a spectrometer; it is also the light source for the optical pumping process

in the DR scheme. The atomic resonator, or physics package, contains the cell under test and

serves for the microwave interrogation. It also controls, when possible, the external environment

of the cell, such as temperature and DC magnetic field.

The spectroscopy performed in this thesis serves two purposes. The first is analytical: the

measured spectra allow, under certain hypothesises and within the theoretical frame developed

in Chapter 1, to determine in a fast and non-destructive way the content of the cells under test

and its evolution over the time. This aspect is essential for the validation of newly produced

cells, especially in the case of the development of innovative fabrication processes, and is treated

in Chapters 4 and 5. The second purpose is metrological: the spectroscopy of the cell under test

is used to quantify the various induced shifts to the clock transition affecting the clock stability

and to optimize the external experimental conditions and interrogating parameters in term of

stability. This part is treated in the Chapter 6.
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2.1 Linear optical absorption setup

In linear absorption spectroscopy, the laser beam, provided by a laser head (see section 2.4), passes

through the rubidium vapour cell under test, and its transmission is recorded as a function of

the laser frequency. The cell is heated to increase the rubidium vapour density, thus its optical

density and the temperature is stabilized. The laser frequency is swept across the absorption

lines of the rubidium atom, by ramping the bias current of the laser diode. Since the laser

frequency depends linearly on the bias current, it can be calibrated using a known reference

spectrum recorded simultaneously within the laser head. Figure 2.1 shows the experimental

configuration for the linear configuration. The laser beam intensity is significantly reduced with

neutral density filters so that optical pumping is negligible, and the transmission of the cell is

measured. The obtained spectrum is Doppler broadened and the presence of buffer gas induces

additional broadening and shift to the absorption lines, as described in Chapter 1.

We use this spectroscopy as a simple detection scheme for the presence of rubidium vapour inside

the cell and for the estimation of significant buffer gas pressure through the collisional broadening

induced (see Chapter 1). The achieved resolution for the buffer gas pressure is of the order of

10 millibar. It is limited by the relatively small collisional broadening (γN2 ∼ 16.55 MHz/mbar)

with respect to the Doppler broadening (∆νDoppler ≈ 500 MHz). Nevertheless, under extremely

well controlled experimental conditions and using a proper fitting procedure the linear absorption

can be used to provide an optical measure of the Boltzmann constant, kB with an uncertainty

of few 10−6 only [111].

Figure 2.1: Schematic linear absorption setup. LH, Laser head; ND, Neutral density filter;
PD, Photo-detector.
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2.2 Doppler-free optical saturated absorption setup

Doppler-free saturated absorption spectroscopy [112] is operated similarly to the linear absorp-

tion spectroscopy, in the sense that the laser beam and reference spectrum are provided by a laser

head, and the laser frequency is swept while the transmission of the cell under test is recorded.

This spectroscopy is based on the velocity-selective saturation of the Doppler-broadened transi-

tions [113]. Two laser beams of same frequency but different intensities counter propagate and

overlap within the cell. The most intense beam is called the "pump"-beam, and the weakest, the

"probe"-beam of which the transmission is recorded. From their opposite propagation directions,

the pump and the probe beams interact with, and deplete, two longitudinal velocity classes of

atoms due to the Doppler effect. When these classes are different, the transmission of the probe

beam is identical to the linear absorption transmission since the class it probes is not affected

by the pump beam. On the contrary, when these classes are identical, the population depletion

induced by the pump beam reduces the absorption of the probe beam, inducing a narrow dip in

the Doppler broadened spectrum. Such situation occurs when the laser frequency is at resonance

with the atomic transitions and the class of atoms interacting with both lasers has a zero longi-

tudinal velocity vz = 0. We define this dip as a direct transition dip. This situation also occurs

when, in the rest frame of a class of atoms having a negative velocity, −vz, with respect to the

pump beam source, the atoms are depleted by the blue shifted pump beam via a given atomic

transition 1 of Bohr frequency ν1 if νL(1 + vz
c ) = ν1. The same class of atoms can be probed by

the red shifted probe laser through a different atomic transition 2 of lower Bohr frequency, ν2, if

νL(1− vz
c ) = ν2. This imposes the laser frequency to be [114]:

νL =
ν1 + ν2

2
. (2.1)

Similarly, and for the same laser frequency, the class of atoms with a positive velocity, vz, with

respect to the pump beam source, are depleted by the red shifted pump beam via the transition 2

and probed by the blue shifted probe beam via the transition 1. The dip induced in the probe

beam spectrum is called a crossover dip. Such spectroscopy is only achievable in low pressure

and pure alkali vapours. Indeed, the narrow width of the dip, free from Doppler broadening, is

sensitive to broadening by collisions unless the buffer gas pressure is quite low [115].

Figure 2.2 shows the experimental configuration for the realization of the Doppler-free saturated
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absorption. The laser beam passes through the vapour cell as pump-beam. It is reflected back

through the cell with a reduced intensity as the probe beam and is then deflected with the use of

a beam splitter to be measured. This configuration differs from the commonly used ones where

the laser beam is usually splitted before entering the cell [114], [116]–[118]. It presents a gain in

terms of space and renders the alignment much easier.

Figure 2.2: Schematic Doppler-free saturated absorption setup: LH, Laser head; BS, Beam
splitter; ND, Neutral density filter; M, Mirror; PD, Photo-detector.

We use this spectroscopic method essentially for the realization of the reference spectra of the

laser head. But its higher relative precision for the buffer gas broadening with respect to the

sub-Doppler patterns (∆νsub-Doppler ≈ 20 MHz) allows also a ∼ 20 times more precise estimation

of a potential BG contamination in a nominally pure rubidium vapour cell.

2.3 Optical-microwave double-resonance setup

In DR spectroscopy, the transmission of the cell under test, or clock cell, is measured as a function

of the applied microwave frequency while the pumping laser frequency is fixed. This provides the

DR signal, of which the key parameters (amplitude, centre position, linewidth and background

level) are measured as a function of the experimental parameters, which can be for example:

laser intensity, laser frequency, laser polarization, microwave power, cell temperature, or C-field

strength.
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LH 

CC 

MS 

PD 

MWR 

ND 

6.834GHz Rb cell 

BD, L 

WLM MWS 

Figure 2.3: Schematic DR setup: LH, Laser Head; MWR, microwave resonator; CC, C-field
Coil; MS, µ-metal Shield; ND, Neutral Density Filter; BD, Beam Diffuser; L, Lens; PD, Photo

Detector; MWS, Microwave Source; WLM Wavelength meter.

A typical DR setup is depicted on Figure 2.3. The laser beam is provided by the laser head.

A wavelength meter serves to measure the optical frequency of the free running un-swept laser

frequency, since the reference spectrum of the laser head is only obtained for a swept laser. The

laser beam passes through a beam diffuser-lens assembly before entering the cell, in order to

homogenize its radial intensity distribution. The transmitted light power is measured with a

photo detector. For 87Rb, a 6.834 GHz microwave is generated by a commercial synthesizer and

sent to a temperature stabilized resonant microwave resonator (MWR) which holds the clock

cell and sustains the magnetic microwave field. The resonator is surrounded by a solenoid, or

C-field coil, inducing the C-field along the laser beam propagation vector to isolate the clock

transition by Zeeman splitting (see 1.4.2). The whole is finally surrounded by two layers of µ-

metal magnetic shields to reduce the effect of external magnetic fields, and thermally isolated.

The ensemble cell, resonator, coil, and shields is called the physics package or PP.
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2.3.1 DR spectroscopic modes

We discuss here the three spectroscopic modes for the evaluation and optimization of the DR

signal.

2.3.1.1 DC mode

The DC mode corresponds to the basic mode and provides the DR signal, DR(ν); the microwave

frequency is swept and the laser transmission through the cell recorded. It allows a simple extrac-

tion of the DR signal parameters by a Lorentzian fit of the DC DR signal. Its precision is limited

by the various noise processes, especially at low frequencies. The signal fluctuations occurring

during the acquisition process deform the DR signal and bias the extracted fit parameter.

2.3.1.2 AC mode

The AC mode is a variant of the DC mode and provides the error signal, eDR(ν), of the DR

signal; the microwave is swept and frequency modulated (square modulation); a phase-sensitive

detection of the modulated transmission is measured using a lock-in amplifier. The period, TM ,

of the frequency modulation is chosen sufficiently large with respect to the relaxation times, T1

and T2, of the atomic population, so that the interrogation is quasi-static [37]. The frequency

deviation, ∆M , is chosen much smaller than the DR signal linewidth so that the error signal is

at first order proportional to the derivative of the DR signal, i.e.:

eDR(ν)

∆M
≈ dDR(ν)

dν
(2.2)

This mode allows to extract from the overwhelming noise very small DR signals. Moreover, the

problematic signal fluctuations observed in the DC mode are suppressed and the precision in

the determination of DR signal parameters is significantly improved for small and broad signals.

The DR parameters are extracted from a derivative Lorentzian fit of the scaled error signal. The

background level is measured simultaneously.
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2.3.1.3 Clock mode

The clock mode is the realization of a clock with the optically pumped PP as atomic resonator

(see Figure 1.1). The servo loop consists of using the error signal of the AC mode processed by a

proportional-integrator (PI) amplifier to servo the quartz frequency of the microwave generator.

Besides the realization of the atomic clock, it allows a much more precise measure of the clock

transition frequency than the DC and AC mode. The precision is limited by the stability of the

clock, which is optimized for a frequency deviation of [37]:

∆Mopt =
FWHM

2
√

3
≈ 0.29 FWHM. (2.3)

While the DC and AC modes are used for the optimization of the clock signal, and the charac-

terization of significant shift coefficients, the clock mode allows an improvement of more than

one order of magnitude of the precision of the shift coefficients; but the DR parameters can no

longer be extracted. In terms of buffer gas pressure evaluation, the relative precision of the shifts

measured in the clock mode, limited by the short-term stability of the clock (σy(1s) < 10−10)

allows, for example, the determination of a pure Ar buffer gas pressure at the level of 0.02 mbar,

given a pressure shift coefficient of -49 Hz/mbar (see 1.7.2.2).

2.4 Laser heads

In this section, we describe the laser heads used as optical light sources in this thesis. This

section is highly inspired from a joint publication with F. Gruet as first author: "Compact and

frequency stabilized laser heads for rubidium atomic clocks" [11].

The laser head consists of a distributed feedback (DFB) laser diode and a highly compact sub-

Doppler spectroscopic setup [114] used for the laser frequency calibration and stabilization. The

laser light produced is linearly polarized, has a narrow emission spectrum (< 5 MHz), is tunable

in frequency and can be frequency stabilized within ±8 kHz (σy(τ) < 2× 10−11 up to 104 s). Its

tunability over a whole rubidium D line frequency range provides a simple spectroscopic tool for

both linear and saturated absorption spectroscopy. In terms of DR, the laser pumping allows one

order of magnitude improvement in term of shot noise limit when compared to lamp pumped
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atomic clocks [47]. The intensity and frequency stabilities of the laser head have allowed the

realization of laser pumped rubidium atomic clocks with stabilities σy(τ) < 2 × 10−13τ−1/2 (in

continuous wave (CW) pumping scheme [119] or in pulsed optical pumping (POP) scheme [8]).

This represents a stability record for hot rubidium vapours [8].

Two types of laser head were designed. The "standard laser head", inspired by a previous design

using Extended-Cavity Diode Lasers (ECDL), made in 2003 [120], [121], and an "AOM laser

head" using an integrated Acousto Optical Modulator (AOM). All mechanical components as

well as the rubidium cell (see Chapter 3) were manufactured and assembled at LTF.

2.4.1 Standard laser head

Figure 2.4 shows the standard laser head. The optical components are mounted on a thermally

controlled baseplate. The laser module is composed of a DFB laser diode that emits at 780 nm

or 795 nm, a collimation lens and a miniature optical isolator. The part of the laser beam that

passes straight through the first beamsplitter is used to monitor dc optical power with a photo-

detector. The reflected part of the beam falls on another beamsplitter where the reflected part

is sent through the reference rubidium cell assembly for sub-Doppler spectroscopy [114]. The

transmitted part goes out of the laser head and serves for the spectroscopy or optical pumping

of the clock cells under test. The sub-Doppler absorption signal is monitored by a second photo-

detector after being retro-reflected. It is used to stabilize the laser frequency to the saturated-

absorption lines, using lock-in detection. The reference rubidium cell assembly is composed of the

high purity rubidium vapour cell, surrounded by two heaters, a magnetic coil and two magnetic

shields. This serves to control the magnetic conditions on the cell and its temperature. The

laser module, cell assembly, and photo-detectors are controlled and/or monitored by laboratory

electronics. The complete laser head has a volume of 0.63 dm3.

2.4.2 AOM Laser head

The AOM laser head is similar to the standard laser head and is based on a 780 nm DFB laser

diode. It differs only from the implemented AOM and the beam path. The AOM is used to

induces a precise and stable shift to the laser frequency. It allows the production of frequency

stabilized laser beam of which the frequency is detuned from the fixed reference Rb sub-Doppler
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Figure 2.4: Photograph of the laser head. LM, Laser module; BS, beamsplitter; PD, photo-
detectors; CA, rubidium cell assembly.

lines. This feature is particularly useful in order to minimize AC-Stark shift effect in Rb atomic

clocks [122], as it will be explained in Chapter 6.

Figure 2.5 shows the assembled AOM laser head with the beam path highlighted. The laser

module (LM) is identical to the ones used in the standard laser heads. A first beamsplitter

allows part of the beam to directly go out of the laser head and be used for clock operation. A

mirror sends the other part of the beam through a half-wave plate (λ/2) that allows selecting

the beam polarization before the polarizing beamsplitter cube (PBC). Part of the beam makes a

double-pass through the AOM using a set of mirrors and a quarter waveplate (λ/4). This single-

shifted or double-shifted beam, depending on the order selected, will be used in the sub-Doppler

absorption setup, and eventually enables laser frequency locking. Overall volume of the AOM

laser head is 2.4 litres.

2.4.3 Reference rubidium cell

The rubidium vapour cell is a key element of the laser head, since it provides the optical reference

spectrum. It consists of a 10 mm diameter, 19 mm length, glass blown cell filled with a pure

71



Chapter 2: The experimental setups

LM 
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PD 
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Figure 2.5: Photograph of the AOM laser head. In red: beam path. LM, Laser module; POL,
polarizer; λ/2, half-wave plate; PBC, polarizing beamsplitter cube; λ/4, quarter waveplate; CA,

rubidium cell assembly; PD, photo-detectors.

rubidium vapour. The purity of the rubidium vapour and the cleanliness of the cell are essential:

for an uncontaminated cell, the Doppler-free saturated absorption spectroscopy produces high-

contrast patterns with a linewidth below 20 MHz (see Figure 2.6a). This allows a strong laser

frequency stabilization achieving frequency stability at one second of 5.2 × 10−12τ−1/2. The

slightest gas contamination broadens these patterns (see Figure 2.6b and section 1.5.1) and

significantly reduces their contrast, resulting in a degradation of the achievable optical frequency

stability. In the worst cases, the sub-Doppler patterns vanishes (Figure 2.6c). The development

of a cleaning and filling method avoiding this contamination during and after the production

phase, was a challenging part of this thesis. The method is described in Chapter 3).

In addition to their extensive use in the laser heads produced at LTF, these cells have also served

for the realization of other optical frequency stabilization devices:

-Towards a space qualified miniaturized device, a fiber-coupled stabilization setup at 780 nm using

TRIMO-SMD assembling technique (Three Dimensional Miniaturized Optical Surface Mounted

Device)[9] was developed and realized (see Figure 2.7) in the frame of the SQUATOS1-projet

[10].
1Space qualified assembly technique for optical systems.
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-Study of the carbon dioxide proportion in the atmosphere requires a stable laser wavelength

at 1572 nm. Such a stable wavelength can be achieved as follow; A 1560 nm laser is frequency

stabilized through frequency doubling and stabilization on the sub-Doppler patterns of the ru-

bidium vapour cell spectrum. It is then pulsed, or transformed into an optical comb so that one

of the teeth has a 1572 nm wavelength. Such an optical frequency reference is developed within

the frame of the DLR project: Optical Filtering for Onboard LIDAR Calibration (see page xxix)

and exhibits a relative frequency stability of σy < 5× 10−12 at one day.
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Figure 2.6: Comparison of three qualities of evacuated cells’ saturated absorption spectra
of the |Fg = 2〉 → |Fe〉 transition obtained with a D2 line DFB laser. The linewidth of the
|Fg = 2〉 → |Fe = 3〉 sub-Doppler transition is 17.5±0.5 MHz for the excellent cell, 29±1 MHz

for the middle one and not measurable for the contaminated.

Figure 2.7: SQUATOS functional demonstrator. Dimensions of the base plate are
71 mm × 24 mm [10].

2.4.4 Laser heads characteristics and clock stability limits

The laser heads were extensively characterized, and we summarize here the most relevant param-

eters. Table 2.1 shows a comparison of the measured values for both laser head type as reported

in [11]. The parameters of the laser heads are very similar in all points except in their intensity

and frequency stabilities. The slight degradation observed for the AOM laser head as compared
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to the D2 line laser head, comes from the use of the AOM. Indeed, the modified beam path, the

added optical components and the reduction of the pump beam intensity for the sub-Doppler

spectroscopy (reducing in turn the strength of the sub-Doppler dips) are factors participating to

the degradation of the stabilities. In the case of the D1 line laser head, the short term frequency

stability is degraded by a factor of six due to a lower contrast of the sub-Doppler absorption

signals used to lock the laser; concerning the medium- to long-term stability, the absence (at the

time of the measure) of thermal control of the reference cell is responsible for the one order of

magnitude degradation factor.

Taking into account the light shifts coefficients given in Table 6.3, the clock frequency instabilities

induced by the AOM laser head intensity and frequency instabilities, at 104 s, are of the order

of σyIL = 1.8× 10−14 and σyνL3.9× 10−13, respectively.

Table 2.1: Summary of the laser heads’ most relevant parameters.

Parameter (D1)D2 Standard Laser Head D2 AOM Laser Head
∂νL
∂I [GHz/mA] (-1)-1 -0.875
∂νL
∂T [GHz/K] (-25)-25 -26.3

Output Power [mW] ∼(5)5 ∼5

SMSR [dB] >(45)40 >40

RIN [Hz−1] < (2)5× 10−14 @ 300 Hz 7× 10−14 @ 300 Hz

FM noise [kHz/
√
Hz ] (4)4 @ 300 Hz 5 @ 300 Hz

Linewidth [MHz] < (4)2.2 4.6

Frequency stability τ < 100 s < (30)5× 10−12τ−1/2 < 8× 10−12τ−1/2

100 < τ < 4× 104 s < (50)8× 10−12 < 2× 10−11

Intensity stability τ < 100 s < (3)3× 10−5 < 1× 10−4

100 < τ < 4× 104 s < (1)1× 10−4 < 3× 10−4
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2.5 Physics package based on the 14 mm magnetron-cavity

This section describes the laboratory PP and its microwave resonator cavity used in the DR

characterizations of the various cells, of diameter equal or smaller than 14 mm, presented in the

chapters 4 and 5.

The PP contains the atomic vapour cell and serves for applying the two magnetic fields used to

prepare and interrogate the atoms. Two opposite openings allow the laser beam to enter, pass

through the cell and be detected at the output of the PP. Moreover, the PP is used to control

the temperature of the cell and isolate it from external temperature and magnetic fluctuations.

Figure 2.8 shows the details of the laboratory PP and the types of cells that were characterized.

This PP is made of concentric cylinders having a dedicated function. From the inner to the

outer these are: the cell, a 14 mm magnetron cavity (see section 2.5.1 for the details), the C-field

coil (240 turns, L=36 mm), a first magnetic shield (�=34 mm, L=45 mm), a Delrin® holder,

and finally a second magnetic shield (�=100 mm, L=100 mm). The z-direction imposed by the

orientation of the C-field corresponds to the symmetry axis of the cylinders, and the laser beam

propagates along this axis. In such configuration, the light can only be sigma polarized (see

Figure 1.6). Within the cell volume, the C-field is assumed uniform. The equivalent longitudinal

shielding factor of the two combined shields is SL ∼3000 [7].

2.5.1 14 mm physics package

Microwave cavity resonators are commonly used in atomic clocks exploiting magnetic resonances

[37], [110], [123]. The high field density requiring a moderate input power, excellent field ho-

mogeneity, and compactness render the use of a cavity of particular interest for compact atomic

clocks. Typically, the size of the cavity is of the order of half the wavelength of their resonant

mode (λ87Rb = 4.4 cm), but smaller realization are also possible (see Chapter 6). Various types

of resonators allowing an efficient and homogeneous magnetic interrogation within the vapour

cell, such as, split-ring [124], helicoïdal [125], slotted-tube [126]–[129] or lumped LC [130] res-

onators have been proposed. We focus here on the magnetron type cavity [131], [132], being

also a loop-gap-resonator. It consists of electrodes forming a slotted tube, enclosed in a conduc-

tive cylindrical shield and inductively coupled by a loop (see Figure 2.9a). The design of this

cavity was initially developed at the Observatoire Cantonal de Neuchâtel (ON) and is patented
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Figure 2.8: Details of the 14 mm PP. Left top, types of cell charaterized; left bottom, fully
assembled magnetron cavity; right, fully assembled PP containing a wall-coated cell with reser-

voir.

[131]. It allows a fine tuning of the resonance frequency and a TE011-like field mode. Such mode

ensures the microwave magnetic field to be parallel to the symmetry axis, therefore inducing

π-transitions (and hence the clock transition) only. This microwave cavity design was proven to

be highly reliable (space qualified) since it is used in the clocks chosen for the Galileo mission

[24]. In terms of clock performances it has allowed the realization of compact DR atomic clocks

with outstanding short term stabilities of σy(τ) < 5× 10−13τ−1/2 [6].

The tuning of the cavity is realized by the insertion of the 14-mm cell within the electrodes:

the presence of the higher dielectric constant of the glass in the vicinity of the electrodes gaps,

results in a decrease of the resonance frequency of the cavity. When properly tuned, the cavity

has a Q-factor of QL < 350 and a temperature shift coefficient of its resonance frequency of

TCcavity ∼ 40 kHz/K [7]. This results in a cavity pulling temperature coefficient (see section

1.7.2.6) for a 1 kHz linewidth clock transition of TCCP = 6 mHz/K.

As shown in Figure 2.8 this cavity was also used to characterize cells of dimensions smaller than

14 mm. To mimic the 14-mm cell and tune properly the cavity, the microfabricated cells were

glued between two glass cylinders, as shown in Figure 2.9b, before being inserted into the cavity.
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(a)
(b)

Figure 2.9: Details of the (A) 14-mm magnetron cavity and (B) dedicated assembly for the
cavity tuning with microfabricated cells. The conductive shield length and inner diameter are

25 mm and ∼ 20 mm, respectively.

2.5.2 Characteristics 14 mm magnetron cavity-based assembly

Table 2.2 shows the summary of the most relevant parameters of the 14 mm PP.

Table 2.2: Summary of the most relevant parameters of the 14 mm magnetron cavity’s physics
package.

Parameter Value

Magn. Shield. factor SL ∼3000

C-field coil turns Nsp 240

14 mm cavity

Quality factor QL < 350

Resonance frequency temp. coeff. TCcavity [kHz/K] 40

Cavity pulling temp.coeff. TCCP [mHz/K] 6

FOFexp (see Chapter 6) ξexp 0.993 [7]

Typ. cell volume Vcell [cm3] 3.5

Internal cavity volume Vint [cm3] 8

External cavity volume Vext [cm3] 12.9

2.6 Physics package based on the micro-loop gap resonator (µ-LGR)

The detailed description of the miniature atomic resonator is given in Chapter 6, section 6.2.1.
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2.7 Conclusion

In this chapter we described the three spectroscopic setups used for the characterization of

rubidium vapour cells. As a comparison, the evaluation of a buffer gas pressure is discussed for

the 3 schemes. The linear absorption allows a good estimation of the rubidium content and of

a significant BG pressure with an uncertainty of 10 mbar. In a similar way, the sub-Doppler

saturated absorption provides a 10 times more precise evaluation of the buffer gas pressure but

is limited at contamination levels of few mbar only. Finally, the high resolution reached in DR

spectroscopy allows a potential determination of a pure buffer gas pressure with an uncertainty

of 0.02 mbar.

The two key components for the spectroscopy analysis performed within this thesis were ex-

plained in details. The laser head provides a stable, in terms of intensity, and frequency tunable

coherent light field. When frequency-locked to a sub-Doppler pattern of the in-built sub-Doppler

spectroscopic setup, the laser beam achieves, at 104 s, relative intensity and frequency stabilities

of σIL < 3 × 10−4 and σνL < 2 × 10−11, respectively. The necessity of having a high rubidium

vapour purity inside reference cells for laser stabilization was discussed. The clock physics pack-

age, based on a well-established 14 mm magnetron cavity [6], [24], [131], provides a temperature

stabilized and well controlled electromagnetic environment for the vapour cell. The microwave

field of the cavity has a TE011-like mode aligned with the C-field and with the propagation

vector of the laser beam. A dedicated assembly adaptor using glass cylinders allows the DR

spectroscopic characterization of various types of cell of size inferior to 14 mm.
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Cells fabrication

Although the vapour cell is the simplest and the most compact method to confine the atoms

where the electromagnetic interrogation takes place, its fabrication is quite critical: first, the

alkali atoms are highly reactive, and must be handled under vacuum or controlled atmosphere.

Second, the stability criteria imposed by the role of the cell as a clock reference are severe:

the confinement must guarantee a highly stable inner atmosphere, in order to provide a stable

frequency reference over the lifetime of the cell. It must also preserve the polarization and the

coherence of the atomic vapour to guarantee a strong and narrow clock signal and must not

react with the alkali vapour. So the cell must be hermetic, inert and must not liberate any gas

by desorption, permeation or diffusion. It must also allow the use of buffer gas (BG) and/or

anti-relaxing coatings. Finally, the precision and repeatability of the BG filling is also essential.

The choice of the container (material, shape, and manufacturability), its cleaning and sealing

are critical factors for the fabrication of high quality cells. They differ depending on the size of

the cell and its fabrication method: for cm-sized or bigger cells the conventional glass-blowing

techniques [37] are employed, while for mm-scale cells, the silicon microfabrication techniques

also used in micro-electro-mechanical systems (MEMS) are required [27]. The BG technique has

been extensively used in both cell categories, but the use of coating has been restricted until

recently to the glass blown cells only, as the known coatings did not withstand the relatively

high temperatures employed in the MEMS sealing technologies [133]. However, an innovative
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low-temperature In-bonding technique [134] has allowed recently the fabrication of a wall-coated

microfabricated cell with proven functionality.

For buffer gas cells, the purity of the gases, the precise control of their partial pressures, and

therefore the total pressure, are crucial for the short- and long-term performances of the reference

cell. In the case of the coating, the quality (covering and purity) of the film deposited on the

walls and the intrinsic properties of the coating itself dictate the performances of the cell (see

Chapter 1).

In this chapter, we present the facilities (see Figure 3.1) and the various fabrication processes

employed for the realization of the alkali vapour cells tested and used extensively in the frame of

this thesis. The chapter is split into three parts. In the first part, the production and handling

of the highly reactive alkali metal is discussed. The second part covers the production of glass-

blown cells with our own facilities; the updated system is described and the recipes for the three

types of cell, buffer gas, wall coated and evacuated are given. Finally, the fabrication of cells

using MEMS technologies is discussed; anodic-bonding, low temperature indium-bonding and the

fabrication process of an OTS-coated MEMS cell are presented. A summary of all the produced

glass-blown cells is given at the end of the chapter.

3.1 Rubidium production and dispensing

Rubidium is an alkali metal highly reactive with oxygen and water. Therefore, it has to be

manipulated either under high vacuum, or under a controlled atmosphere of inert or noble gases.

This renders its manipulation difficult, and bringing the Rb inside the cell (dispensing it) is not

straight forward. During the last decades, different methods have been proposed: the standard

method consists of a metallic Rb ampoule with a breakable seal attached to a glass manifold

including the cells [90], [135], [136]. Once the cell(s) is (are) cleaned the seal is broken and the

Rb is chased, or distilled using a temperature gradient. Due to its high volatility, it evaporates

from the hot region to condensate back at any cold point. This process is performed under high

vacuum. Pipetting liquid metallic Rb is another solution that requires a non reactive atmosphere

for the handling and a direct access to the reservoir of the cell; this can be done in an anaerobic

glove box [137] or in liquid dodecane [138]. The chemical reaction of (meta-)stable compounds

allows an "in-situ" production of metallic rubidium; the manipulation is much easier and allows
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a precise control of the quantity of the rubidium. Moreover it renders affordable the use of

isotopically enriched 87Rb [139]. The following chemical reactions have been used successfully:

• BaN6 + AlkaliCl→ BaCl + 3N2 + Alkali [137], [140]. This reaction takes place at 200◦C.

• AlkaliN3 → 2Alkali + 3N2 [141], [142]. This reaction takes place at 450◦C or under UV

light.

• 2RbCl + Ca→ 2Rb + CaCl2 [90]. This reaction takes place at 720◦C.

• Electrolysis of Cs borate glass [143]. This reaction requires temperature above 500◦C.

Although the two first reactions introduce non negligible safety issues, since the azides are highly

toxic and explosive, they were demonstrated to be efficient for the in-cell alkali production,

especially in the micro-fabrication processes. Other dispensing processes have also been demon-

strated: the Rb dispensing pill [144], or the metal-wax micropackets [145], [146]. Both processes

are laser activated: for the dispensing pill, the laser is used to raise the temperature of the pill

(a) LTF glass-blown cell filling sys-
tem.

(b) LTF-SAMLAB micro-fabricated
cell filling system (co-owned equip-
ment by UniNE and EPFL). Cour-

tesy: Y. Pétremand.

Figure 3.1: Cell filling systems employed for the fabrication of all the cells tested and exten-
sively used in the frame of this thesis.
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to 750◦C for the chemical reaction of the components to take place1. Concerning the wax mi-

cropackets, the laser is used to ablate a silicon nitride membrane, and evaporate, within the cell,

part of the wax until the Rb is released.

One of the main issues of the in-cell Rb production is due to the facts that either the reaction takes

place at relatively high temperatures and/or releases other compounds, usually unwanted, than

pure alkali vapour; especially N2 is released with the use of azide compounds. This brings addi-

tional difficulties for buffer gas cells with controlled inversion temperature (see section 1.7.2.2),

since this release must be anticipated and very well controlled. Moreover, the high temperatures

required for the reaction represent a serious issue for coated cells, since the coatings are degraded

above their melting temperature which is usually below 100◦C, and for novel low temperature

sealing such as In-bonding [1].

3.1.1 LTF method for rubidium dispensing in glass-blown cells

The chosen method consists of producing the metallic Rb within the manifold, or the cell ramp

(see Figure 3.2), and under high vacuum, but out of the cells. The chemical reaction is similar

to the one used by Missout and Vanier [90]. It has the advantage of using chemicals requiring

only minor precautions. Contact with water and exposure to humidity must be reduced at its

maximum and any contamination must be avoided. Thus the compounds are stocked in a dry

atmosphere, and the use of glasses and gloves is mandatory. As mentioned before, this reaction

takes place at 720◦C, close to the glass softening point (825 ◦C). In addition, the rubidium reacts

with the glass at elevated temperatures [37]. Therefore, care has to be taken not to heat the

glass too much during the procedure.

After the reaction, most of the metallic rubidium produced will have condensated on the cold

walls away from the reaction site, ready for the distillation process. Distilling the rubidium to

the cells is done by heating the ramp with a flame torch, or wrapping it with heating elements,

while keeping cold the regions on which we want the rubidium to condensate (e.g. the reservoirs

of the cells).
1The pills are obtained by compressing the SAES getter alloys powder (See more at:

http://www.saesgetters.com/it/pills-pieces). From the temperature of reaction, one might deduce that the
powder is composed of RbCl and Ca.
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Figure 3.2: Typical cell ramp mounted on our cell filling system.

This ex-situ and under high vacuum production method doesn’t present the drawback of by-

products of the reaction: the potentially released gases are pumped away and the residues of

the reaction are sealed off the manifold. Therefore, what is put inside the cells is extremely well

controlled.

3.1.2 SAMLAB-LTF method for Rb dispensing in micro-fabricated cells

The micro-fabricated cells tested and studied in this thesis were produced at the wafer level,

but filled with Rb individually. Since 2002, the condensation method has been also used: the

metallic Rb is produced and evaporated from a heated dispenser. The vapour is then condensed

inside the cooled cell body. This process is done in a vacuum chamber.

3.2 Glass blown cells and LTF cell filling system

The fabrication of glass-blown cells follows a conventional technique used by several research

groups [37], [90], [136], [147]–[152], and industries: the container made out of borosilicate glass

or quartz is attached to a glass manifold connected to a high-vacuum pumping system. A

thorough cleaning is performed before the cell is filled with the alkali atoms and coating or buffer

gas. The cell is sealed off the manifold by melting the attach point with a torch. This technique

is not well adapted for small cells. The sub-centimetre sized cells are strongly limited by the
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structural irregularities induced by the glass blowing technique. Nevertheless, millimetre sized

cells are reported in the literature: we achieved the fabrication of a 6 mm diameter buffer gas

cell showing competitive performances as a clock cell [5], Balabas retrieved non-linear magneto-

optical-rotation signals in a 3 mm diameter paraffin coated cell [153], and the smallest all-glass

cell reported has a volume of ∼2 mm3 and is made from a hollow-core glass fiber sealed with a

CO2 laser [152].

This conventional technique allows the fabrication of the three types of glass-blown cells com-

monly used in atomic clocks: the buffer gas cell, the wall-coated cell, both used as clock cell, and

the pure alkali vapour cell (or evacuated cell) used exclusively as an optical frequency reference

for laser stabilization (see section 2.4). The evacuated cell consist of a bare (uncoated) container

containing ideally only the pure alkali vapour, and no buffer gas. Similar to the evacuated cell,

the buffer gas cell is additionally filled with a precisely controlled amount of inert gas(es). Fi-

nally, the wall-coated cell consists of an evacuated cell of which the inner walls are coated with

anti-relaxing material, but no buffer gas is used. A fourth kind can be envisaged, mixing the

buffer gas technique and the wall-coating but could not be tested due to a lack of time.

Our cell filling system, initially developed for the production of evacuated and buffer gas cells

only, has been modified to fabricate the four mentioned types of cells. We describe here its actual

status and the fabrication methods for each type of cell. Since most of the fabrication processes

are similar, we describe the production steps separately.

As already mentioned, the manufacture of these cells is quite critical. A high level of cleanliness is

required and all the sealing processes are done at pressures well below the atmospheric pressure.

Thus every sealing step increases the risk of breaking the vacuum, annihilating every previous

step and resetting the whole process.

3.2.1 Cell body fabrication

The cell container fabrication is made by a professional glass blower. They are made out of

borosilicate glass. The borosilicate glass has been used for a long time in our group and is proven

to be compatible with the alkali vapours. The cell can be of arbitrary sizes and shapes, but

usually a cylindrical geometry of few cm3 is prefered (see Figure 3.3), imposed by the design of

the microwave cavity (see section 2.5.1). Quartz was also used but presents additional handling
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(a) 6 mm diameter and length
borosilicate cell with no reser-

voir. Project: mUSO [5]

(b) 10 mm diameter and 19 mm
length borosilicate cell with no
reservoir. Projects: SQUATOS
[10], ESA-LARC [6], ESA-POP
[7], [8], Sinergia [154], FNS,

EMRP, DLR.

(c) 25 mm diameter and length
borosilicate cell with single
reservoir. Project: ESA-POP

[7].

(d) 20 mm diameter and length
Quartz cell with two reservoirs.
Made for a collaboration with
INRIM (ESA-POP project [8])

Figure 3.3: Typical cell geometries produced and filled.

difficulties for the glass blower due to its higher melting temperature. The cells are then mounted

on a ramp, or manifold (see Figure 3.2), which in turn is connected to our cell filling system.

The tubes used to connect the cells to the ramp can be shortened during the sealing off or used

later as reservoir for the metallic rubidium.

3.2.2 Cell filling system

The four types of cell mentioned here above can be fabricated on our cell filling system. To

reach such a versatile system, a previous existing system from the "Observatoire de Neuchâtel"

dedicated to the filling of BG cell has been updated. It now fulfils the following requirements:
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• Reach a high vacuum as a grant of cleanliness for the cells’ inner atmosphere. This prevents

any gas contamination of the BG cells, or gas traces inducing broadening of optical lines

in evacuated cells or uncontrolled properties in wall coated cells.

• Allow an excellent cleaning of the cells’ walls to prevent ageing of the cells and deterioration

of the coating properties.

• Allow the filling of glass-body cells with pure alkali metal

• Provide means and control instruments to fill the cells with a buffer gas, where the total

pressure is controlled to within 1% of its value or better, in order to achieve low intensity-

related light-shift for clock operation.

• Provide means and control instrumentation to prepare buffer gas mixtures, where the

partial gas pressures are controlled to within 0.2% of their values or better, in order to

obtain a low temperature-shift of the clock resonance within few Kelvin around a chosen

operating temperature.

• Allow for coating the inner walls of the cell.

The cell filling system consists of two independent high vacuum systems sharing a common

connection port for the cell ramp. One system (main system) is extremely clean and dedicated

to the production of the evacuated and BG-filled cells exclusively. the second one (auxiliary

system) is only dedicated to the fabrication of wall coated cells. The coating is made by vapour

phase deposition and the whole vacuum system might be coated as well, reducing its level of

cleanliness. A liquid nitrogen (LN) trap ensure the coating condenses elsewhere than in the

pump. Turbo pumping groups (primary: scroll pump, secondary: turbo pump), coupled to ultra

high vacuum (UHV) components (CF; ConFlat) nipples, tees and valves) allows a vacuum below

10−7 mbar. The connection of the cell ramp to any of the vacuum systems is also made using

CF flanges. The use of CF flanges is driven by its resistance to relatively high temperatures

required for the cleaning process; and by its vacuum characteristics: it is not permeable and

doesn’t outgas. The main system is connected to a gas mixing system. In contrary to standard

method using an empty airlock chamber [90] (both gases mixing by diffusion), we use a gas

mixer based on the principle of gas stream through super-sonic nozzles. It provides an extremely

precise mixing of two gases (0.5% rel.). Such a precision is required for reproducibility in BG-cell

fabrication (see section 3.2.4). Finally, the common connection port for the cell ramp, is located

on top of a thermally isolated table. A scheme of the entire cell filling system is depicted in

Figure 3.4.

86



3.2 Glass blown cells and LTF cell filling system

Ar 

LTF Cell filling system 

Pumping 
 groupe 1 

Pumping 
 groupe 2 

cells 

N2 
Gas 

mixer 

Coating 
reservoir 

LN 
trap 

Pressure 
Gauge 

Oven 

BG & evacuated cell 

W
al

l-c
oa

te
d 

ce
ll 

Pressure 
Gauge 

Vacuum valves 

Vacuum tubes 

Figure 3.4: Scheme of the LTF cell filling system.

3.2.2.1 Cell cleaning

One of the most crucial steps in the production of the cells is their cleaning, especially for the

evacuated cells. Our experience in the fabrication has shown that an insufficient cleaning can be

responsible for the extremely low (null) production yield of evacuated cells. For the coated cells,

as well it has been observed that a careful cleaning can dramatically reduce Γ2ad [136]. The case

of the BG-filled cells might be less sensitive to the cleaning, nevertheless no test has been carried

out, and the same procedure is applied to all types of cells. We extensively use the most common

cleaning procedures: the outgasing. The chemical cleaning (see for example [136]) is difficult to

realize with the geometry of the ramps we use, moreover the chemicals used (piranha solution)

present safety issues. The outgasing process consists of baking the system out while it is under
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active high vacuum. It is similar to the ones used by Robinson [63] and Bouchiat [73]. The goal

of the whole procedure is to desorb water and other adsorbed contaminants as well as pyrolyse

organic substances that might have been introduced during the cell fabrication. Such procedure

reduces the risks of potential gas releases once the cell is sealed.

3.2.2.2 Coating deposition

Two types of evaporative coating processes, in-situ and ex-situ, have been attempted for the

14 mm scale cells. Both differ from the "standard" paraffin coating procedures that use a

removable central wax carrier [38], [63], [136] in the sense that the coating is not evaporated

directly inside the cells but from a distant reservoir or source.

The ex-situ coating was performed by R. Straessle at SAMLAB for the Parylen and OTS coatings.

A detailed description of the process is given in her thesis [1], and we give here only the main

steps. The entire procedure takes place before the cells are mounted on the ramp. Since the

standard cleaning procedure cannot be applied to the coated cells, a chemical pre-cleaning of the

inner walls of the cells is done with liquid acids. The cells are then rinsed, dried and baked out

before being then coated via a vapour deposition polymerisation process in a dedicated system

from Comelec SA. The cells are then mounted on the ramp.

The in-situ coating deposition is similar to the rubidium distillation. It takes place directly

within the cell filling system and was used for the deposition of tetracontane coating. This

deposition has the advantage to benefit from the cleaning described in section 3.2.2.1 without

exposing the cells to atmosphere after the cleaning step. The cleaned cells are cooled down while

the rest of the ramp and the coating reservoir are heated well above the melting temperature of

the coating. The coating is evaporated from a parallel reservoir and deposited on the cell walls

by condensation. Once the coating is thick enough, the reservoir is removed, and the ramp is

pumped out.

3.2.2.3 Buffer gas filling

The BG filling is much simpler than the process for coated cells. The buffer gas mixture is

directly injected into the cell manifold. The internal pressure is slowly increased using a needle
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valve until the desired pressure is reached. Since the pressures required are high enough, a

capacitance gauge is used to monitor the pressure inside the system.

3.2.2.4 Cell sealing

The sealing procedure is a standard glass blowing procedure. The location of the seal along a

glass tube is heated up to its melting temperature, and the two parts are pulled apart. When

not under vacuum, pulling apart the pieces collapses the seal region, creating a hermetic seal on

both pieces. Under vacuum, the procedure is identical, but care has to be taken not to heat to

much the seal region; too soft glass will be "sucked" and ripped by the vacuum breaking this

latter.

3.2.3 Evacuated cells

The production of these cells requires in the following order:

• cleaning procedure

• production and distillation of the rubidium

• cell sealing

It is the simplest, but the most critical procedure since the cells are sensitive to the slightest

contamination (see section 2.4.3). A thorough cleaning and especially a proper sealing are crucial

for a good cell. During the sealing off, the outgassing is enhanced by the high temperature of the

process and the molten phase of the glass. A non-negligible quantity of gas can be released and

eventually pollute the cell, resulting in a broadening and a contrast reduction of the sub-Doppler

dips (see Figures 2.6). Therefore the sealing is done under "active" vacuum (the turbo pump

is not isolated). This is a risky procedure for the pump and does not allow any failure, but is

required for the good quality of the cell.

3.2.4 Buffer gas filled cell

The production of these cells is similar to the evacuated ones but requires an additional step:
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• cleaning procedure

• production and distillation of the rubidium

• buffer gas filling

• cell sealing

Less critical to the sealing issues than the evacuated cells, this process is not easier. Indeed, the

buffer gas control is crucial for the determination of the clock frequency and its sensitivity to

the temperature fluctuations. As shown by equations 1.107 and 1.112 the microwave resonance

frequency and its temperature sensitivity depend on both the pressure and the ratio of the

buffer gases used. While the absolute resonance frequency is not critical for secondary frequency

standards, its temperature sensitivity is. Since the temperature of operation in the clock is

dictated by the atomic density required, it cannot be freely chosen to comply with a mixture

not sufficiently well controlled. The inversion temperature for a N2-Ar mixture being given by

equation 1.112, its sensitivity to changes in the fraction of argon, pAr is expressed as follow:

∂Tinv
∂pAr

=
(δAr − δN2) (pAr(γAr − γN2) + γN2)− (γAr − γN2) (pAr(δAr − δN2) + δN2)

2 (pAr(γAr − γN2) + γN2)2 .

Figure 3.5 shows the sensitivity, ∂Tinv
∂pAr

of the inversion temperature as a function of the per-

centage of argon. For the mixture we aim at, this coefficient is of the order of 10 K/%. This

imposes a control within ±0.1% of the fraction of Ar to control the inversion temperature of

the clock frequency within ±1 K. Such an accuracy is theoretically achieved by our cell filling

facility, but experimentally, a scattering of ±2 K is observed for cells with nominally identical

BG mixture [155]. These variations are attributed to the sealing process. Due to the elevated

temperatures reached during the seal off, strong local temperature gradients can modify the

internal gas pressures, and thus the relative proportions.

3.2.5 Parylen N & C coated cell

The fabrication of parylen coated cells uses the ex-situ coating technique as described in section

3.2.2.2. Since the cells are already coated when mounted on the ramp, the filling procedure is

similar to the evacuated cells, and only the cleaning procedures differ. The temperature limitation
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Figure 3.5: Theoretical sensitivity of the buffer gas inversion temperature (argon-nitrogen) as
a function of the percentage of argon.

imposed by the coating doesn’t allow the standard treatment, and outgassing is performed for

few days, but at a moderate temperature of ∼ 80◦C only.

3.2.6 Paraffin coated cell

The fabrication of paraffin coated cells is well reported in the literature by several research groups.

Three methods of deposition are proposed: a resistive filament covered with tetracontane, is

introduced inside the cell and a current is applied to heat, evaporate and deposit the coating on

the cell walls. [38], [63], [136]. Phillips proposes also a wet deposition in which the tetracontane

is dissolved in toluene [136]. The deposition from the evaporation of the coating from a side

arm or reservoir of a single cell was introduced by Alexandrov and Balabas [72], [148], which has

allowed the fabrication of alkene 1-nonadecene wall coated cells exhibiting Zeeman population

lifetimes of about 3 seconds [150]. These methods allow only the production of one cell at a time,

and Castagna et al. generalized the side arm evaporation method to a multiple cell manifold

[149].

The works of Alexandrov [148], Castagna [149] and Phillips [136] were used as a basis to develop

our own recipe. The production of wall coated cells requires the same level of cleanliness of
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an evactuated cell, but the coating cannot sustain the elevated temperatures used for baking

the cells. Therefore it has to be introduced post cleaning. Unlike the processes for evacuated or

buffer gas cells, this recipe needs an additional volume, the coating reservoir. This reservoir must

be independent from the cell manifold. Removing it from, or adding it to the system must not

affect the cleanliness of the cells, and cleaning it must be done independently from the cells. To

do so, an airlock system, with the help of three valves, was implemented on the filling systems. It

allows the ramp, the coating reservoir and the pump to be independently and completely isolated

from each other.

The fabrication procedure can be summarized as follow:

• cell cleaning procedure

• connecting and cleaning the coating reservoir

• in-situ coating by vapour phase deposition

• production and distillation of the rubidium

• cell sealing

The cleaning procedure slightly differs from the one described in section 3.2.2.1. The ramp and

the empty coating reservoir are first cleaned using the standard outgassing procedure. The ramp

is then isolated from the reservoir and the pump. The reservoir is filled with nitrogen, removed,

filled with "flakes" of tetracontane (Sigma Aldrich, CAS Number 4181-95-7, assay > 95%), and

put back onto the filling system. A second cleaning step, only for the reservoir and the coating, is

performed. The parts in contact with air are briefly outgassed to remove adsorbed contaminants.

The reservoir is then heated up above the boiling point of the tetracontane under vacuum while

pumping for few minutes. The system is cooled down and the valves to the ramp are opened to

allow the coating procedure.

The distillation of the rubidium is carefully performed to ensure a condensation in the reservoirs

of the cells only and not on the coated walls. Thanks to the long reservoir, the sealing occurs

sufficiently far from the rubidium and the coating locations and doesn’t affect the quality of the

cell. The ripening process is described in Chapter 5.
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Table 3.1: List of produced glass-blown cell at LTF from April 2009 to December 2013.

Run # Number of cells Reservoir Dimensions
� × L [mm] BG Coating

1 2 Yes (Double) 22.66 × 22.66 Yes No

2 10 No 10 × 19 No No

3 4 No 14 × 23 No No

4 10 No 6 × 6 Yes No

5 10 Yes 14 × 16 Yes No

6 10 No 10 × 19 No No

7 10 No 14 × 23 Yes No

8 10 No 14 × 23 Yes No

9 5 No 14 × 23 No No

10 10 No 10 × 19 No No

11 2 Yes (Double) 22.66 × 22.66 Yes No

12 6 Yes 25 × 25 Yes No

13 10 No 6 × 6 Yes No

14 10 No 14 × 23 Yes No

15 10 Yes 14 × 14 No Parylene N/C

16 2 Yes (Double) 22.66 × 22.66 Yes No

17 10 Yes 14 × 14 No Parylene N

18 10 No 10 × 19 No No

19 6 Yes 14 × 14 No Tetracontane

20 10 No 10 × 19 & 14
× 20

No &
Yes

No

3.2.7 List of produced cells

A total of 157 cells have been produced in the frame of this thesis. Table 3.1 summarizes all of

them with their filling and geometry.
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3.3 micro-fabricated cells1

For miniature clocks, or other devices requiring millimetre-, or sub-millimetre-scaled cells, the

glass blowing techniques reach their limits. Although it has been proven to be the state-of-the-art

in cm-scale cells, the imperfections and the temperatures related to the melting process of the

glass become too important when the size of the cell is shrunk down. Moreover, the residual

stem from the sealing process has a size similar or bigger than the cell body (see for example

[152], [153]). To circumvent these issues, Kitching et al. proposed in 2002 the idea of using

micro-fabrication for vapour cell fabrication [27]. The MEMS technologies present an extremely

high control of the dimensions, down to the micrometre level, which allows a precise and highly

reproducible fabrication of sub-milimeter devices. Moreover, the possibility of batch fabrication

at the wafer level and automation of the process enables the fabrication of hundreds identical

samples at a same time for significantly lower overall cost of production. Several research groups

have investigated these methods, developing innovative technologies for cell fabrication. The

critical step for the fabrication of MEMS cells is the sealing process. Among the several existing

MEMS packaging and wafer bonding [156], Glass-Silicon anodic bonding (AB) [157] has been the

first successful technique employed for sub-millimetre-sized alkali vapour cell fabrication [137],

[158]. It is now a standard for buffer gas vapour cell fabrication [159]–[164], but alternative sealing

processes have also been proposed: glass fritt reflow [165], wax micropackets [145], Polymer

bonding [166], low-temperature solder sealing [138], or low-temperature In bonding [134] (see [1],

[139], [167] for more detailed reviews).

In the frame of this thesis, the reliable anodic bonding was chosen to fabricate buffer gas al-

kali vapour cells; but since the temperatures required for this sealing method (> 250◦C) are

not compatible with the use of known wall coatings, the low-temperature In-bonding had been

specifically developed for wall-coated cell. This development was the subject of another thesis

[1], realized in collaboration with the present one in the frame of the MACQS project (see page

xxix). We recall here the two sealing techniques and their related process flows for the fabrication

of various types of cells. Their spectroscopic evaluations are presented in Chapters 4, 5 and 6.
1All cells were filled and sealed in the SAMLAB-LTF cell filling system (see Figure 3.1b) by R. Straessle and

Y. Petremand.
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3.3.1 Anodic bonding

Glass-to-silicon anodic bonding works as follow: elevated temperature (250-450◦C) and a high

voltage (200-1000 V) electrolyse the sodium oxide present in the glass; the O2 anions migrate

towards the interface and react with the silicon creating a thin layer of SiO2; a strong bond is

created. The fabrication process is then relatively straight forward, and two fabrication processes

were developed.

The simplest one was used to produce what we call "2D" cells. This name comes from the fact

that the ratio "thickness over width" is relatively small, the vapour is confined in a thin disk. The

process is the following: The cells cavities are "drilled" out by deep reactive ion etching (DRIE)

in a silicon wafer which is then anodically bonded to a glass wafer. The Si-wafer thickness is

typically 1-2 mm and the glass wafer 500 µm. This wafer stack is then diced to obtain preforms,

that are handled individually. A preform is filled with Rb (see section 3.1.2) before being sealed

under an appropriate buffer gas atmosphere by anodic bonding with a 500 µm glass plate. The

process flow is schemed in Figure 3.6a.

Silicon wafer 

Photolithography and 
cavity etching by DRIE 

Wafer-level  anodic bonding 
of Si with glass 

Dicing  

Cell closing / anodic bonding  
After buffer-gas filling  500 μm 

Rb deposition 

1. 

2. 

3. 

4. 

5. 

6. 

(a) 2D cell fabrication process flow [168]. (b) 2D cell.

Figure 3.6: 2D cell fabrication process flow and final product.
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A second process was developed in order to produce alkali cells having dimensions larger than

standard micromachined but smaller than glassblown cells, for use in compact atomic devices

[164]. These cells were designed in parallel of a new generation of microwave cavity developed

at EPFL-LEMA (see Chapter 6) and are called "3D" cells, by opposition to the 2D’s. The

vapour is confined in a cylinder of 4.05 mm height × 4 mm diameter. The process flow is the

following [164]: the cells cavities are "drilled" out mechanically in a 3 mm glass wafer which

is then anodically bonded to a first DRIE patterned silicon wafer. A second DRIE patterned

silicon wafer is in turn anodically bonded to the other side of the the previous wafer stack. A

glass wafer is then anodically bonded to the 3 layer stack. Finally the 4-layer stack is diced to

obtain preforms, that are then handled individually. A preform is filled with Rb before being

sealed under an appropriate buffergas atmosphere by anodic bonding with a glass plate. The

process flow is depicted in Figure 3.7a.

3000 μm Glass wafer 

Cavities mechanically drilled 

Wafer-level  anodic bonding of glass 
with Si patterned by DRIE 

Dicing  

Cell closing / anodic bonding  
After buffer-gas filling 

Rb deposition 

1. 

2. 

3. 

4. 

6. 

5. 

7. 

8. 

 525 μm 

 500 μm 

(a) 3D cell fabrication process flow. (b) 3D cell.

Figure 3.7: 3D cell fabrication process flow and final product.

For other type of cells, such as evacuated or wall coated cells, this technique reaches its limits. It
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has been observed that gases were released inside the cell cavity during the bonding [1], degrading

the high vacuum required for saturated absorption spectroscopy. Nonetheless, Knappe et al.

showed that a careful baking of the preform and the glass cover before the anodic bonding, and

the use of a getter, allow saturation dips below 35 MHz linewidth [169].

3.3.2 Low temperature indium-bonding

Clean, oxide-free indium has the property to cold weld to itself. This extremely interesting prop-

erty has driven the interest of this bonding technique. The main problem is to obtain oxide-free

indium. Indeed, indium is self-passivating and, in contact with air, forms an 80-100 Ångstroms

thick and very hard oxide layer. Thermocompression of thick indium rings was proven to break

this layer and is an efficient encapsulation technique [170]. The interaction between indium and

alkali, even at low temperature, reduced considerably the lifetime of the cell, and minimizing

the indium surface in contact with the alkali vapour was crucial. Another constraint arose from

the limited tool pressure of the filling chamber. R. Straessle [1], [134] proposed to locate the

bonding into grooves in order to isolate it from the alkali vapour; the tool pressure issue is solved

by the thermocompression of multiple concentric high aspect ratio indium rings (12 µm-wide

8 µm-high) on one side with a 200 µm-wide 4 µm-height indium ring on the other side. The

high aspect ratio of the indium rings helps for breaking up the indium oxide layers on both sides

under moderate pressure, thus allowing a strong bond. The weak adhesion of indium on silicon

is improved by using a chromium-gold adhesion intermediate layer. The fabrication process is

depicted in Figure 3.8b and described in details in the thesis of R. Straessle [1].

3.3.2.1 OTS micro-fabricated cell

Thanks to this successful In-bonding technique developed at the SAMLAB, the wall coating

and micro fabrication technologies could be merged together, and they could produce a micro-

fabricated wall coated cell with proven antirelaxing properties (see Chapter 5). Nevertheless,

due to the 140◦C required for the bonding, Tetracontane could not be employed, and OTS was

chosen instead. The cell consists of two chambers connected via a 100 µm × 100 µm channel. One

chamber acts as a reservoir for the metallic rubidium it is not coated, the other one, OTS-coated,

as interrogation chamber (see figure 3.9).
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1) RIE etching to attain stopper
    rings

2) Anodic bonding of 390 m Si
    wafer to 500 m Pyrex wafer

3) Metallization Cr-Au and In 
    (4 x 200 or 8 x 12 m) by

evaporation     and lift-off

4) DRIE etching of holes

5) Filling of one preform with Rb
    in dedicated vacuum chamber

6) Bonding at 140°C either under
    vacuum or with buffer gas
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(a) In-bonded cell fabrication process flow [134]. Courtesy:
R.Straessle [171].

(b) In-bonded
cell.

Figure 3.8: In-bonded cell fabrication process flow and final product.

Figure 3.9: Design of the micro-fabricated coated cell. Courtesy: R.Straessle.
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The interrogation chamber was subjected to an oxygen plasma, before the coating procedure is

carried out at room temperature. The preforms were immersed in a solution of 2mM of OTS

in toluene for 6 min to let the OTS coating build up on the walls. They were then rinsed in

pure toluene and blow-dried with a nitrogen gun [1]. Before being filled and sealed together, the

preforms were outgassed during 2 hours at 100◦C. The reservoir chamber was then filled with

natural rubidium before the cell was sealed with the In-bonding technique. A detailed description

of the process of fabrication can be found in Straessle’s Thesis. She deserves all the credit for

the fabrication of this cell. The spectroscopic characterization is presented in Chapter 5, section

5.4.

3.4 Conclusion

In this chapter, we presented all the fabrication methods employed for the production of the

cells studied in this thesis. A particular attention was given to the LTF cell filling system and

the different methods used at LTF for glass blown rubidium vapour cells fabrication. The three

types of cells, evacuated, buffer-gas filled and wall-coated, could be successfully produced, and

total of more than 150 cells were fabricated within the 4 years duration of this thesis. They

are listed on Table 3.1. The cell filling system was modified so that the fabrication of a fourth

type of cell, mixing buffer gas and wall coating as antirelaxing technologies, could easily be

envisaged without any modification. An overview of the existing Rb dispensing methods and

MEMS sealing techniques was also given. The three MEMS fabrication processes employed for

the production of the micro-fabricated cells employed in the frame of this thesis, including the

first ever micro-fabricated wall-coated cell, were presented.

As stated by Vanier, "the manufacture of the cells is something of an art and the final success

depends largely on recipes learned by past mistakes and successes" [37]. Accordingly, some of

the cells produced were frustrations or missed shots, but also indispensable part of the devel-

opment process. Sometimes a small hidden detail made the whole difference, sometimes fine

tuning was required. But finally, all three types of cells, evacuated, BG-filled and Wall-coated

could be successfully produced at the centimetre and the millimetre scale. Their spectroscopic

characterizations are presented in the Chapters 4, 5 and 6.
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Chapter 4

Spectroscopy as characterization tool

for micro-fabricated cells and other

type of cells

This chapter presents various non-destructive spectroscopic evaluation tools that will be used in

the following chapter to validate the fabrication processes of various types of cells. In the present

chapter, we focus on the evaluation of micro-fabricated cells and their fabrication processes

developed at LTF and EPFL-SAMLAB in Neuchâtel using the equipments described in Chapter

3. The leak rate of the innovative In-bonding sealing (see Straessle’s thesis [1]) is evaluated with

three spectroscopic methods: linear absorption, sub-Doppler saturated absorption and double

resonance. Contamination with and permeation of helium and other gases are discussed, as well

as the consumption, or burning, of the alkali vapour. An evaluation of the buffer-gas filling

accuracy of a cell produced with anodic-bonding using DR and CPT spectroscopy is also given.

4.1 Introduction

Inside the vacuum chamber of our cell filling system (see Figure 3.1a), the atmosphere can be ex-

tremely well controlled and monitored. The background pressure can be lowered below 10−7 mbar

and with the gas mixer employed, the proportion of buffer gases and the total pressure can be
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controlled within 0.1%. Such a control is expected to be transposed to the fabricated cells, but

various mechanisms can alter the inner atmosphere during or after the sealing process. During the

sealing, a contamination can occur through the outgassing of the materials of, and in the vicin-

ity of, the cell. This phenomenon is enhanced by the relatively elevated temperature (typically

well above 100◦C) required for the sealing process. Moreover, the potentially large temperature

gradients present during the sealing can alter locally the composition and the pressure of the

gases, inducing bias to the nominal atmosphere composition. In addition to a potential residual

outgassing, leaks and permeation can also alter the inner atmosphere of the cell after sealing. A

leak could result from a non-hermetic sealing allowing the external atmosphere to enter the cell.

The permeation is also a leak process since external gases can enter the cell, but its process is

different: external gases get adsorbed on the external cell wall surface; they diffuse through the

wall, and finally desorb from the inner walls [172].

These alterations of the cell’s inner atmosphere are critical in view of clock applications and need

to be thoroughly characterized. Indeed, the initial composition bias induced by the sealing can

significantly modify the optimal operating temperature minimizing the temperature sensitivity of

the clock (see section 1.7.2.2), and thus the overall performances of the clock. Moreover, the leaks

are processes continuously modifying the inner atmosphere, inducing clock frequency drifts, and

thus instabilities, or an accelerated oxidation (consumption) of the alkali metal. A very efficient

method for inner atmosphere analysis consist of breaking the cell under vacuum and analyse

its content by mass spectrometry or residual gas analysis (RGA) [173]. It has nevertheless two

significant drawbacks: it is a destructive method, and it does not allow the precise quantification

of potential leaks.

Here, we propose and demonstrate non-destructive spectroscopic methods for the analysis of var-

ious types of rubidium vapour cells. These methods exploit the different optical and microwave

buffer gas shifts and broadenings introduced in Chapter 1 to determine, within certain assump-

tions, the content and the quality of the cell. Since this method avoids the destruction of the

cell imposed by the RGA, it also allows the quantification of the leaks.
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4.2 Evaluation of the In-bonding

In order to validate the potential of the newly developed In-bonding technique as an efficient

sealing method for reference alkali cells, three spectroscopic methods were employed: linear

optical absorption spectroscopy, saturated absorption spectroscopy, and laser-microwave DR

spectroscopy. Two types of cells were characterized. The cells were fabricated by R. Straessle

using the method described in section 3.3.2. Each cell consisted of a stack assembly of Pyrex-

Silicon∼Silicon-Pyrex. The ’-’ and ’∼’ symbols represent anodic bonding and In bonding, re-

spectively. Pyrex was 500 µm thick and Silicon 390 µm, resulting in an inner cylindrical vapour

volume of 5 mm diameter and 780 µm thickness. One cell contained rubidium in natural isotopic

abundance only, the other cell was additionally filled with 150 mbar of Ar and N2 mixture. The

BG ratio, PAr/PN2 was 1.3. The studies reported in this section have been previously published

in [134], that reports on the cells’ realizations and evaluations.

4.2.1 Qualitative validation of the sealing: linear absorption spectroscopy

The D2 line absorption spectrum of each cell was measured by recording the transmission of

the cell under test while the frequency of a monochromatic light source was swept across the

absorption lines, as described in the section 2.1. To increase the absorption coefficient of the cell

(see equation 1.48), and therefore the contrast of the lines, the temperature of the microfabri-

cated In-bonded cell under test was raised and stabilized. The figures 4.1 and 4.2 show the D2

line absorption spectra of the BG cell at 70◦C and the evacuated In-bonded cells, respectively,

along with a calibration spectrum and the theoretical prediction discussed in section 1.5.2. The

obtained absorption spectra testify the presence of a significant amount of rubidium vapour in-

side the cells and reject the possibility of a significant leak (see section 4.2.2 and 4.2.4.4). The

In-bonding appears hermetic. The theoretical curves are calculated from eq. 1.47 and 1.48 taking

into account every hyperfine transition. For both theoretical predictions, the isotopic ratio was

adjusted at 40/60 of 87Rb/85Rb (natural ratio is 72.2/27.8 [13]) to fit at best the experimental

data. Two values for the BG pressure are used for the predictions, at 125 mbar and 150 mbar.

The Gaussian profile is used for the evacuated cell and the Voigt profile, issued from equation

1.30, for the BG cell. As it can be seen on both figures, 4.1 and 4.2, the predictions do not
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Figure 4.1: Experimental and predicted transmission spectra of an In-bonded BG filled cell.
The cell is nominally filled with natural rubidium and a BG pressure and Ar-to-N2 ratio of
150 mbar and 1.3, respectively. The two predictions use a 40/60 of 87Rb/85Rb isotopic ratio.
The upper trace corresponds to the saturated absorption spectrum of the laser head’s reference

evacuated cell.
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Figure 4.2: Experimental and predicted transmission spectra of an evacuated In-bonded cell.
The cell is nominally filled with rubidium in natural isotopic abundance only. The prediction
uses a 43/57 of 87Rb/85Rb isotopic ratio and a contamination of 1 mbar of N2. The upper trace
corresponds to the saturated absorption spectrum of the laser head’s reference evacuated cell.

perfectly reproduce the acquired data. Nonetheless, some conclusions can be drawn from these

measured data, initially performed to be only qualitative preliminary test:

• The obtained spectra prove that both cells contain rubidium in vapour phase. Moreover,

the strengths of the absorption lines correspond qualitatively to the predicted ones. This
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proves that the potential consumption of the rubidium by oxidation, or "burning" process,

is sufficiently slow to let the pressure of the rubidium vapour build up until it reaches its

saturation vapour pressure.

→ The cell is hermetic, but its tightness remains to be quantified.

• No significant broadening is visible for the evacuated cell (Figure 4.2), testifying the absence

of a potential gas release during or after the sealing or a leak.

→ The fabrication process is "clean", and the cell does not outgas nor has a leak noticeable

at this level.

• A clear broadening is observable for the BG cell spectrum, testifying the presence of a

buffer gas inside the cell. Although the predictions are only qualitative, a better match is

found for the 125 mbar trace which shows a similar resolution of the absorption peaks.

→ The buffer gas filling is successful but the inner pressure appears lower than the nominal

150 mbar pressure filled to the cell. This pressure default remains to be quantified.

4.2.2 Leak rate

A leak would results from a bad sealing letting the outer atmosphere enter the cell through cracks,

channels or other ways. For the simplicity of the argument and since we are working in ambient

air, we only consider an income of 21% of oxygen and 79% of N2. The other components of the

ambient atmosphere are only traces, and their effect would only consist of small corrections to the

main effects induced by the nitrogen and oxygen. The oxygen income will instantaneously react

with the alkali atoms, creating non volatile and useless oxides. This can partly or completely

eliminate the cells’ atomic rubidium content; this rubidium consumption is discussed in the

section 4.2.4.4. Making now abstraction of this consumption, the leak will result, before the cell’s

rubidium vapour is completely oxidized, essentially in an increase of the internal BG pressure

due to the gas inflow, assumed to be nitrogen only.

For a given leak rate, L, the inner pressure variation is proportional to the difference between

the external (Pout) and the internal (Pin) pressures [134]:

dPin
dt

=
L

PrefV
(Pout − Pin). (4.1)
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L is usually expressed in mbar·l·s−1. Pref is the atmospheric pressure and V the internal volume

of the cell. The evolution of the inner pressure is therefore:

Pin(t) = Pout − (Pout − P0) · e
− Lt
V Pref (4.2)

where P0 is the initial pressure inside the cell at t=0. Since we expect extremely small leak rates,

and an initial pressure much smaller than the atmospheric pressure, some approximations can

be made leading to a simpler expression for the leak rate:

L = V
∆P

∆t
. (4.3)

As discussed in section 1.5.1, the broadening of the optical transitions is proportional to the

pressure of gas present inside the cell. Therefore a variation of the nitrogen pressure induces a

variation of the optical broadening of,

d∆νclock
dt

=
∂∆γopt
∂PN2

dPin
dt

(4.4)

= γoptN2

L

PrefV
(Pout − Pin) (4.5)

≈ γoptN2

L

V
. (4.6)

Similarly, the frequency shift of the double resonance signal is also proportional to the pressure

of buffer gases present inside the cell (see equation 1.107). Therefore the variation of the clock

frequency shift can be expressed as follow:

d∆νclock
dt

=
∂∆νclock
∂PN2

dPin
dt

(4.7)

= (βN2 + δN2(T − T0) + γN2(T − T0)2)
L

PrefV
(Pout − Pin) (4.8)

≈ βN2

L

V

Pout − Pin
Pref

≈ βN2

L

V
. (4.9)
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Figure 4.3: Saturated absorption spectra of (bottom trace) the evacuated In bonded cell along
with (upper trace) the reference spectrum.

4.2.3 Quantitative validation of the sealing: saturated absorption spectroscopy
of an evacuated cell

For a more precise determination of the buffer gas pressure from optical spectroscopy, the sub-

Doppler saturated absorption spectroscopy was used (see section 2.2). Indeed, the good quali-

tative agreement between the theoretical model and the experiment seen on Figure 4.1, and the

relatively small pressure broadening coefficient of the order of few MHz/mbar (see Table 1.3)

with respect to the Doppler width of ∼500 MHz, does not allow to extract the inner pressure

with a precision better than few tens of mbar. In contrast, the sub-Doppler saturated absorption

spectroscopy presents Lorentzian patterns having widths of only few tens of MHz. This repre-

sents an improvement by at least a factor of ten in the relative precision, and thus allows the

determination of inner contaminations at a level of the mbar precision. The figure 4.3 shows the

saturated absorption spectrum of the evacuated In bonded cell along with the reference spectrum.

This spectrum was recorded two month after the cell was sealed.

We focus our attention only on the |Fg = 2〉 → |Fe = 3〉 transition of the 87Rb. For it is the

most pronounced pattern, and has the advantage to be a direct and cyclic transition. Therefore

its linewidth is not broaden by the contribution of another line (crossover) nor by the hyperfine
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pumping [117]. Other mechanisms can also affect the linewidth and the depth of the sub-

Doppler patterns, such as laser linewidth, geometrical (angle between pump and probe, cell

size) collisional broadening. Since the two cells are operated under the same conditions, we only

consider the additional broadening observed in the In-bonded cell, γadd = γIn−γref = 15±4 MHz.

This broadening can reasonably be attributed to the collisional broadening only, as the cell

size is big enough. Indeed, the shortest distance in the cell between two collisions is 780 µm,

much longer than the distance travelled by a thermal atom during its excited state lifetime,

∼10 µm. Considering helium and nitrogen, both having broadening coefficients of ∼15 MHz

[58], the additional broadening may be explained by a ∼1 mbar gas contamination. The same

measurement was repeated 5 months after fabrication and no further broadening was observed.

From the 4 MHz uncertainty, the equation 4.9, and the coefficient from Table 1.3, an upper limit

for the leak rate of 3× 10−13 mbar l/s is estimated.

4.2.4 Quantitative validation of the sealing: double resonance spectroscopy
of the buffer gas filled cell

Saturated absorption is not possible for a cell filled with several mbar of buffer gas, as the

collisional broadening washes out the sub-Doppler patterns (see Figures 2.6). However, the

presence of a sufficient buffer gas pressure allows the preservation of the ground state polarization

and coherence, and the laser-pumped double-resonance spectroscopy can be used to analyse the

pressure and its variation in the buffer gas filled cell.

4.2.4.1 Pressure evaluation

DC DR spectroscopic mode (see section 2.3.1.1) was used to measure the DR signal as a function

of the laser intensity. Figure 4.4 shows its linewidth as a function of the laser intensity; the

RF power is chosen low enough to not induce significant broadening. A linear extrapolation

to zero light intensity provides an intrinsic linewidth of 2.022(7) kHz. This value is slightly

higher than the predicted value of 1.4 kHz obtained using the equation 1.89 and a nominal

pressure of 150 mbar. A reduced pressure of 100(1) mbar inside the cell could explain the

experimental intrinsic linewidth. This agrees with the similar observation previously made on

the linear absorption spectrum: the inner pressure appears lower than the nominal pressure filled
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to the cell. A similar conclusion is drawn from the measured intrinsic shift (Figure 4.5): using the

nominal gas pressure filled to the cell and equation 1.107 an offset of 21.5 kHz is expected. The

measured value is only 16.88(1) kHz, corresponding to a reduced inner pressure of 117(7) mbar.

The relatively big error bar arises from the uncertainty in the determination of the buffer gas

mixture ratio of ±2% (see section 4.3).

Two independent methods, Doppler spectroscopy and DR spectroscopy show a significantly re-

duced inner pressure, with respect to the nominal gas pressure, of the BG In-bonded cell. This

pressure reduction can be well explained by the way the nominal pressure is determined. Indeed,

the gas pressure inside the filling chamber is measured far from the sealing zone and at room

temperature. Since the cell is bonded at 140 ◦C, locally the buffer gas density is reduced, hence

the equivalent inner pressure. From the perfect gas law, the inner pressure has to be corrected

as follow:

Pin = P
Tg
Ts

(4.10)

where Tg = 313 K is the temperature of the pressure gauge and Ts = 413 K the sealing temper-

ature. A corrected nominal pressure of 114 mbar is found for the BG In-bonded cell, which is in

excellent agreement with the pressures extracted from the intrinsic shift.

This is an important and non negligible effect that must be considered for the next generation

of microfabricated buffer gas cells. For the glass-blown cells, a similar effect was also reported

by Missout and Vanier due to the high glass sealing temperature [90], and could be solved by a

proper control of the cell temperature and the double seal technique [90].
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Figure 4.4: DR Linewidth of the In-bonded BG filled cell as a function of the light intensity.
The intrinsic linewidth is measured to be 2.022(7) kHz.

Figure 4.5: DR frequency shift of the In-bonded BG filled cell as a function of the light
intensity. The intrinsic shift is measured to be 16.88(1) kHz.

4.2.4.2 Leak rate estimation

The intrinsic frequency shift of the BG In-bonded cell was measured four times over the timespan

of one year (DC DR spectroscopic mode). Figure 4.6 shows the measured data along with their

corresponding pressure variation from the initial pressure. Since for each measurement, the

cell was reintroduced in the resonator, the microwave field might vary due to the positioning

uncertainty of the cell inside the microwave resonator. Therefore, the error bars were increased
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to take into account the systematic microwave power shifts. Assuming a cell contamination by

nitrogen only, an upper limit for a potential leak rate of the cell is estimated. Using equation 4.9

and the nitrogen shift coefficient from Table 1.9, an average leak rate of LIn = 5.5×10−14 mbar l/s

is determined. The maximum shift variation of ∼110 Hz, allowed by the error bars, provides an

upper limit for the leak rate at a maximal value of LInMax = 1.5× 10−13 mbar l/s. This leak rate

limit is already one order of magnitude smaller than the limits of the N2O and the membrane

deflection methods reported in [1].
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Figure 4.6: DR intrinsic frequency shifts of the In-bonded BG filled cell (Left axis) over 11
months, and the corresponding BG pressure variations (right axis).

Potentially, this limit could be further improved by exploiting the DR clock mode. As seen in the

section 2.3.1, the DR clock mode offers 2 × 10−3 mbar resolution for the argon pressure at one

day (assuming a frequency instability of σy(1d) ∼ 10−11). This resolution is improved down to

2×10−4 mbar for nitrogen. The resulting leak rate limit of this method in the In-bonded BG cell

would correspond to 3.5× 10−14 mbar l/s after one day only. This represents already two orders

of magnitude improvement, with respect to the N2O method [1]. Moreover, the DR clock mode

does not require a vacuum chamber nor a pressurized N2O atmosphere, and is achieved within one

day only. Exploiting the coherent population trapping (CPT) instead of the DR of alkali atoms

could add simplicity of operation to this fast, extremely efficient and non-destructive method

for precise leak rate measurements of MEMS sealing methods. Moreover, since the microwave

cavity is not required for CPT the error bars arising from the positioning uncertainty would be

significantly reduced.

111



Chapter 4: Spectroscopy as characterization tool for micro-fabricated cells and other type of
cells

4.2.4.3 Gas permeation

Gas permeation through the walls of the vapour cells is an additional process that can drive

pressure variations of the cell’s inner atmosphere. Helium permeation was already considered

by Camparo [109] as a cell ageing process for glass-blown alkali vapour cells. The permeation is

considered as a leak process, as it induces a gas income. Nevertheless, the process is different to

a leak: instead of passing through a channel, external gases are adsorbed on the outer part of

the cell, they diffuse through the material and then desorb inside the cell [172]. It is commonly

expressed as a total atomic flux q, in m3s−1 at standard conditions defined as follow [174]:

dq

dP
= K

A

d
(4.11)

where K is the permeation constant (in m2s−1Pa−1), also called permeation velocity constant

depending on the gas and the membrane material. A is the area of exposed membrane, and d the

membrane thickness. The link to a leak rate is straight forward using the law of perfect gases:

L = K
A

d
P 2
ref (4.12)

The permeation of other atmospheric gases (Ne, Ar, N2, O2) can be neglected, since their per-

meation constants through glass are smaller than helium’s by several orders of magnitude [172].

The same argument applies on helium permeation through silicon [134], and this process is also

neglected. We focus this discussion on helium permeation through Pyrex only. Helium through

Pyrex permeation constant is KHe−Pyrex = 3 × 10−19 m2s−1Pa−1 [175], which leads to a leak

rate of LHe ≡ 2.4 × 10−9 mbar l/s for the geometry of the In-bonded cell having two windows

of 5 mm diameter and 0.5 mm thickness. This is four orders of magnitude bigger than the leak

rate limit measured in the previous section. However, the maximal inner helium pressure cannot

exceed the partial atmospheric helium pressure of Pext = 5.3 × 10−3 mbar. Since helium has a

pressure shift coefficient for the clock transition of 540 Hz/mbar, the maximal induced shift is

<3 Hz, with an initial clock frequency drift of 0.04 Hz/day or 5.9×10−12 (see equation 4.8), well

below the resolution of this DC DR spectroscopic method.

The permeation induced drift can present issues for clocks applications. However, this effect is

limited in time under a stable external atmosphere. Indeed, the evolution of the inner helium

pressure has an exponential behaviour (see equation 4.2) to balance the external and internal
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pressures. For a given cell volume, Vcell, the typical time constant τHe, or time required for the

pressure to reach 63% of the external pressure, is given by:

τHe =
VcellPref
LHe

. (4.13)

In the case of the In-bonded cell, this time constant is τInHe = 72 days, which is of the same

order as reported for glass-blown cells in [109]. 500 days are required to balance the internal and

external pressure within 0.1 %. For the thick glass-core, or 3D cells, the time constant becomes

τ3DHe = 51 days, and a full year is required to balance the pressures. As a general rule for helium

permeation through cells walls, a time of 7τHe is required until the pressures are balanced within

0.1 % and the drift reaches a value below 1×10−13 /day.

4.2.4.4 Consuming the rubidium

For a leak small enough, the oxidation of the rubidium has no significant effects on the spectro-

scopic properties of the cell, since every alkali atom reacting with the oxygen is directly replaced

by a new one from the metallic bulk to equilibrate the vapour pressure. The consequences are

simply a slow consumption of the metallic rubidium reservoir, and after a certain amount of time

(depending on the leak size) all the metallic rubidium will have reacted, resulting in a "dead"

cell containing no rubidium vapour any more. But, the effect of the nitrogen pressure increase

is visible way before the cell dies by oxidation: a potential and significant increase of 1 mbar of

nitrogen pressure (inducing a 400 Hz shift or 6× 10−8 relative shift) would come along with an

income of 0.3 mbar of oxygen. In a 50 mm3 cell (equivalent to the 3D cell), this corresponds to

< 3 µmol that would burn only 0.3 µg of Rb, while the cell is commonly filled with more than

100 µg.

Other processes, such as reaction with indium [1], diffusion through the glass, also dry up the

rubidium source. But these processes are relatively slow and thanks to the continuous equilibra-

tion of the vapour pressure, the rubidium density may be expected to be constant; it is therefore

difficult to observe it spectroscopically. A dynamic reduction of the absorption strength could

only be observed when solely Rb vapour exists in the cell. Compared to the lifetime of the cell

this time is short, and we were not able to observe the reduction of the vapour density, but only

the two steady-state phases where the vapour pressure is constant or null.
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4.3 Evaluation of the BG filling in anodic bonded cell

We assumed for the In-bonding technique that the percentage of buffer gases filled in the cells

had a ±2% uncertainty. In order to validate this statement, a similar cell was fabricated with an

initial buffer gas filling of 60 mbar mixture of 57% of argon and 43% of nitrogen. This cell was

anodically bonded to ensure its resistance at temperature up to 100◦C. Moreover the cell was

thicker (2 mm) and with the reduced buffer gas pressure, a sufficient absorption contrast, even

at temperature as low as 55◦C, was observed. Laser-pumped double-resonance spectroscopy

in DC mode was also used to analyse this buffer gas filled cell. The experimental setup and

method are identical to the one presented in the section 2.3. The intrinsic shift of the cell was

measured at several temperatures between 65 and 100◦C (See Figure 4.7). From a quadratic fit,

the extremum abscissa stands at 76(3)◦C, which corresponds, using equation 1.112 inverted, to

an argon percentage of the buffer gas of 58.0(6)%. Similar measurement was performed using

CPT spectroscopy of 85Rb in the D1 line [29], using a setup similar to the one described in [5]1.

For a better comparison on figure 4.7, the intrinsic shifts obtained with the 85Rb were rescaled

to the 87Rb frequency by multiplying them by the ratio of the hyperfine frequencies of the 87Rb

and 85Rb [93]. The inversion temperature obtained with CPT was 73(3)◦C, corresponding to

an argon percentage of 58.6(6)%. Both results match within 2% the nominal percentage of

argon in the mixture. This shows a relatively good control of the buffer gas mixture, in spite

of the potentially large temperature gradients present in the filling chamber during the sealing

procedure. The equivalence between the two drastically different spectroscopic methods and

the independence of the buffer gas shift to the method of interrogation also validates the data

obtained adapting a 14 mm microwave resonator to micro-fabricated cells (see section 2.5).

1This methods has also been employed by Boudot et al. to characterize a Ne-Ar mixture in Cs cells [96].
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Figure 4.7: Intrinsic temperature shift of a buffer gas-filled anodic-bonded cell, measured
independently with DR on 87Rb, and CPT on the 85Rb content.

4.4 Conclusion

In this chapter, we used the various spectroscopic methods described in the Chapter 2 as non-

destructive methods for the characterization of the content of rubidium vapour cells. The resolu-

tion and applications of each method were discussed and are recalled here. The linear absorption

in combination with the basic theoretical model presented in Chapter 1 allows the determination

of a total inner buffer gas pressure with a resolution of few tens of mbar. It is compatible with

any types of cells and serves as a go/no-go test for further analysis. The saturated absorption

and DR spectroscopy demonstrated better precisions but their use is restricted to certain types of

cells only. While the saturated absorption is dedicated for the measure of small contaminations

in an evacuated cells only, DR is for the evaluation of a buffer gas pressure of at least few tens

of mbar. Hyperfine DR spectroscopy of alkali atoms is demonstrated to potentially reach an

unrivalled leak rate detection limit for N2 at the level of 3.5× 10−14 mbar l/s after one day only.

A contamination level below 1 mbar and a leak rate LIn < 1.5× 10−13 mbar l/s associated to an

innovative sealing method were measured using sub-Doppler saturated absorption and DC mode

DR spectroscopy, respectively. These results demonstrate the hermeticity and the cleanliness of

the innovative low temperature In-bonding sealing process developed by the SAMLAB and LTF,

as well as its compatibility with the realization of alkali vapour cells in view of miniaturized

atomic clocks. The low temperature of the sealing allows to envisage the combination of MEMS
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technology and wall-coating (see Chapter 5). A systematic bias of more than 30% in the nominal

buffer gas pressure of microfabricated cell is also identified. Originating from the temperature

gradients present during the sealing process, the nominal pressure overestimation can be easily

corrected.

The permeation process through silicon and pyrex was also treated as a leak. The permeation of

other gases than helium through Pyrex, as well as the permeation of helium through silicon could

be neglected based on their insignificant permeation rates reported in the literature. Only helium

permeation through pyrex is retained and discussed in detail. The clock frequency drift induced

by helium permeation remains below 1× 10−11 /day for the microfabricated cells considered in

this manuscript. Pressure equilibration time constants are calculated to be several tens of days.

Finally, a method to characterize the buffer gas mixture ratio is presented. Based on the inversion

of the temperature coefficient of the clock transition, it allows the determination of the mixture

percentage with a resolution of ±2%. An excellent control of the buffer gas mixture during the

filling and sealing process of the microfabricated cells is demonstrated for the dispensing method

and the sealing technique based on anodic bonding described in Chapter 3. The measurement of

the inversion temperature using DR spectroscopy on 87Rb was also compared to the one using

CPT on 85Rb. Both methods gives similar results.
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Chapter 5

Anti-relaxation wall coatings for atomic

clocks

This chapter describes the spectroscopic studies performed on the various types of anti-relaxation

wall-coated cells fabricated in Neuchâtel. At first a brief introduction on the state-of-the-art of

wall coating and their application fields is given. Four types of coating have been tested: (1)

tetracontane in glass blown cells, (2) OTS in a microfabricated wall-coated cell, and preliminary

spectroscopic studies on (3 & 4) Parylene N & C as wall coating in glass-blown cells are presented

in section 5.2. An update of the glass-blown cell filling system (see Figure 3.1a) has allowed the

fabrication at LTF of high quality tetracontane-coated cells. The spectroscopic study of these

cells is presented in section 5.3. An original observation of the coating’s ripening process using

DR is presented and interpreted. It is followed by the measurement of the tetracontane’s intrinsic

properties and the consequences on clock applications. Finally, the proof of principle for a micro-

fabricated wall coated cell showing reduced relaxation rates is given in section 5.4. The origins

(buffer gas or coating) of the reduced relaxation rates are discussed and effective anti-relaxation

properties of the coating in this cell are demonstrated.
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5.1 Introduction

Anti-relaxation wall coatings present an interesting alternative to the buffer gas for the preser-

vation of the atomic coherence and ground state polarization of the alkali vapour in a cell. Since

the first paper published on a paraffin coating presenting anti-relaxation properties in 1958 [176],

several studies, based on a detailed theoretical description developed by Bouchiat et al. to de-

scribe the alkali spin surface relaxation process [38]1, have been undertaken to understand the

origin of the anti relaxation properties: Camparo et al. studied the interactions between a rubid-

ium vapour and a dichlorodimethylsilane coating [177], Stephens et al. measured the adsorption

energy, outgassing, and chemical reaction rates between a caesium vapour and an octadecyl-

trichlorosilane (OTS) coating [178], Seltzer et al. studied potassium polarization lifetimes in

the presence of OTS, alkyltrichlorosilane monolayers and octadecylphosphonic acid monolayers

[179]. Yi et al. tested Rb on OTS self-assembled monolayers [75], Ulanski measured the dwell

times of rubidium on OTS and paraffin coated surfaces [180], and Seltzer published an alternative

analysis of paraffin coatings based on surface science techniques [76], but currently the details of

the anti-relaxation processes are still not fully understood [180]. Some authors like to define the

application of a surface coating as a rather laborious process with some degree of "black magic"

that does not always yield reproducible results [181]. However several studies have exploited these

coatings and their anti-relaxation properties in various fields of physics: atomic clocks [78], [122],

[182], [183], atomic magnetometers [149], [150], [184], [185], electromagnetically induced trans-

parency (EIT) and slow-light [186], fundamental symmetry studies [187] magneto-optical traps

[178], spin squeezing [188], long-lived entanglement [189] and quantum memory [190].

All the reported efficient coatings for alkali metals have in common an organic chain to which are

attributed the anti-relaxation properties. They can be split into three categories, organosilane,

alkane and alkene:

Organosilane compounds are composed of an hydrocarbon tail (hydrophobic) and a highly re-

active silane head which can either bind to the -OH endings on a surface or to each other [1].

Organosilanes have the particularity to form on glass self-assembling mono- or multi- layers,

which depends on the deposition method. The first report on this type of coating dates from
1We recall its main formulae in the Chapter 1.
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1961 using dimethyldichlorosilane under the commercial name of Dri-Film [191]. The most effi-

cient organosilane, as anti-relaxation coating, reported so far is OTS. It can preserve the rubidium

atomic hyperfine polarization during up to 900 collisions, and can be operated at up to 160◦C

before its anti-relaxation properties are degraded [133]1. An OTS coating in a micro-fabricated

anodic-bonded cell for a miniature clock has already been reported [192], but no conclusive proof

of anti-relaxation properties being due to the coating and not to a buffer gas was given. Al-

ternative coatings with a similar tail group structure, but different head groups have also been

reported: octadecylphosphonic acid monolayers [179] and nonadecylbenzene [193], but only the

nonadecylebenzene exhibited anti-relaxation properties. These coatings are commercially avail-

able from standard chemistry suppliers.

Alkane compounds, or paraffins, are saturated hydrocarbon chains of chemical formula CnH2n+2.

Commercially, they are also known as Paraflint. Alkanes are probably the most widely used coat-

ings, given the majority of the alkane-based studies found in the literature. Eicosane (C20H42)

was the first coating successfully tested with alkali atoms and could preserve the rubidium atomic

spin during up to 600 collisions [176]. For Rb on paraffin, up to 10 000 polarization-maintaining

collisions have been reported by Bouchiat et al. [73]. They also mentioned an improvement of

30% for shorter hydrocarbon chains and a five times improvement for deuterated polyethylene.

Since the alkanes’ maximal temperatures of operation are dictated by their melting tempera-

tures [73], [79]: 96 − 100◦C for hexacontane (C60H122), 80.5◦C for tetracontane (C40H82) and

35 − 37◦C for eicosane (C20H42), longer chains appear preferable for higher operation tempera-

ture. Alkenes have been extensively used for basic alkali-coating interaction studies [38], [176],

[180], [194], rubidium clocks [63], [78], potassium-[184] and caesium-based magnetometers [149],

[153], light induced atomic desorption (LIAD) of potassium, rubidium, caesium [148], [195], and

sodium [196], [197], and slow-light experiments with rubidium [198]. Rubidium clock short-term

stabilities down to 2.8 × 10−12τ−1/2 from a 14 mm diameter cell [122] and magnetic sensitivi-

ties down to 10 fT/
√
Hz with a potassium cell of 15 cm diameter [184] and 4 pT/

√
Hz with a

spherical glass-blown cells of only 3 mm diameter [153] have been reported. Alkane coatings are

commercially available from standard chemistry suppliers.

Alkene compounds, or olefins, are unsaturated (one C=C double-bond exists in the molecule)

hydrocarbon chains of chemical formula CnH2n. They have been recently proven to be the most

efficient anti-relaxing coatings, allowing up to 106 Zeeman polarization-maintaining collisions of
12000 collisions are reported in the same article for potassium.
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Chapter 5: Anti-relaxation wall coatings for atomic clocks

rubidium atoms in a spin exchange relaxation free (SERF) magnetometer configuration [72], [150].

In this case, the coating material was AlphaPlus® C20-24 normal alpha olefin from Chevron

Phillips. It has a relatively low melting temperature which limits its anti-relaxation properties

to temperatures below 33◦C, and its intrinsic properties such as stability of the coating remain

to be studied. However, higher temperatures of operation might be achieved with AlphaPlus®

C30+ normal alpha olefin from Chevron Phillips, having a melting temperature of 71◦C. To our

knowledge, this material has only been reported in [76], without any spectroscopic data.

Recently, another material was also proposed and patented by Abbink et al. as anti-relaxation

coating for NMR gyroscopes: the Parylene [166]. It is a polymer with a cyclic alkene group

which presents excellent properties. It is transparent, has a melting temperature of 290◦C for

Parylene N or above for Parylene C, is chemically resistant and its deposition process is similar

to CVD (Chemical Vapour Deposition). The coating is completely uniform, without pinholes,

and conforms perfectly to even the most complex structures. It is usually used as a protective

layer in harsh environments and for packaging applications and doesn’t outgas1. In their patent,

Abbink et al. state that "Parylene coating minimizes interaction of the excited state of the alkali

metal, increases lifetime of the excited state, and minimizes interaction of nuclear spin states

with the cell walls", but no detailed results have been published. Its efficiency as anti-relaxing

coating remains to be demonstrated.

The purpose of this chapter is triple:

1. To validate the updates of our cell filing facility to enable the production of wall coated

cells and our fabrication recipe described in the Chapter 3. Initially, our facility allowed for the

fabrication of buffer gas and evacuated cells only. The choice of tetracontane came naturally as

a benchmark for successful realization of wall coated cells.

2. To deepen and extend our understanding of Parylene and tetracontane coatings: spectroscopic

studies on Parylene coated alkali vapour cells were not reported in the literature. Also, the

choice of Parylene as an alternative coating was motivated by its extremely interesting proven

properties, and its chemical structure similarities with the alkenes. The anti-relaxing coatings

are known to be of poor quality right after the production phase, and need to go through a

so-called ripening process to show efficient anti-relaxation properties and a stable clock signal.

This process is usually mentioned as a required step in the production phase but it has not been
1see www.comelec.ch
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studied in details and is not yet fully understood. Producing the cells in our laboratory gave us

the opportunity to observe the evolution of the DR signal of a coated cell during this ripening

process.

3. To demonstrate the anti-relaxation properties of the OTS coating in our first wall-coated

MEMS cell. The realization of such a cell was allowed by the excellent hermeticity and the low

sealing temperature achieved by the In-bonding (see Chapter 4).

5.2 Parylene N/C

As shown in Table 3.1 two runs of 14 mm diameter cells coated with Parylene were produced.

The fabrication process is described in section 3.2.5. The first ramp consisted of 4 cells coated

with Parylene N, 4 with Parylene C and 2 uncoated cells serving as a references for the batch.

Before being filled with Rb, the coated cells were clearly distinguishable with their milky white

look (see Figure 5.1). One also sees the brown traces left by the Parylene that was oxydized or

burnt during the soldering of the cells onto the ramp. After the Rb filling, the Parylene N cells

were lightly purple coloured, while the neck of the Parylene C cells was strongly darkened. This

was an unexpected reaction, since Parylene is supposed to be biocompatible and very chemically

resistant. The cells were nevertheless sealed off the ramp as they still contained metallic rubidium

in their reservoirs.

No optical absorption of the rubidium lines could be retrieved from the Parylene C cells, although

the temperature of the reservoir was raised up to 80◦C and metallic rubidium still visible in the

reservoir. The impossibility to build up a vapour pressure sufficient to allow spectroscopy of

the Parylene C cells, is interpreted as an indication of a rapid reaction between rubidium atoms

and Parlene C. Moreover, after few days, all the visible metallic rubidium in the reservoir had

disappeared and the neck turned to black. Since no spectroscopy was possible, and the rubidium

consumed within few days, the studies on Parylene C were not continued.

In contrast, linear and saturated absorption could be achieved in the Parylene N cells, although

the cell body was slightly purple coloured (see Figure 5.3). The consumption of the rubidium

cannot be excluded, but the 33 MHz linewidth of the |Fg = 2〉 → |Fe = 3〉 transition of the 87Rb

is a strong indication for a below 1 mbar BG pressure potentially present inside the cell, and
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validates the non-outgasing property expected for Parylene. A DR spectroscopy was attempted

but no signal could be recorded. The Parylen appears to show no anti-relaxation properties for

rubidium which is in contradiction with the claim from Abbink’s patent [166].

The cell fabrication method was suspected to be responsible for the non anti-relaxation properties

and another ramp was produced using Parylene N only. The following modifications to the

procedure were applied:

• On the ten produced cells, eight were coated, among them six had an additional plasma

etching treatment before being mounted on the ramp. The purpose of this etching was to

remove the coating present in the reservoir. Among the six plasma treated cells, two were

additionally annealed at 250◦C.

• The rubidium distillation process was also modified so that the cells are not heated during

the whole filling process.

Visually, these modifications appeared to be efficient. The plasma etching solved the Parylene

burning issue during the soldering onto the ramp, while the modified distillation process did not

colour the cells (see Figure 5.4). Saturated absorption spectra were similar to the one presented

on Figure 5.3 for all the cells but the annealed one, which showed no absorption at all.

The setup used to obtain a DR clock signal spectrum with the cells showing an absorption signal is

described in section 2.3. The cells were kept at room temperature (∼21◦C). A D1 laser head was

used for the optical pumping. A detection of the DR signal in DC mode (see section 2.3.1) was not

possible since the signal-to-noise ratio was too small. For the AC mode, a frequency modulation

with a deviation of 9 kHz and a Lock-In integration time constant up to 1.5 seconds was required

to extract the DR signal from the noise (see Figures 5.5). The measured linewidths are the same

within the uncertainties for coated and uncoated cells, and are comprised between 25 and 34 kHz.

These linewidths are three times larger than the theoretical 11 kHz broadening for bare glass

cells of same geometry (see Table 1.5). We attribute this factor of three to the significant RF

and optical power broadening as no signal could be measured at low light intensity and low RF

power. The fact that no significant difference is observed between coated and uncoated cells, is

a strong indication that the coating does not present any anti-relaxation properties. Moreover,
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5.2 Parylene N/C

Figure 5.1: Parylene ramp before being filled with rubidium.

(a) Parylene N cells. (b) Parylene C cells.

Figure 5.2: Parylene cells after Rb distillation.

although the cells showed no colouration at their early stage, a strong black colouration occured

after few months kept at ambient temperature. All the rubidium appeared consumed, and no

absorption signal could be retrieved any more. The nature of the reaction, chemical or physical,

between rubidium and Parylene at the origin of this rubidium consumption and the colouration

was not determined. However the conclusion that Parylene is not a suitable anti-relaxing wall

coating for hyperfine microwave-optical DR spectroscopy in rubidium vapour cells is evident.

123



Chapter 5: Anti-relaxation wall coatings for atomic clocks

Figure 5.3: Saturated absorption spectroscopy of a Parylene N coated cell.

(a) Second Parylene ramp before being
filled with Rb.

(b) Second Parylene ramp after being
filled with Rb.

Figure 5.4: Second Parylene ramp during production.

5.3 Glass-blown Tetracontane coated cells

We present here the spectroscopic characterizations made on the tetracontane coated cells pro-

duced at LTF (see section 3.2.6). The first goal of these cells was to validate the update of

the cell filling system and the method employed for their fabrication, but they also allowed the

time-resolved observation of the ripening process by DR spectroscopy shown in section 5.3.1.

The cell’s intrinsic properties and some metrological aspects are also discussed the sections 5.3.2

and 5.3.3.
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Figure 5.5: DR spectra of the Parylene N-coated cells obtained in AC mode (see section 2.3.1)

(a) initial state in 2011. (b) actual state in 2014.

Figure 5.6: Colour evolution of the Parylene N coated cells. The two upper right cells are
evacuated cells serving as references. In these two cells the presence of metallic rubidium is still

clearly visible on the picture (B).
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5.3.1 Ripening process

The spectroscopic observations on the ripening process of the tetracontane coated cells were

performed on one cell at a time. The measurement started right after the cell was sealed off

the production ramp, and placed inside the PP described in section 2.5. The cell’s body was

heated up to 70◦C and the reservoir kept at room temperature without thermal control. The

DR signal of the clock transition was recorded in DC mode (see section 2.3.1.1) every minute

during the whole ripening process. The laser frequency was locked to the Fg = 2 → Fe = 2− 3

crossover of the laser head’s reference cell, and a 7 mm diameter laser beam was sent through

the cell. The light intensity and RF power were chosen sufficiently small (< 0.2 µW/mm2, -

11 dBm, respectively) so that the induced power broadenings (see equation 1.76 and 1.78) did

not dominate the measured linewidth. Total power broadening was of the order of 100 Hz only

for both effects combined.

All the tetracontane cells measured showed an evolution of the DR clock signal parameters similar

to the ones shown on the Figures 5.7 throughout the ripening process. A slight reduction of the

total clock signal frequency shift, a significant improvement of its linewidth and its amplitude

along with an increase of its background level were observed. The relatively large scattering

in the shifts and linewidths measured at the early times of the ripening process are due to the

extremely small signal-to-noise-ratio of the recorded DR clock signals.

A qualitative interpretation of this evolution can be made using the basic three-level system,

and the theoretical aspects presented in the Chapter 1. We recall here the steady state solution

for the reduction of transmitted light intensity in the case of a DR interrogation of a rubidium

vapour (see section 1.6):

∆Iout ≈ I0α∆z

(
−1

2
+

ΓL1

4Γ1
− S

4

ΓL1

Γ′1

(Γ′2)2

2π(νM − ν ′12)2 + (Γ′2)2(S + 1)

)
. (5.1)

In absence of a microwave field or out of magnetic resonance, only the two first members of the

equation (5.1) remain, contributing to the background level:

Bck = 1− I0α∆z(
1

2
− ΓL1

4Γ1
). (5.2)

126



5.3 Glass-blown Tetracontane coated cells

Since the light intensity is maintained constant, the increase of the background level observed on

Figure 5.7b is thus a direct consequence of the reduction of the longitudinal relaxation rate, Γ1,

that develops during ripening. Note that a potential increase of the vapour pressure during the

ripening process as reported by Alexandrov [148] would have an opposite effect on the background

level (i.e. a decrease of the background level), and is not observed here.

The third member of equation (5.1) is the clock signal itself. Its linewidth, in Hz, for small

microwave power can be approximated by:

FWHMν ≈

(
Γ2 +

ΓL1
2

)
π

. (5.3)

Thus, for a constant optical pumping rate, ΓL1 , Figure 5.7c shows the evolution of the coherence

relaxation rate, Γ2, only.

The clock signal frequency shift induced by the coating is obtained combining equations 1.115

and 1.93:

∆νcoat =
Φcoat

2πτw
=
δωadτad
2πτw

. (5.4)

We neglect here the spin-exchange shift, as it is calculated to be less than 1 Hz at the densities

imposed by the reservoir temperature. Therefore, the 20% reduction of the clock signal frequency

shift shown on Figure 5.7d is a consequence of a 20% reduction of the dwell time, τad or of the

average hyperfine frequency shift, δωad, experienced by the Rb atoms while they are adsorbed.

Complementary measurement, like the explicit measurement of the dwell time proposed by Zhao

[199], would be required to clearly identify the origin of this clock frequency shift reduction.

As seen in Chapter 1, the total relaxation rates have multiple origins, Spin-Exchange [65], adia-

batic or electron randomization [78], that add up to the total relaxation rate:

Γtot = ΓSE + Γad + Γer. (5.5)

- The spin exchange relaxation rate, ΓSE , contributes to the linewidth at a constant level

FWHMSE < 20 Hz (equation 1.84), thanks to the low density imposed by the reservoir

temperature that is kept at ambient temperature.

- The adiabatic coherence relaxation rate, Γ2ad , originates from the the average phase shift

Φcoat = 2πτw∆νcoat experienced by the atoms at each collision with the coating (see section
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1.7.2.3). It is estimated by [78]:

Γ2ad = 2
(Φcoat)

2

τw
. (5.6)

The corresponding broadening, FWHMad = Γ2ad/π, is calculated to be 40 ± 2 Hz at the

beginning and 23 ± 2 Hz at the end of the ripening process, which results in a ∼ 17 Hz

reduction of the DR signal linewidth throughout the ripening process.

- The electron randomization relaxation rate, Γer, can be of three different, but experimen-

tally undistinguishable, origins:

– Polarized atoms can enter the reservoir and be replaced by new unpolarized atoms

from the reservoir (hole effect), this contribution can be estimated using equation

1.96, and gives a broadening of FWHMhole = 20±10 Hz for a reservoir hole diameter

estimated at 1.2± 0.4 mm. This effect is constant throughout the ripening process.

– Atoms from the vapour can be adsorbed for a sufficiently long time on the coating,

being as well replaced by new unpolarized atoms from the reservoir, or re-emitted

from the coating (adsorption losses).

– Collisions with uncoated glass surfaces (covering factor losses).

It is interesting to note that none of the predictable broadening mechanisms (spin-exchange,

adiabatic, reservoir effect) can explain the comparatively large initial linewidth and its significant

reduction by more than 400 Hz observed during the ripening process. We conclude that this

improvement is dominated by a substantial reduction of the electron randomization relaxation

rate, Γer. The most probable explanation is the reduction of the consumption of the rubidium

atoms by long adsorption1 on the coating throughout the ripening process. This process must

also induce a modification of the interaction potential between the coating and the rubidium

vapour in order to explain simultaneously the variation of the shift of the clock transition.

5.3.2 Intrinsic properties

After the first few days of ripening, the cells were kept at 70◦C, and the intrinsic shifts and

linewidths of each cell were obtained by extrapolating to zero light intensity and at low RF

power the respective shifts and linewidths of the clock signals. These are presented on figures
1the chemical reaction hypothesis has been rejected by Seltzer et al. [76]
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Figure 5.7: Evolution of the clock signal parameters during the ripening process of the tetra-
contane cells. A) amplitude; B) background level; C) Linewidth; D) clock frequency shift.

5.8. Over the whole set of cells produced, the average intrinsic broadening is around 114 Hz with

a standard deviation of 40 Hz. We explain this scattering by the limited reproducibility of the

holes sizes inherent to the glass blowing technique. The average intrinsic shift is −187±10 Hz, for

which the scattering could be explained by a similar scattering in the dwell times or interaction

potentials. Indeed, the reproducibility of coated cells is known to be highly variable [133]. Our

best cell exhibits an intrinsic linewidth as small as 65 Hz, which is well explained by the various

calculable broadening mechanisms (see Table 5.1). An efficient method to reduce the hole effect

is to use a lockable reservoir [72], but this method significantly complicates the fabrication of

the cells and was not employed here. The slightly reduced performances, in terms of intrinsic

linewidth, of the other cells could also be explained by 99% coverage of the cell internal walls.

As mentioned at the end of the Chapter 1, the intrinsic properties of a wall coated cell strongly

depend on the average collision rate, which is imposed by its geometry. In order to compare

objectively similar coatings in different cell geometries, we scale down the total shifts to an

average single collision. From the total shifts of figure 5.8a, the average phase shifts per collision
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Chapter 5: Anti-relaxation wall coatings for atomic clocks

are calculated using equation 5.4. The value obtained over the produced cells is -33 mrad/coll

with a standard deviation of 2 mrad/coll. This corresponds, within a factor of two, to the data

found in the literature and listed in Table 5.2. The temperature dependency of the intrinsic shift

allows the calculation of the activation energy (equation 1.116). From the temperature coefficient

(TC) obtained with two cells of the batch (see Figure 5.9) the activation energy is found to be

0.053 eV, also in good agreement with the literature values for paraffin coatings (see Table 5.2).
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Figure 5.8: Intrinsic (A) shift and (B) linewidth of the produced tetracontane coated cells.
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Table 5.1: Summary of the calculable broadening mechanisms in our tetracontane wall coated
cells after ripening.

Broadening
Parameter

Relaxation Linewidth

mechanism rate [s−1] contribution [Hz]

Adiabatic (eq: 1.94) ∆νclock = −190± 10 Hz 78.5 ± 9 25 ± 3

Spin Exchange (eq: 1.84) Tcell = 70◦C <65 <20

Hole effect (eq: 1.96) �hole = 1.2± 0.4 mm 190 ± 100 60 ± 30

Total 105 ± 36

Table 5.2: Coating properties comparison for 87Rb. "n.c." is for non communicated.

Author Coating Interrogation
Φ TC Ea

[mrad/coll] [Hz/K] [eV]

Brewer [200] paraflint DR -40 n.c. 0.1

Vanier [37] paraflint DR -45 +0.7 0.081

Risley [80] paraffin DR -49 +2 0.06

Robinson [63] Tetracontane DR -58 n.c. n.c.

Budker [78] Tetracontane DR -7 n.c. 0.06

Bandi [7] Tetracontane DR -65 +1.39 0.036

Breschi [194] Tetracontane CPT -55 +1.4 n.c.

Yi [75] OTS DR -69 ∼+3 0.065

This study Tetracontane DR -33 ± 2 +1 0.053

5.3.3 Metrological aspects

The optimization of the clock signal was performed on the D2 line, with the laser frequency

stabilized to the crossover dip of the |Fg = 2〉 → |Fe = 2〉 and |Fg = 2〉 → |Fe = 3〉 transitions
of the laser head reference cell. This choice was driven by the lowest α-LS coefficient obtained

at that optical frequency. The temperatures of the cell body and reservoir were varied from 40

to 80◦ always keeping the reservoir temperature inferior to the body’s one to avoid rubidium

condensation in the coated volume. For every set of temperatures, the microwave power and the
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light intensity were varied as well and the clock signal was recorded. A typical data sheet obtained

at the optimal reservoir and volume temperatures is shown on figure 5.10. The optimized signal

obtained at 0.7 µW/mm2 and -45 dBm of light intensity and microwave power, respectively,

presents a linewidth of 355 Hz with an amplitude and contrast of 0.2 µA and 20% respectively.

The calculated shot-noise limit for the clock stability is < 1 × 10−13τ−1/2. Nevertheless, the

cell body temperature affects significantly the shift of the clock transition (see figure 5.9). The

temperature sensitivity of the clock transition frequency is of the order of 1 Hz/K or 1.5 ×
10−10 /K. This severely limits the medium- to long-term clock frequency stability at a level of

σy ∼ 10−12 assuming a challenging temperature control within ±10 mK.

A very interesting behaviour was observed during the reservoir temperature optimization and is

shown on figure 5.12: as a function of the reservoir temperature and thus the rubidium vapour

density, the α-LS coefficient changes sign, and is therefore null for a certain reservoir temperature,

or density of rubidium. A frequency shift of the optical transition induced by Rb-Rb collisions

could be at the origin of this effect. Indeed, we saw in the section 1.7.2.5 that the α-light-

shift coefficient depends explicitly on the laser frequency detuning with respect to the optical

transitions of the interrogated rubidium atoms (see equation 1.126 and Figure 5.11a), and could

be cancelled for a given laser detuning (see Figure 5.11b). In the present case, as the laser was

frequency stabilized to the crossover dip of the |Fg = 2〉 → |Fe = 2〉 and |Fg = 2〉 → |Fe = 3〉
transitions of the laser head reference cell, its frequency fluctuations could not exceed ±3 kHz at

all time scale (see Table 2.1). Therefore these fluctuations cannot explain the equivalent observed

detuning variation of ∼150 MHz. An alternative way to explain this detuning with respect to

the atoms of the coated cell would be to consider a shift of their optical transitions frequencies.

However, such explanation appears highly improbable considering the huge optical shift involved;

this would be equivalent to a buffer gas filling of ∼30 mbar of N2. Further studies are required

to clearly identify the origin of this effect. In view of a clock application, this presents a strong

interest since the α-light-shift coefficient can be cancelled without the fragile and cumbersome

use of an AOM (see section 2.4.2) to shift the laser frequency off its reference frequency.
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5.4 Microfabricated OTS coated cell

In this section we present the spectroscopic evaluation and study of the first micro-fabricated

rubidium cell featuring an operational anti-relaxation wall coating. These presented studies have

also been submitted for publication in Applied Physics Letters [171]. The fabrication of such a

cell was enabled by the successful low-temperature In-bonding [134] validated in the Chapter 4,

and has been briefly described in section 3.3.2.1. It consists of an evacuated KOH-etched double-

chamber cell of which only one chamber, the interrogation chamber, is OTS coated. The other

chamber, uncoated, is called the reservoir and contains the liquid Rb droplets acting as the

atomic reservoir for the rubidium vapour. Each chamber has a decahedron shape (two base-to-

base truncated square based pyramids) with a 4.2 mm3 volume and 17.3 mm2 wall area. The

chambers volumes are connected by a 100 µm x 100 µm channel. The cell is shown on figure

3.9, and its fabrication was performed by R. Straessle. A thorough description of the cell and its

fabrication can be found in her thesis [1].

The characterization of this cell follows the same approaches previously described in Chapter 4:

linear absorption spectroscopy to prove the presence of a rubidium vapour, sub-Doppler saturated

absorption spectroscopy to quantify the level of a potential buffer gas contamination, and finally,

DR spectroscopy to evaluate the anti-relaxation properties of the OTS coating. The cell was

mounted in a 14 mm cavity resonator using two glass cylinders to tune the microwave cavity (see

figure 2.9b). The operation temperature was 70◦C, and a D2 line laser head (see section 2.4) was

employed for optical absorption spectroscopy and optical pumping. To allow the interrogation

of a single chamber at a time, the laser beam was collimated and had a diameter of 0.56 mm.

Its intensity was reduced by the mean of neutral density filters.

Linear absorption spectroscopy was performed on both, reservoir and interrogation chambers of

the cell. The laser power was reduced down to 2.3 µW (∼10 µW/mm2) to avoid optical pumping

effects. Initially, the coated chamber showed no absorption signal, while the reservoir did (see

Figure 5.13a). The absence of a Rb vapour in the interrogation chamber is most likely attributed

to the coating obstructing the channel or the ripening process. Therefore, the cell was kept

over one night at 60◦C; not too hot, in order to maintain the cell alive as long as possible, but

warm enough to favour the diffusion of the rubidium vapour through the channel. The following

day, the cell was heated up again at 70◦C, and identical measurements were performed. Figure

5.13b confirms the presence of a rubidium vapour, this time in both chambers: The channel
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Figure 5.13: Linear absorption spectra of (bottom traces) the microfabricated wall coated cell
along with (upper trace) the reference spectrum. (A) The first day; (B) after one night heating

at 60◦C.

obstruction was not tight, and after one night heating, a sufficient vapour pressure built up

in the interrogation chamber. Nonetheless, a 50% reduced vapour pressure is observed in the

interrogation chamber. This is most likely due to the fact that the measurement was performed

during the equilibration process, or by a slow consumption of the rubidium atoms through the

formation of Rb-clusters [201] or passivation of the coating [202]. An excellent fit is obtained for

both chambers’ spectra using Voigt profiles for every optical transition. This fit gives an upper

limit for a potential gas contamination of 10±5 mbar of N2.

The sub-Doppler saturated absorption spectrum obtained from the coated chamber is shown

on Figure 5.14. Sub-Doppler dips are clearly visible, and prove a collision less regime, thus

confirm the low buffer gas contamination of the cell. A Lorentzian fit of the dip corresponding

to the cyclic transition |Fg = 2〉 → |Fe = 3〉 gives a total linewidth of 110 MHz; with respect

to the reference spectrum, this correspond to an additional broadening of 80 MHz. Since He

and N2, the most probable contaminants through the permeation process (see section 4.2.4.3),

respectively the leak process (see section 4.2.2), have broadening coefficients of 15 MHz/mbar,

the gas contamination of the cell is estimated to be of the order of 6 mbar (see Table 1.3). From

the dimensions of the cell and equation 1.89, such pressure may reduce the DR linewidth from

95 kHz down to ∼20.1 kHz only.

A DR signal was successfully obtained out of the interrogation chamber solely, but could not

be retrieved from the reservoir chamber. Since its contrast was very small (less than 0.5%), the

DR AC mode was employed (see section 2.3.1.2). The microwave was frequency modulated at
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Figure 5.14: Saturated absorption spectra of (bottom trace) the microfabricated wall coated
cell along with (upper trace) the reference spectrum.

687 Hz with a frequency deviation of 1500 Hz. Since the in-phase signal can be assimilated to

the derivative of the DR signal for small deviation with respect to the linewidth, a "derivative

lorentzian" fit of the AC signal, scaled in amplitude with respect to the frequency deviation used

(see Figure 5.15), provides the characteristic parameters of the DR signal. These parameters are

reported on Figures 5.16 and 5.17 for various RF power and light intensities. An extrapolation

to zero light intensity provides an intrinsic linewidth of 8.9 ± 0.1 kHz. This linewidth cannot

be explained by the potential gas contamination of 6 mbar which would reduce the theoretical

93.9 kHz line broadening issued from a bare and evacuated cell down to 20.1 kHz only. This

is a strong indication for non-depolarizing wall collisions due to the coating. Moreover, if the

linewidth reduction was a consequence of the BG contamination, a DR signal would have been

measurable in the reservoir chamber as well.

The 8.9 kHz linewidth of the DR signal obtained corresponds to an average polarization life time

of 35.8 µs equivalent to ∼11 wall collisions. Assuming a perfect coating with uncoated area,

this would correspond to a 90.5% coverage of the surface (see equation 1.95). This is consistent

with the results from ellipsometric and contact angle measurements showing a covering factor of

∼90% [1]. The reservoir effect, or hole effect is calculated to be 55 Hz (equation 1.96), which

represents a negligible contribution to the experimental value of the linewidth.

Another strong argument points towards a reduction of the linewidth due exclusively to the wall

coating, and excludes the nitrogen contamination contribution: the negative sign of the clock
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Figure 5.15: Derivative DR signal (see section 2.3.1.2) obtained from the microfabricated wall
coated cell.

signal frequency shift: ∆ν = −884±10 Hz. Indeed, the supposed 6 mbar nitrogen contamination

would induce a positive shift of 2.4 kHz to the clock transition. Only gases like Argon or

Krypton, of which, contamination is highly improbable due to their rarity, induce negative shifts.

Moreover, a negative shift is a typical signature of most of the coated cells studied [37]. The

-884 Hz shift of the clock transition frequency corresponds to a collisional phase shift of Φcoat =

−18.8± 0.2 mrad/coll (see equations 1.86 and 1.115) which is of the same order but significantly

smaller than the value of Φ = −69 mrad/coll found in the literature [75]. Such difference is not

yet understood and would require further investigation.

Table 1.16 summarizes the parameters of this cell and its theoretical broadening predictions. A

comparison with the measured 14 mm tetracontane coated cells’ properties (see section 5.3.2)

and a hypothetical OTS-coated 3D cell (see section 3.3.1) is also given.

A clock operation was not carried out. Nevertheless, from the achievable shot noise limit

σshot(τ) < 3 × 10−10τ−1/2 shown on Figures 5.16 and 5.17, a stability σy(τ) < 1 × 10−9τ−1/2

could be envisaged. Currently, the main limit is imposed by the relative large linewidth but

also by the tiny (few 10−5) figure of merit resulting from the small optical thickness (small cell

thickness and low vapour density imposed by the temperature limit of the In-seal).
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Figure 5.16: Microfabricated coated cell clock signal parameters as a function of light intensity.
The microwave power is fixed at 0 dBm. Contrast, Discriminator slope, FoM and Shot Noise

limit are calculated from the measured Amplitude, Background level and Linewidth.
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Figure 5.17: Microfabricated coated cell clock signal parameters as a function of RF power.
The light intensity is fixed at 15.5 µW/mm2. Contrast, Discriminator slope, FoM and Shot
Noise limit are calculated from the measured Amplitude, Background level and Linewidth.
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5.5 Conclusions

Coated 14-mm scale cells as well as a microfabricated coated cell were succesfully produced and

tested in our laboratories. Parylene coating is found to be inadequate for any type of cell: it

consumes all the rubidium present in the cell and from our studies, does not show any anti

relaxation properties at all. However, the update of our cell filling facilities at LTF and our

production method for tetracontane coated 14-mm scale was demonstrated to be successful by

the comparable intrinsic properties of the cells compared to what is found in the litterature.

Linewidths below 100 Hz could be retrieved, mostly dominated by the hole effect. In terms of

clock applications, this corresponds to a shot-noise limit below 1× 10−13τ−1/2 under optimized

conditions.

The in-situ production of the tetracontane coated cells allowed the observation of the dynamics

of the ripening process through DR spectroscopy; it is observed that the ripening affects the

evolution of all the parameters of the DR clock signal over time in a similar exponential way:

the amplitude and the background level increase, while the frequency shift and the linewidth are

reduced. The evolutions of the linewidth, amplitude and background level are attributed to a

clear reduction of both the population and the coherence relaxation rates, and the evolution of

the shift shows a modification of the physical interactions between the coating and the rubidium

atoms during their adsorption period.

A dependency of the DR α-LS coefficient to the vapour density was observed in tetracontane

coated cells optically pumped by a fixed frequency laser. Within the operable temperatures of

the coating a inversion is observed, allowing a complete cancellation of this coefficient. Such

effect offers an very simple and interesting alternative solution to the laser frequency shifting [7]

or modulation [99] for light shift cancellation, based on the rubidium reservoir temperature only.

A similar effect was previously reported by Miletic but in a cesium buffer-gas cell based CPT

clock [203]. However in her case, the laser was frequency referenced on the Doppler absorption

line of the clock cell, providing a temperature sensitive and significantly less stringent reference

for the laser frequency.

Finally, we demonstrated for the first time that a micro-fabricated OTS coated cell shows efficient

anti-relaxation properties. The buffer gas contamination was estimated below 6 mbar, allowing

a potential reduction of the DR clock signal linewidth from 95 kHz down to 20.1 kHz only. The
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measured DR signal linewidth in the coated chamber was below 9 kHz, and cannot be explained

by the buffer gas contamination. Indeed, a pressure of at least 25 mbar would be required

to reach such a low linewidth. Moreover, the negative frequency shift of the clock transition

(known typical behavior for coatings [37]), and the impossibility to retrieve a DR signal in the

reservoir chamber, are strong arguments in favour of efficient anti-relaxation properties of the

cell. The 9 kHz broadening can be explained by a 90% coverage of the wall by the coating,

as partial coverage is a known issue from OTS coatings [75]. These results provide the proof

of concept for efficient anti-relaxing wall-coated micro fabricated cells, and opens the way to

further studies. Improving the coverage factor, and analysing the frequency stability of the cells

remain to be explored. However, this technology could already be used in combination with the

BG technique to significantly improve the relaxation rates of a low BG pressure [86] or to lower

the high pressures currently required in mm-scale cells, while improving at the same time, the

performances of the cell [204].
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Chapter 6

Miniature double-resonance atomic

clock

In this chapter, we report on the metrological investigations of the miniature atomic resonator

developed in the frame of the MACQS project (see page xxix). At first, a brief introduction

on the state-of-the-art of miniature atomic clocks and their application fields is given. It is

followed by a detailed description of the laboratory experimental setup and the micro-fabricated

atomic resonator (cell and microwave resonator). We then present our investigations on the

clock performances: the optimization of the DR clock signal and its short-term stability limits,

and the characterization of the medium- to long-term limiting factors, or shift coefficients. A

comparison between the theoretical LS model developed in section 1.7.2.5 and the experimental

data is given. Finally, the clock frequency measured over six months is presented and a stability

analysis from 1 s to 105 s is performed and compared to existing commercial clocks. Indications

for future optimization are given and an alternative interrogation method is finally proposed.

6.1 Introduction

Currently, most of the commercial miniature atomic clocks are still exploiting the DR principle

and use a discharge lamp to optically pump the rubidium atoms. These clocks have a large

variety of applications: from the synchronisation of various telecommunication networks such as
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TV and radio (DVB, DAB), cellular phone base stations and internet, to the time tagging in

financial markets, smart grids, or as a scientific equipment for precise time measurement. These

applications have a constantly increasing need for smaller and cheaper clocks.

Several experiments have shown that the use of lasers instead of lamps can significantly improve

the performances, in terms of stability, size and power consumption, of an atomic clock. Replacing

the lamp by a laser for optical pumping in DR based clocks allows one orders of magnitude

improvement of short-term frequency stability [205], and stabilities of 1.4×10−13τ−1/2 have been

recently reported for a compact laser pumped DR atomic clock [7]. Nevertheless, for commercial

applications, issues related to the lasers, such as reliability, ageing and cost are still problematic.

In terms of miniaturization, most of the researches focused on the CPT scheme [206] for it allows

a significant size reduction as the microwave cavity, considered as a size limiting factor, is not

required [25], [30], [31]. The CPT scheme allowed an extreme miniaturization of the PP and

led to the smallest commercially available atomic clock, the Symmetricom’s chip scale atomic

clock (CSAC) SA.45s1 [25]. However, the DR was also studied for sub-miniature atomic clocks

[39], [207], as it presents additional advantages compared to CPT: in identical conditions, the

short-term stability of the DR based clock is five times better than that of CPT [36]; lower

microwave power requirements (-30 dBm has been reported for a double-resonance clock using a

resonant microwave cavity [81] against -3 dBm [5] and -14 dBm [208] for a CPT clock); a lower

background level and relaxed requirements on the light source.

These findings therefore motivated the studies and evaluations of this chapter towards a sub-

miniaturized DR based vapour cell clock. In the context of this thesis, the miniaturization of the

cell was developed in collaboration with the SAMLAB2, EPFL [164]. The choice of a buffer gas

filling and anodic bonding was driven by the maturity and reliability of the fabrication process.

Alternative techniques such as towards wall-coated microfabricated cells were also investigated,

see section 5.4. Modelling and fabricating a dedicated microwave cavity of dimensions well below

the wavelength of the rubidium atomic transition (∼4.3 cm) was developed in collaboration

with the LEMA3, EPFL, and resulted in the realization of a miniaturized loop-gap microwave

resonator, the µ-LGR [209]. For the light source, both the laser [154] and the microfabricated

discharge lamp [210] were envisaged.
1see www.symmetricom.com/products/frequency-references/chip-scale-atomic-clock-csac/SA.45s-CSAC/
2Sensors, Actuators and Microsystems Laboratory
3Laboratory of Electromagnetics and Acoustics
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6.2 Experimental setup

The experimental setup realizes the functionalities of a classical DR scheme (see Figure 2.3) and

is depicted in Figure 6.1. The pumping light is produced by the LTF in-house made laser heads

(LH) described in section 2.4. The two versions were employed for the lines of interest: the

795 nm LH for the light-shift (see section 1.7.2.5) measurement on the rubidium D1 line, and

the 780 nm AOM-LH for the light-shift measurement on the D2 line as well as for the realization

of the clock exploiting its additional laser frequency detuning. At the output of the laser head,

a part of the linearly polarized beam is sent to a wavelength meter (HighFinesse WSU/30), the

remainder, is used as the optical pump for the DR. Its intensity is varied using ND filters, and

the Gaussian spatial distribution of the beam intensity is flattened through a beam diffuser.

Inside the PP, the beam propagation vector is parallel to the static magnetic field (C-Field), or

the quantization axis. The light is therefore sigma-polarized (see Figure 1.6), and doesn’t allow

optical π-transitions. Such a configuration imposes in equation (1.127): ε±1 = 0.5 and ε0 = 0.

The 6.834 GHz microwave radiation is produced from the 2.278 GHz output of a commercial

synthesizer (Rohde&Schwartz SMA100A), via a frequency tripler.

Figure 6.1: Experimental setup of the miniature DR atomic clock. LH, Laser Head; ND,
Neutral Density Filters; PP, Physics Package; PD, Photo Detector; WLM, Wavelength Meter.
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Figure 6.2: µ-LGR based physics package. (1) 3D cell; (2) µ-LGR (photo: courtesy of LEMA-
EPFL); (3) Brass enclosure (design optimized for flexibility); (4) Heating cavity, NTC’s and
resistive heater are not visible; (5) C-field coil, 35 turns and 7 mm length; (6) Thermal isolation;
(7) µ-metal magnetic shield; (8) Additional NTC’s, independent from temperature servo loop,
for temperature monitoring; (9) Thermal isolation: extruded polystyrene with low thermal

conductivity, λ = 0.035 Wm−1K−1; (10) Fully assembled PP for table top spectroscopy.
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6.2.1 Atomic resonator or 3D cell-µLGR assembly

The heart of the PP is the atomic resonator. It consists of a microfabricated cell, and a new type

of miniaturized microfabricated microwave resonator. The various components, assembly steps

and CAD diagram of the PP are shown in Figure 6.2.

The cell is a microfabricated rubidium vapour cell with a thick glass core [164], also called the

3D cell. Its fabrication and geometry are described in section 3.3.1. The cell is filled with an

enriched 87Rb vapour and nominally 60 mbar of a 58%/42% Ar/N2 buffer gas mixture.

The microwave resonator is a micro loop-gap resonator or µ-LGR [211]. It was developed and

realized at LEMA, EPFL by M. Violetti in collaboration with the LTF, and is the subject of a

patent application [209]. A detailed description can be found in her thesis [2]. It consists of a

multi-layer stack of four planar loop-gap electrodes. The electrodes are printed on cylindrical

dielectric layers, and electrically connected by means of metallic vias. The dielectric layers

have central openings adjusted to fit and hold the 3D cell within the loop-gap electrodes. The

stacked structure is inductively coupled by a printed loop that is coaxially fed, and the whole

is placed inside a brass enclosure of inner cavity volume Vint < 1 cm3. Since a versatile and

fully demountable atomic resonator was desired for the experiment, the brass enclosure was not

miniaturized. The µ-LGR has a loaded Quality Factor QL = 30 with a good coupling efficiency.

Its resonance frequency is tunable over a 140 MHz wide range around 6.834 GHz to compensate

for the fabrication irregularities. The advantages of such a cavity are:

- an excellent field geometry favouring the magnetic π-transitions, therefore the clock tran-

sition (see section 6.2.1.1).

- a low RF power need, only -20 dBm, or even less, are required.

- an easy and low cost fabrication with an excellent reproducibility, thanks to the micro-

fabrication process.
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6.2.1.1 Field orientation factor

The quality of the resonator’s field mode, in terms of efficiency for clock application, can be

quantified by the field orientation factor (FOF) ξ defined by [212]:

ξth =

∫
Vcell

B2
||dV∫

Vcell
|B|2dV

(6.1)

It gives, over the active cell volume Vcell, the fraction of microwave magnetic field power that is

oriented parallel to the C-field direction and thus is useful for interrogation of the clock transition.

Recalling section 1.4.3:

(1) At low RF power, the amplitude of the DR signal is proportional to the square of the Rabi

frequency (equation 1.74), that is proportional to the square of the RF field amplitude.

(2) The magnetic dipole selection rules relate exclusively the π-transitions to the RF-field

component parallel to the C-field (B||), respectively the σ-transitions to the orthogonal

(B⊥) component. Moreover, equation 1.24 shows that neither the σ nor the π-transitions

are intrinsically favoured, thus only the orientation of the RF magnetic field compared to

the C-field weights these transitions.

The integral over all DR strengths related to the π(σ)-transitions, Sπ(σ), over the full spectrum

range, is proportional to the square of the parallel(orthogonal) RF field amplitude integrated

over the whole cell volume. Therefore,

ξexp =

∫
dνSπ∫

dνSπ +
∫
dνSσ

=

∫
dV |B‖|2∫

dV |B‖|2 +
∫
dV |B⊥|2

, (6.2)

defines the experimental FOF.

From Figure 6.3, we find an experimental value of ξexp = 0.7 for the FOF of the µ-LGR, which is

close to the FOF of ξsim = 0.8 found from the numerical simulations [2]. The difference between

the simulated value and the experimental one is attributed to inhomogeneities in the C-field

induced by the finite length of the C-field coil, as for the simulated value the C-field was assumed

to be exclusively z-oriented.
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Figure 6.3: Experimental and theoretical determination of the field orientation factor. Left:
DR spectrum of the clock and all the Zeeman transitions measured using the µ-LGR. Right:
simulation of the microwave magnetic field lines; the cell volume is represented by the dotted

lines [211]. Simulation courtesy: M. Violetti.

Table 6.1: Summary of the most relevant parameters of the µ-LGR cavity based physics
package.

Parameter Symbol & units Value

Magn. Shield. factor SL ∼110

C-field coil turns Nsp 35

LGR cavity

quality factor QL ∼ 30

Resonance frequency temp. coeff. TCcavity [MHz/K] 0.4

FOFexp(FOFsim) ξexp(ξsim) 0.7(0.8)

Typ. cell volume Vcell[cm3] 0.15

Internal cavity volume Vint [cm3] 0.95

External cavity volume Vext [cm3] 2.9

6.3 Clock stability optimization

Optimizing the operating conditions involves several parameters such as cell temperature, light

intensity, microwave power, or light spectral properties (spectrum, intensity, frequency). Each

parameter has a significant influence on both the short term and the long term stability regimes.

In addition, the optimal parameters are interdependent. For example, the optimal light intensity

depends, among others, on the applied RF power and the cell temperature. Therefore, each
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parameter must be optimized, and compromises made so that both regimes are "optimal" simul-

taneously. The following stability analysis is split into two regimes, the short-term (1 s < τ <

100 s) and the medium- to long-term (100 s < τ < 105 s), as the instabilities have different

origins: while in the short term regime, the stability is limited by the detection noise and the

lineshape of the clock signal (see equation 1.101), the slow fluctuations of the environmental

parameters affect the medium to long term regime (see equation 1.105).

6.3.1 Limits of short term frequency stability

The lineshape of the clock signal was optimized as a function of the light intensity and RF power.

The cell temperature and the laser frequency were chosen to optimize the medium- to long-term

optimizations at 67◦C (see section 6.3.2.3) and 384.227 771 THz (see section 6.3.2.1), respectively.

The pump beam is frequency stabilized at -130 MHz optical frequency offset from the CO21-23

transition in the D2 line using the AOM laser head (see section 2.4.2). Given its size, the use

of the AOM laser head is obviously not compatible with a miniature atomic clock. However,

it is motivated here by the desire to determine the ultimate performances of the ensemble 3D

cell-µ-LGR. A potential interrogation scheme to circumvent its use is shown in Figure 6.25.

Figures 6.4 and 6.5 show the measured amplitudes, linewidths and background levels of the DR

clock signal along with the calculated contrasts, discriminator slopes, figure of merit (see section

1.6) and shot-noise stability limits (see equation 1.103) as a function of the light intensity and

microwave power.
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By extrapolating the clock signal linewidth to zero light intensity at low microwave power, we

obtain an intrinsic linewith of FWHM exp
intr = 650 ± 30 Hz. This value is in excellent agreement

with the theoretical prediction of FWHM th
intr = 635 ± 1 Hz, obtained using equation 1.89 and

the experimental BG pressure and mixture determined in section 6.3.2.3. Contrasts above 10%

and discriminator slopes up to 35 pA/Hz could be achieved. However, these parameters do not

necessarily guarantee the best clock short term performances, and we used the shot-noise limit

as optimisation criterion. Based on this parameter, a laser intensity of 1.2 µW/mm2 along with

a microwave power of -20 dBm were chosen. The laser intensity is chosen lower than the optimal

value in terms of shot-noise stability limit to minimize the light shift effect. Indeed, the losses in

terms of short term performances are negligible compared to the almost two-fold reduction factor

for the frequency light shift coefficient (see section 6.3.2.1). Figure 6.6 shows the chosen DR signal

for the clock realization. It has an amplitude of 50 nA, a linewidth of FWHMclock = 2110± 25

Hz, and a shot-noise stability limit of σyshot(τ) = 1.8 × 10−12τ−1/2. The overall detection noise

in closed-loop clock operation was measured at a level of Nclock = 1.85 pA/
√
Hz , inducing a

signal-to-noise limit of σyS/N (τ) = 1.0× 10−11τ−1/2.
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Figure 6.6: Optimized double resonance signal.

Considering only the short-term for optimization, higher temperatures up to 80 ◦C were used,

and slightly better performances (Shot-Noise limit < 10−12τ−1/2) were achieved, see appendix C.

Though an improvement by a factor of 1.4 for the short-term clock frequency stability (∼ 7×10−12

at 1 s) was achieved, the measured medium- to long-term stability was limited at a level of

σy(104) ∼ 1×10−11 due to the increased temperature sensitivity. Figure 6.7 shows a comparison

of the obtained clock frequency stabilities obtained in both configurations.
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Figure 6.7: Comparison of clock frequency stabilities achieved at 80◦C and 66.8◦C.

6.3.2 Shifts characterizations and medium- to long- term limits

We present in this section quantitative measurements of several sources of instabilities, their

corresponding shift coefficients, and their direct consequences on the clock frequency stability,

σyi(τ). These coefficients and their respective induced limits are summarized at the end of the

section in Table 6.2.

6.3.2.1 Light shift

This effect was treated theoretically in the Chapter 1, section 1.7.2.5. Experimentally, the DR

spectra were acquired and fitted at given optical frequencies and for different laser intensities.

The central frequencies were plotted as a function of the laser intensity, and the experimental

α-LS coefficient is given by the slope of the linear fit (see Figure 6.8).

Figures 6.9 and 6.10 show the theoretical and experimental intensity light shift coefficients (α-

LS(νL) = ∂∆νclock
∂I (νL)) as a function of the laser frequency over the whole D1, respectively D2,

line. For the D1 line, the laser zero detuning frequency corresponds to the direct transition

|Fg = 2〉 → |Fe = 1〉 (respectively |Fg = 2〉 → |Fe = 3〉 for the D2 line), called Di21 (Di23), of

the unperturbed 87Rb atom. The laser locked to these transitions was used as a reference for

the calibration of the wavelength meter. This calibration was validated over the whole D line

frequencies, by locking the laser to the other patterns of the sub-Doppler spectrum (crossover

154



6.3 Clock stability optimization

5400

5200

5000

4800C
lo

c
k
 f
re

q
u
e
n
c
y
 s

h
if
t 
fr

o
m

6
.8

3
4
 6

8
2
 6

1
1
 G

H
z
 [
H

z
]

3.53.02.52.01.51.00.50.0

Light Intensity [uW/mm2]

Laser frequency detuning from 384.228 115 THz [MHz]
 0 (Di23)
 -133 (CO23)
 -211 (CO13)
 -315
 -365
 -515

112

73

46.5

5.6

-56.8

-12

Figure 6.8: Subset of experimental light shifts as a function of the incident laser intensity, in
the D2 line. The numbers on the right hand side are the α-LS coefficients in [Hz mm2/µW] of

the respective traces.

dips) of the reference cell. The measured optical frequencies match within 1 MHz the theoretical

values. For the laser in free running mode, its frequency fluctuations during the measurement

time imposes abscissa error bars of the order of ±5 MHz. Both modes (free running and locked

laser) were tested at the lockable frequencies in order to validate the α-LS coefficients obtained

with the laser in free running mode. Similar coefficients are obtained with only 4% difference.

An excellent agreement is observed between experimental data and the model (equation 1.131),

in both D1 and D2 lines. The model is not a fit, as no parameter is free, and all values are

calculated based on parameters measured independently for the clock operation. Note that the

αLS coefficients measured in the D2 line (Figure 6.10) are well described by both Mathur’s [101]

and our models, and that both theoretical curves are extremely similar. The reason of this

similarity comes from the fact that the hyperfine splitting of the 52P3/2 state is much smaller

than the broadening mechanisms present in the cell. This similarity also explains the excellent

agreement observed by Arditi [103] between Mathur’s theoretical model and his experimental

data, since the hyperfine splitting of the Caesium 62P3/2 state is also unresolved.

The D1 line case (see Figure 6.9) is much more interesting, since experimental data are well

matched with our model but cannot be explained by Mathur’s one [101]. The main reason

for the failure of his model comes from the fact that it considers the hyperfine states only.

From our model, Mathur’s one is equivalent to average all the transition probabilities of the
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Figure 6.9: Light shift in the D1 line: upper part, sub-Doppler absorption spectrum of the
reference cell (green) and absorption spectrum of the clock cell (blue); lower part: experimental
(markers) and theoretical (lines) αLS coefficients as a function of the laser frequency. The solid
line corresponds to our model. The dashed line is calculated using the coefficients (see equation

1.125) of Mathur’s model [101].

Zeeman substates considering an isotropic light (see equation 1.128), which is not the case in our

experiment. Nonetheless, as seen for the D2 case, this approximation appears valid for optical

transitions of which the hyperfine structure of the excited state is truly unresolved due to Doppler

broadening or BG broadening.

Intensity light shift coefficient and clock operation:

For the clock operation, we focus now on the optical frequencies inducing transitions from

|Fg = 2〉 state in the D2 line; the laser frequency offset is relative to the Di23 transition frequency.

From the data of Figures 6.8 and 6.10, the α-LS coefficient changes sign between -315 and -

365 MHz laser frequency offset, it must therefore be null in between. The use of the AOM laser

head (see section 2.4.2) allowed to produce a pumping laser beam detuned from the reference

frequencies provided by the sub-Doppler patterns and with a good frequency stability. Locking

the AOM frequency shifted laser beam to the CO21-23 of the reference cell (-211.7 MHz offset)
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Figure 6.10: Light shift in the D2 line: upper part, sub-Doppler absorption spectrum of the
reference cell (green) and absorption spectrum of the clock cell (blue); lower part: experimental
(markers) and theoretical (solid line) αLS coefficients as a function of the laser frequency. The
solid line corresponds to our model. The dashed line, calculated using the coefficients (see

equation 1.125) of Mathur’s model [101], cannot be distinguished from the solid line.

enabled a frequency range from -346.7 to -296.7 MHz; the AOM allows ±110±25 MHz frequency

shifts.

The light shifts obtained at an optical frequency offset of -341.7 MHz are shown on Figure 6.11

for different cell temperatures. They are measured in clock mode (see section 2.3.1.3). Thanks

to the small light induced shift, two interesting phenomena can be observed. Non linearities,

hidden by the strong α-LS coefficient at other laser frequency offsets, appear, and the α-LS

coefficient has a dependency on the cell temperature. The non linearities are most likely due to

light intensity gradients in the cell [213]. Concerning the temperature dependency and especially

the sign inversion of the α-LS coefficient, this effect is highly similar to the effect observed in the

tetracontane wall coated cell (see section 5.3.3), and the question of its physical origin remains

open. A similar behaviour with an optical pumping from |Fg = 1〉 state would help to answer

this question.

Based on the data of Figure 6.11 and the intensity light shift coefficient inversion observed, the
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Figure 6.11: Clock frequency shift as a function of the laser intensity for different cell tem-
peratures.

α-LS coefficient can be arbitrarily small. A value of αLS < 1±3 mHz/% at 1µW/mm2 and at a

temperature of 67◦C is obtained (see inset of Figure 6.11).

The Allan deviation of the incident (to the clock cell) light intensity fluctuations recorded over

a period of 20 days is shown on Figure 6.12. On the same figure is also shown the potential

effect on the clock instability using equation 1.105 and the measured α-LS coefficient. The clock

instabilities induced by light intensity fluctuations stay below 3× 10−14 up to one day.
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Frequency light shift:

Since the total light shift is proportional to the light intensity, the frequency light shift coeffi-

cient, or β-LS coefficient, can also be expressed as follow:

βLS =
∂∆ν

∂νopt
= I

∂

∂νopt

(
∂∆ν

∂I

)
(6.3)

= I
∂

∂νopt
(α-LS), (6.4)

where ν is the microwave clock frequency, and νopt the laser frequency. The measurement pre-

sented on Figure 6.10 contains therefore all the information on the light-shift effect, and a linear

fit of the data points (see Figure 6.13) gives the β-LS coefficient with respect to the light intensity.

At an intensity of 1µW/mm2 this coefficient is βLS = 0.35± 0.01 Hz/MHz.

The Allan deviation of the light frequency of the AOM laser head is shown on Figure 6.14. It

results from the frequency stability of a beat note between the AOM laser head and another

standard laser head. Each laser frequency was locked on a different atomic transition, distant of

several MHz, and the beat note was detected by a fast photo-detector. The operating conditions

were chosen to optimize the AOM laser frequency stability and a limit at a level of 2 × 10−11

at 104 s could be reached. The measurement details are explained in [11]. In our experimental

configuration, the operating conditions were not chosen to optimize the laser frequency stability

but to reduce the α-LS coefficient. This can potentially degrade the achievable AOM laser

frequency stability. Indeed, the laser frequency was stabilized to the less stable crossover, the
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Figure 6.14: AOM Laser frequency fluctuation in terms of Allan deviation from [11]. The
right axis shows the corresponding limitation due to the frequency light shift coefficient on the

clock instability.

CO21-23, and the offset at which the α-LS coefficient is cancelled required to drive the AOM at

130 MHz, close to the upper edge of its bandwidth. Assuming a degradation of the laser frequency

stability due to these modifications by a factor of 3 only, the laser frequency instabilities limit

the clock stability at a level of 1.2 × 10−12.
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6.3.2.2 Microwave power shift

As seen in Chapter 1, no detailed theory has been developed to predict the power dependency

of the clock transition frequency along with the power of the microwave field. Nevertheless, this

shift can be quantified experimentally. For a fixed laser intensity of 1 µW, and laser frequency

offset of -341.7 MHz nullifying the α-LS coefficient (see section 6.3.2.1), the clock frequency is

measured as a function of the microwave power (see Figure 6.15). A linear fit in the vicinity of the

optimal RF power gives a microwave power shift (PS) coefficient of -0.17(3) Hz/dBm (equivalent

to (2.5 ± 0.4) × 10−11 /dBm or -75 mHz/µW). Combining this coefficient with the fluctuations

reported on Figure 6.16 (the RF power was measured using a calibrated Low-Barrier Schottky

Diode Detector) a maximal instability contribution is estimated between 104 and 105 seconds at

a level of 1.3× 10−12.
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Figure 6.16: Microwave power fluctuation in terms of Allan deviation. The right axis shows
the potential limitation due to the microwave power shift coefficient on the clock instability.
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6.3.2.3 Temperature shift

The temperature shift coefficients for a buffer-gas cell were treated in section 1.7.2.2. The

measurement of the clock frequency shift as a function of the cell temperature is shown in

6.17. The inversion temperature is Tinv = 66.8◦C, corresponding to a buffer gas mixture of

59.8 ± 0.2%/40.2 ± 0.2% of Ar/N2 (see equation 1.113). From this mixture and the total shift,

the internal pressure is calculated to be 38.2±0.1 mbar, using equation 1.107 and the coefficients

of Table 1.9. Similarly to the observation made in Chapter 4, the effective buffer gas pressure

is smaller (∼ 40%) than the nominal value. At the chosen operating temperature of 67◦C, the

linear and quadratic temperature coefficients were measured to be TC(1)
BG = 52± 22 mHz/K and

TC
(2)
BG = 48± 1 mHz/K2, respectively.

The PP temperature was measured using two NTCs independent from the temperature servo

loop (see Figure 6.2); thermal fluctuations well below the mK are observed. The figure 6.18

shows the corresponding Allan deviation, and the theoretically induced instabilities to the clock

frequency using equation 1.105 and the linear temperature shift coefficient, TC(1)
BG. The induced

clock instabilities are limited well below 1× 10−14 up to one day, and below 1× 10−18 up to one

day using the quadratic temperature coefficient TC(2)
BG.
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Figure 6.18: Physics package temperature fluctuation in terms of Allan deviation. The right
axis shows the potential limitation due to the linear temperature shift coefficient, TC(1)

BG, on the
clock instability.

The other temperature dependant shifts, such as spin-exchange and cavity pulling, are experi-

mentally indistinguishable and are therefore already included in the measurement of Figure 6.17.

We estimate here below their individual and hidden contributions.

Spin exchange shift:

We use the derivative of equation 1.106 at the operating temperature of 67◦C as the spin

exchange shift coefficient. A value of TCSE = −0.17 Hz/K is calculated. As a stand alone process,

and combined with the measured temperature fluctuations of the PP shown in Figure 6.18, the

consequences on the clock stability would be of the order of 5×10−15. But as mentioned earlier, it

cannot be experimentally dissociated from the other thermal shifts, and is therefore compensated

by other thermal shifts and already included in the data presented in Figures 6.17 and 6.18.

This effect might question the buffer gases pressures and percentages calculated in section 4.3.

But the absolute spin exchange shift (SE) is relatively small (∼ 2 Hz at 340 K) and almost

linear within the temperature range considered. It shifts the inversion temperature of the cell

by less than three Kelvin, equivalent to 0.6% error in the buffer gases percentages determina-

tion: 59.1(6)% Ar including SE shift and 59.8(6)% otherwise. Concerning the pressure determi-

nation, the effect is also small, and we calculate 37.4(6) mbar including SE shift and 38.2(6) mbar

otherwise. Therefore, the analysis of section 4.2.4 remains still valid.
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Cavity pulling:

We recall the cavity pulling temperature coefficient from section 1.7.2.6:

TCpulling =
d∆νCP
dT

≈ 3× 10−3QL
Qa

d∆νcavity
dT

(6.5)

For the micro loop-gap resonator (µ-LGR) considered here, the measured cavity resonance shift

coefficient is d∆νcavity

dT ≈ 0.4 MHz/K [2]. From its relatively low quality factor (QL ≈ 30)

compared to the atomic one (Qa ≈ 1.14 × 106), the cavity pulling temperature coefficient is

TCCP = 32 mHz/K. Similarly to the SE shift, the cavity pulling effect is already included in the

experimental data of Figure 6.17, and doesn’t induce any additional temperature sensitivity to

the clock frequency shift.

6.3.2.4 DC magnetic field shift

In section 1.7.2.4, we identified two independent magnetic instability sources, the longitudinal

magnetic field fluctuation and the C-field current fluctuations. For a non null C-field strength of

C0 = 125 mG, the linear magnetic sensitivity factor of the clock frequency was given by:

MS = 2 · 575 · C0 = 144Hz/G. (6.6)

As the earth magnetic field’s daily fluctuations are of the order of 250 µG [214], they can po-

tentially induce a clock frequency instability of the order of 5.3× 10−12. With the use of proper

magnetic shields, these fluctuations can be significantly reduced. Bandi measured a magnetic

field attenuation factor, or shielding factor, of S = 3000 for two concentric µ-metal cylindrical

shields [7]. This configuration would allow a clock frequency instability of < 2 × 10−15. In our

configuration, only a single cylindrical shield of 35 mm diameter and similar to the one used by

Bandi is employed. Since in our configuration the cylinder has holes to allow the light to interact

with the atoms and be detected, a theoretical prediction based on a closed cylinder would provide

an overestimated value for the shielding factor. Although we did not measure it, we estimate

our shielding factor based on the fact that in the case of two shields, the shielding factors of the
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individual shields, Si, are multiplied together as follow1:

S = 2S1S2
a2 − a1

a2
(6.7)

where

Si ∝
1

ai
, (6.8)

and ai are the diameters of the shields. Since diameters of a2 = 98 mm and a1 = 36 mm were

employed by T. Bandi, we obtain a shielding factor of S ≈ 80. This reduces the clock frequency

instability at a level of 6.6× 10−14.

In our configuration, the 2 mA C-field current induces linear C-field current sensitivity factor for

the clock frequency of CCZeem = 9.1 Hz/mA (see Table 1.11). Since our electronics guarantees

a relative current instability inferior to 10−5 from 1 s up to one day, the induced instability to

the clock frequency remains below 2.6× 10−14 at all time scales.

6.3.2.5 Atmospheric pressure effect

The estimation of the atmospheric pressure effect was discussed in section 1.7.2.8. A relative

pressure shift coefficient of PrCAtm = 1 × 10−14/hPa was deduced. The Allan deviation of the

atmospheric pressure recorded over a period of 20 days2 is shown on Figure 6.19. On the same

figure is also shown the potential effect on the clock instability using equation 1.105 and the

calculated atmospheric pressure shift coefficient, PrCAtm. The induced instability stays below

5× 10−14 up to one day.
1The formulae are taken from http://www.magneticshields.co.uk/fr/faq
2The pressure data were provided by MétéoSuisse
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Figure 6.19: Pressure fluctuation in terms of Allan deviation. The right axis shows the
potential limitation on the clock instability. Pressure data source: MétéoSuisse.

Table 6.2: Summary of the instability contributions in medium to long term time scales. PS,
power shift; LS, light shift; TS, temperature shift; PrS, pressure shift.

Physical effect Coefficient Parameter Variation
at 104-105 s

Absolute
Instability

Relative
Instability

Microwave PS
-0.17 Hz/dBm 5 × 10−2 dBm

-75 mHz/µW 0.12 µW
9 mHz 1.3× 10−12

Frequency LS 0.35 Hz/MHza 23 kHzb 8 mHz 1.2 × 10−12

Intensity LS 0.4 Hz/ µW
mm2 3.2 × 10−4 µW

mm2 0.13 mHz 1.9 × 10−14

Measured. TS
52 mHz/K

<1 mK
<0.05 mHz < 7× 10−15

48 mHz/K2
< 48 nHz < 1× 10−17

Spin Exchange -0.17 Hz/K
<1 mK

<0.17 mHz < 2.5× 10−14

Cavity Pulling 32 mHz/K <0.03 mHz < 5× 10−15

C-Field Current 9.1 Hz/mA < 0.02 µA 0.18 mHz < 2.6× 10−14

Atmosph. PrS 68.3 uHz/hPa 3 hPa 0.2 mHz < 5.0× 10−14

DC Magn. Field 144 Hz/G 3.1 µG 0.5 mHz 6.6× 10−14

Total instabilities at τ = 104 − 105 seconds: ∼ 1.8× 10−12

aat 1 µW/mm2

bestimated as thrice the value from [7]
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6.4 Clock frequency stability

Figure 6.20 shows the relative clock frequency obtained over the course of several months, by

frequency comparison with an active hydrogen Maser. The clock was operated at the optimized

conditions deduced from the previous section: a PP temperature of 67 ◦C, a laser intensity of

0.9 µW/mm2, -20 dBm of microwave power injected into the cavity and the laser frequency offset

of -130 MHz from the CO21-23 using the AOM laser head. The microwave frequency was square

modulated at 187 Hz with a modulation depth of 540 Hz.
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Figure 6.20: 3D cell-µ-LGR clock fractional frequency over a 6 month period. In black: τ = 1 s,
red: τ = 1000 s. The numbers at the arrows give the local linear drift per day.

A clock frequency drift of the order of 1×10−11/Day is observed, inducing a total clock frequency

shift of more than 2.5 × 10−9 over 6 month. A similar behaviour was also observed for a Sym-

metricom’s CSAC prototype after several weeks of operation [25], but hypothesises on physical

origins are not discussed. For our case, the drift is ten times bigger than the potential drift

induced by the ageing of the DFB (see Matthey [215]) through the measure of α-LS coefficient.

It is also 10-100 bigger than the reported frequency equilibriation and/or linear frequency ageing

rate by Camparo [109]. It cannot either be explained by the helium permeation effect that can

induce a maximal total shift of 4.4 × 10−10 only (see section 4.2.4.3). However, the origin of

this drift could be attributed to a Nitrogen leak of 1.32 × 10−13 mbar l/s (see equation 4.9 in

section 4.2.4), but would require further analysis and much longer observation times to validate
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this hypothesis. Note also that the 3D cell has not been subject to an accelerated ageing process

at elevated temperatures, and the initial ageing process could also explain the drift observed.

The overlapping Allan deviation of the October data set (10 days starting from 14th October) is

shown on Figure 6.21 along with the calculated shot-noise and signal to noise limits. The shot-

noise limit of σyShot(τ) = 1.8×10−12τ−1/2 and the signal-to-noise limit of σy(τ) = 1×10−11τ−1/2

are calculated using equation 1.104 and 1.101, respectively and the parameters of the DR clock

signal shown in Figure 6.6. Figure 6.22 shows the same stability along with the estimated

contributions from the most significant shifts studied in section 6.3.2. The parameters were

recorded simultaneously to the clock frequency, except the laser frequency taken from [11], and

every Allan deviation is calculated with the possible drift included. The clock frequency drift

observed at τ > 104 s in Figure 6.21 corresponds to the linear drift measured in Figure 6.20, but

cannot be explained by any measured parameter drift. This hints that the clock frequency drift

is intrinsic to the cell only. Most probably, an internal ageing process is responsible for the drift,

as the helium or neon permeation, and the nitrogen leak, can be excluded:

- In Figure 6.20, the total shift of the clock frequency due to the drifts after 6 months is

∆ν > 17 Hz. Such a shift could be explained by an increase of 0.03 mbar of the helium

internal pressure, but this is incompatible with the atmospheric helium partial pressure of

5.3× 10−3 mbar (see section 4.2.4.3).

- In Figure 6.20, the total shift of the clock frequency due to the drifts after 6 months is

∆ν > 17 Hz. Such a shift could be explained by an increase of 0.063 mbar of the neon

internal pressure1, but this is incompatible with the atmospheric neon partial pressure of

1.8× 10−2 mbar (see section 4.2.4.3). Moreover, the permeation rate of neon through glass

is 50 times less than helium through glass [172], leading to an equilibration time of τNe = 50

years (see section 4.2.4.3). Such time is not compatible with the observed equilibration time

of ∼1 year.

- In Figure 6.20, the drift coefficient is reduced by at least a factor of two after 6 month.

Considering equation (4.9), such reduction could be explained by a significant internal

nitrogen pressure increase of at least half of the initial internal-external pressures difference,

i.e. > 450 mbar, inducing a total shift of 180 kHz. This is clearly incompatible with the

total shift observed.
1The neon pressure shift coefficient is 269.7 Hz/mbar [92]
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6.4 Clock frequency stability

Up to 5 seconds, the clock frequency stability corresponds well to the signal-to-noise limit but

is then degraded by two distinct cyclic frequency fluctuations, around 101 and 103 seconds. The

precise physical effects at the origin of these fluctuations could not be identified yet, though a

thermal effect affecting the laser frequency and not the microwave power is highly suspected.

This statement is based on the following arguments:

- The laser frequency is the only parameter considered as a source of instability that was not

measured simultaneously to the clock frequency.

- Its sensitivity coefficient, βLS = 0.35 Hz/MHz, in combination with the ultimate frequency

stability of the AOM laser head represents already the second most important clock stability

limiting factor at a level of 4× 10−13 (see Figure 6.22).

- No clear correlation is observed between the fluctuations of the measured parameters and

the fluctuations of the clock frequency, as shown in Figure 6.23. Especially the microwave

power fluctuations do not seem to correlate with the clock frequency fluctuations.

- The air conditioning system of our laboratory has a temperature cycle of typically 20-30

minutes period, responsible for the "bump" observed on the clock stability between 102

and 103 seconds in Figure 6.21. Such feature is not observed on any measured parameter

stability, but the cell temperature which has only a negligible influence on the clock stability

(see Table 6.2).
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Figure 6.21: 3D cell-µ-LGR clock frequency stability in terms of Allan deviation.
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Figure 6.23: Clock fractional frequency and simultaneously measured varying parameters
potentially affecting the clock frequency stability. No correlation is found between the clock

frequency fluctuations and the parameters ones.
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6.5 Suppressing the light shift effect

The light-shift effect is one of the main contributors to the clock frequency instabilities. In the

past years, several techniques have been proposed to suppress or reduce significantly this effect

in vapour cell based atomic clock:

• Deng proposed a method in the D1 line exploiting the selective pumping due to the polar-

ization of the light. Two lasers of orthogonal polarizations pump simultaneously the two

hyperfine ground states. The second laser with a π-polarization is used to compensate the

light shift effect of the first laser and also to increase the contrast of the DR signal [104].

To our knowledge no experimental data reports on this method.

• Camparo proposed the use of higher buffer gas pressure (100 Torr) exploiting the reduced

light-shift effect for broadened optical transition (see equation (1.131)). Both sensitivity co-

efficients could be simultaneously reduced. The reported values are: βLS = 6×10−13 /MHz

and αLS = 0.9× 10−11 /% [216]. The operating intensities were not given.

• Another approach, used by Affolderbach et al., consists of a multi-frequency pump light

field produced by the frequency modulation of a single frequency pump laser. Simulations

and experiment demonstrate the existence of a "smooth spot" at which αLS and βLS

coefficients are suppressed by factors of 80 and 45 respectively. The reported coefficients

are βLS = 2.3× 10−12 /MHz and αLS = 6× 10−13 /% at 40 µW of laser power [99].

• Recently McGuyer [217] proposed an innovative laser frequency locking scheme for a DR

clock minimizing the intensity light shift coefficient only. The method uses the out-of-phase

lock-in detection of the DR signal, to lock the laser frequency [218]. No explicit measure of

the shift coefficients is reported, but a fractional frequency stability below 10−11 at 104 s

is obtained based on this method.

• Bandi exploits the predicted zero αLS coefficient (see Figures 1.19) and reduces the βLS
with a reduced laser intensity. The reported coefficients are βLS = 1.2× 10−11 /MHz and

αLS = 1 × 10−12 /% at 35 µW/mm2 of laser intensity [7]. In this study, we followed the

same approach (see Chapter 6) and our measured coefficients are: βLS = 5.1×10−11 /MHz

and αLS = 5.9× 10−13 /% at 1 µW/mm2 of laser intensity.

Table 6.3 summarizes all these coefficients.
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Table 6.3: Comparison of the reduced intensity- and frequency light-shift coefficients reported
in the literature.

αLS [%−1] βLS [MHz−1]

Camparo [216] 0.9× 10−11 6× 10−13

Affolderbach [99] 6× 10−13 2.3× 10−12

Zhu [106] < 1× 10−12 < 1× 10−12

Bandi [7] 1× 10−12 1.2× 10−11

This study 5.9× 10−13 5.1× 10−11

The most promising method was proposed by Zhu, in which he exploits the light polariza-

tion and buffer gas pressure dependency of the light shift effect. He demonstrated that for

a single laser source with a given light polarization and an adapted buffer gas pressure both

sensitivity coefficients are significantly reduced [106], [219]. No numerical value of the shift co-

efficients is reported, and the resolution of the graphics allows only a poor estimation of the

light shift coefficients within one order of magnitude. Nevertheless, these are estimated to be

βLS < ×10−12 /MHz and αLS < 1×10−12 /% at 10 µW of laser power [106]. Following the same

method, our theoretical model also predicts these observations (as shown on Figure 6.24), and

the simultaneous suppression of both α-LS and β-LS coefficients over a wide frequency range

(> 100 MHz) is predicted for a pumping light source having a 44% π- and 56% σ- polarization

and a BG pressure of 30 mbar. This method is particularly interesting since an isoclinic point1

(see [220]) is also located within this frequency range. Experimentally, such a DR interrogation

configuration is achieved with: a D1 laser locked on the isoclinic point, propagating orthogonally

to the C-field, and of which the linear polarization makes an angle of ∼ 48.5◦ with respect to

the C-field (see Figure 6.25). Although the laser stabilization to the isoclinic point may reduce

significantly the laser frequency stability (roughly two orders of magnitude at 104 s [120]), this

is compensated by the arbitrarily small β-LS coefficient that can be theoretically achieved.

This method was already proven to be extremely efficient by Miao Zhu [106], [219], who demon-

strated clock frequency stabilities below 10−13 at 104 seconds. In terms of complexity, cost and

volume it also presents significant advantages: it allows a simple and compact locking scheme

for the laser frequency. Moreover since the laser is frequency locked on the clock cell, the diode
1in other words, a laser stabilization point of which the frequency doesn’t change at the first order with the

temperature and the buffer gas pressure.
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(|Fg = 2〉 → |Fe = 1〉, resp. (|Fg = 2〉 → |Fe = 2〉 transitions); the central one to the optical

frequency of Rb D1 isoclinic point [220].
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Figure 6.25: Clock setup exploiting the zero LS coefficients. D1L, D1 Laser; LA, Lock-in
Amplifier; PI, PI controller; FG, Frequency Generator; λ/2, half-wave plate; MW, microwave.
Other acronyms are given in Figure 6.1. Half-wave plate serves for light polarization control.

can be directly integrated in the PP and the laser head becomes obsolete. Finally, a cheaper

light source with a larger emission spectrum (e.g. VCSEL) can also be envisaged, for the optical

reference line used for laser frequency stabilization is much wider than the sub-Doppler patterns

and doesn’t require the narrow emission spectrum of a DFB to be observed.
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Chapter 6: Miniature double-resonance atomic clock

6.6 Comparison with commercially available clock

Figure 6.26 shows and compares the measured stabilities of various types of commercial clocks

with our miniature 3D-µ-LGR clock. Except for the SA3xm and the 3D-LGR clocks, the data

presented in Figure 6.26 were measured on a dedicated test bench developed during a three-

months stay at the European Space Research and Technology Centre (ESTEC) in 2012 in No-

ordwijk, Netherlands. This test bench allows the simultaneous measurement of three different

clock frequency stabilities along with all their available operating parameters.

As compared to the other miniature commercial clock (LPFRS), the performances achieved with

the 3D cell-µLGR atomic resonator look very promising. Indeed, with a significantly smaller

volume, our atomic resonator, exhibits similar, or even better short-term stabilities than com-

mercially available miniature atomic clocks (see Figure 6.26 and Table 6.4). In spite of the cyclic

fluctuations, the stability starts at, and remains below 10−11 up to 1 day. Drift removed, it

reaches 1× 10−12 at 4000 seconds and remains at this level up to one 105 s. This demonstrates

the potential of our 3D-µ-LGR clock to significantly reduce the size of miniature atomic clocks

without degrading the excellent stability performances already achieved.
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Figure 6.26: Comparison of the stability of the µ-LGR clock with three other commercially
available clocks. All the clock stabilities, but the SA.3xm taken from [221], were experimentally

measured within this thesis work.
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6.6 Comparison with commercially available clock

Table 6.4: Comparison of the µ-LGR atomic resonator with commercially available miniature
atomic clocks in terms of clock frequency stabilities, volume and power consumption. Data
obtained from the respective clock datasheets, except for the Spectratime’s LPFRS and Sym-

metricom’s CSAC which were measured.

Company Model σy(1s) drift
[day−1]

Power
[W]

Dimensions
[mm]

Volume
[cm3]

Lamp pumped DR

SRS PRS10 2× 10−11 2× 10−11 14 102 x 76 x 51 395

Frequency
Electronics

FE-5680A 1.4× 10−11 2× 10−11 11 125 x 86 x 25 270

Spectratime LPFRS 3× 10−11 4× 10−12 10 76 x 77 x 36.5 214

Accubeat AR133A 2× 10−11 2× 10−12 n.a. 77 x 77 x 25.4 151

Symmetricom X72 3× 10−11 5× 10−11 8 75 x 89 x 18 125

CPT

Quartzlock E10-MRX 8× 10−11 5× 10−12 6 51 x 51 x 25 65

Symmetricom CSAC 7× 10−11 2× 10−12 0.120 41 x 35 x 11 16

This study µ-LGR only 1× 10−11 7× 10−12
Heating
only:
(1)

(� 20.3 x
11.3)

(3)
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Chapter 6: Miniature double-resonance atomic clock

6.7 Conclusions

We presented a detailed metrological characterization of a new type of microfabricated atomic

resonator of 0.9 cm3 volume, the µ-LGR. This resonator presents the particularity of having

dimensions smaller than half the rubidium hyperfine transition wavelength while still showing

a TE011 like mode. The resonator’s microwave field has a very high homogeneity (orientation

parallel to the C-field) over the cell volume, which is expressed by the high field orientation

factor measured as 0.7, in good agreement with the simulated value of 0.8. The cell, sealed by

anodic bonding is buffer gas filled with a Nitrogen-Argon mixture. The optimized operating

conditions allow clock signals having a 10% contrast, and a discriminator slope of 15 pA/Hz.

The corresponding shot-noise and signal-to-noise limit are 2 × 10−12τ−1/2 and 1 × 10−11τ−1/2,

respectively. A detailed study of the systematic shifts affecting the clock stability was provided.

A special attention was dedicated to the light-shift study and an excellent match is obtained

between the intensity light shift coefficients predicted by our theoretical model of the Chapter 1

and the experimental data. Frequency light shift and microwave power shifts are demonstrated

to be the main contributors to the long term clock instability at a level of few 10−12 at one day

of integration time. The other instability sources such as temperature shift, spin exchange shift,

cavity pulling, atmospheric pressure shift and DC magnetic field shift appear to contribute at a

level of 7×10−14 or below. The measured stability of the physics package starts and stays below

1 × 10−11 from 1 second up to one day, in excellent agreement with the predicted short-term

stability limit. In the short-term regime, the achieved performances are similar, even better

than the ones of commercially available miniature rubidium clocks. A drift of 1 × 10−11/day

is observed. It is attributed to an ageing process. The existing methods minimizing the light

shift effect were discussed and compared, and a promising method (in terms of cost, volume

and complexity) was identified. Proposed first by Zhu [106], this method allows a simultaneous

suppression of both the intensity and frequency light-shift coefficients with the use of a single

laser diode and a single rubidium vapour cell. This would allow the realization of a clock limited

in size only by the µ-LGR and the electronics. The experimental demonstration still remains to

be addressed on our setup.
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Summary and conclusions

This thesis presents the realization and the experimental and theoretical spectroscopic studies

of innovative cells and other components for a miniature rubidium atomic clock. This research

took place within the frame of four projects: MACQS, NPI, FNS-Rb and FNS-REQUIP (see

page xxix).

Theoretically, a new empirical model describing precisely the light-shift effect in buffer gas cells

has been developed. Its predictions were experimentally tested and validated. The principal

experimental results are summarized in Table 6.5 in terms of cell types and sizes. These are

summarized in the following paragraphs.

A first update of the LTF cell filling facility allowed the production of high quality glass-blown

buffer-gas or evacuated cells. The excellent reproducibility of the buffer gas mixture achieved

permits a control of the inversion temperature within ±2 K [155], and the produced BG cells

were used for the realization of high performances compact rubidium atomic clocks. These clocks

presented state-of-the-art frequency stabilities: σy(τ) = 5 × 10−13τ−1/2 for a 14 mm diameter

cell [6] and σy(τ) < 2× 10−13τ−1/2 for 25 mm diameter cells [8], [119]. The evacuated cells were

employed in the realization of various laser frequency stabilization systems developed in those as

well as in other projects. Optical frequency instabilities down to σy(τ) < 7 × 10−12 for τ up to

104 s were demonstrated for our laser head [11].

A second update of the LTF cell filling facility allowed the fabrication of glass-blown wall-coated

cells. Previously known Tetracontane and Parylen coatings were implemented using two dif-

ferent deposition methods, in-situ and ex-situ. The non-compatibility of parylen as well as its

non-efficiency as anti-relaxing coating with Rb were demonstrated. The successful in-house pro-

duction of Tetracontane coated cells allowed a continuous DR spectroscopic measurement of the

ripening process, which shows an exponential reduction of the population, coherence relaxation

rates, and of the frequency shift per collision during the process. These results bring additional

information for the understanding of this known but not well understood process. The Tetra-

contane cells were also characterized post ripening and intrinsic linewidths below 100 Hz were
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Summary and conclusions

measured. This corresponds to a coherence lifetime of more than 3 ms (or more than 100 colli-

sions), which is mostly limited by the reservoir effect. The measured average shift per collision

and the temperature coefficients are Φ = −32 ± 2 mrad/coll and TCcoat = 1 ± 0.1 Hz/K, re-

spectively. The comparison with the data found in the literature validates our own fabrication

process. More detailed laser-pumped DR spectroscopy of a Tetracontane coated cell, put in evi-

dence the Rb-density dependency of the intensity light-shift coefficient. It is not only reduced but

can be inverted by changing the cell temperature, without shifting the laser frequency. This effect

potentially offers a simple method for intensity light shift suppression, essential for improving

the clock frequency stability. However, it needs further investigations.

The micro-fabricated cells1 studied used two sealing techniques: anodic- and innovative low-

temperature indium-bonding. Various spectroscopic studies were presented to evaluate the tight-

ness of the low-temperature In bonding. The build-up of a sufficient Rb vapour pressure for

spectroscopic studies and the presence of buffer gas were confirmed by linear absorption spec-

troscopy. A maximal contamination level of ∼ 1 mbar of inert gas was determined by sub-Doppler

saturated absorption spectroscopy. An novel method, based on DR spectroscopy, was employed

to evaluate the sealing leak rate. Exploiting the hyperfine buffer-gas frequency shift of the Rb

atoms allowed the measurement of an upper leak rate limit at a level of < 1.5× 10−13 mbar l/s

for the anodic bonded cell by using DR spectroscopy. This leak rate measurement technique,

using CPT instead of DR spectroscopy, could allow a fast, real-time, continuous and low-cost

leak rate measurement tool for certain types of MEMS sealing compatible with alkali atoms; on

the contrary to leak rate analysis based on N2O Fourier transform infrared (FTIR) spectroscopy

[222] in which the spectroscopic analysis is made sequentially after bombarding in a pressurized

chamber the sample, our alternative method is possible inside the pressurized chamber.

Thanks to the low sealing temperatures achieved with the In-bonding, the first micro-fabricated

wall-coated cell showing effective anti-relaxing properties could be produced. It already shows

very promising anti-relaxing features, such as an intrinsic linewidth below 9 kHz for a volume of

5.9 mm3, and proves the feasibility of such a cell.

Finally we presented the spectroscopic and clock studies of a miniaturized physics package. The

cell was a thick core anodic bonded cell filled with enriched 87Rb and buffer gas mixture [164],
1produced by R. Straessle and Y. Pétremand using the micro-fabricated cell filling system co-owned by LTF

and SAMLAB.
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and the resonator, a µ-LGR developed and realized in collaboration with LEMA-EPFL by M.

Violetti [223]. DR signal optimization and studies on the medium-term instability sources such

as light intensity, microwave power, and temperature fluctuation were presented. Excellent short-

term clock frequency stabilities of σy(τ) ∼ 1 × 10−11τ−1/2 showing a flicker floor at 10−12 were

demonstrated with a PP’s internal cavity volume of only ∼1 cm3. The frequency light shift as

well as the microwave power shift were identified as the main limiting factors at a level of few

10−12. The good short term frequency stability and a careful metrological analysis have allowed

to identify and quantify a cell’s intrinsic frequency drift, of the order of 1 × 10−11 /day, due to

some ageing process in the cell. Our theoretical model for the light shift was also validated using

this physics package by a thorough measure of the light shift coefficients over the whole D1 and

D2 lines. An excellent match between experiments and the model predictions is observed. The

validity of the model allows to explain and predict quantitatively the experimental conditions

required for the realization of the interrogation scheme proposed by M. Zhu [219]. This scheme

allows a significant and simultaneous suppression of the intensity and the frequency light shifts,

thus reducing the intensity and frequency stability requirements for the optical source.

Future research directions

Our cell filling facility update allows now the fabrication of high quality buffer-gas cells and

wall-coated cells. The study of alternative coatings, such as for example C30+ normal alpha

olefin, is of high interest and could also be implemented in bigger glass-blown cells. For clock

application, the temperature coefficient of the tetracontane, of the order of 1 Hz/K, remains a

significant limit, but the use of a complementary low pressure buffer gas mixture might allow to

compensate for this sensitivity, although the interaction mechanisms are different.

The cell micro-fabrication, and more particularly the In-bonding, is now proven to be compatible

with the use of OTS as anti-relaxation coating. Further investigations on such type of cells,

especially on the currently limited lifetime, and in view of clock, or other applications, have to

be done. The use of a coating in addition to a low buffer gas pressure has also to be studied.

It is already proven to significantly improve the relaxation rates of the cell [204], but given the

small volume of the chamber, other effects related to the atoms being trapped near the walls [86]

could be put in evidence.
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The miniature double-resonance atomic clock based on the µ-LGR presents several potential

further investigation lines. Currently, the identified stability limiting factors are the microwave

power-shift, and the laser frequency light-shift. A detailed study of the microwave power shift

as well as a measurement of the laser frequency in parallel with the clock frequency would allow

a better understanding of the current limitations of the clock frequency stability. The long term

drift has also to be further studied to identify and understand its origin; for the current cell, as

well as for other cells that would have been subject to an accelerated ageing process. A residual

gas analysis of these cells broken under vacuum could also bring additional informations on the

ageing process. The miniature discharge lamp technology, proven to be efficient for Zeeman

pumping, [4], has also to be tested as an optical hyperfine pumping light source.

Finally, the theoretical predictions on the light-shift effect with mixed light polarizations should

be experimentally validated. Then, the actual high-performance, cumbersome and costly laser-

head could be replaced by a simple and cheap VCSEL diode [224], without degrading the ex-

cellent clock frequency stability; the realization of a DR sub-miniature atomic clock having a

1×10−11τ−1/2 frequency stability with a PP volume of few cm3 at a moderate cost appears feasi-

ble. A preliminary verification looks realistic with the actual µ-LGR thanks to its non perfect field

orientation factor. Indeed, a fraction of the microwave field components orthogonal to symmetry

axis of the µ-LGR will induce π-transition, thus a DR clock signal, under a C-field orthogonal to

the same symmetry axis. But eventually, a new µ-LGR would have to be redesigned to allow the

required condition for a strong 0-0 clock transition, i.e.: a good field orientation factor (FOF)

with respect to a C-field orthogonal to the laser propagation vector (see Figure 6.25).
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Table 6.5: Global overview of the achievements realized within this thesis from a cells sizes
and types point of view.

Glass blown (GB)a µ-fabrication (µ-fab)

Anodic bondingb Indium bondingc

Buffer Gas
(BG)

Evaluation of Cell filling
update for buffer gas:
-Excellent reproducibility
of buffer gas filling is
demonstrated.

Realization of High
performances clocks.

Evaluation of buffer gas
filling of the
µ-fabrication process
(2D, 3D).

Realization of a
miniature PP for
miniature atomic clock.d

Validation of the
Light-shift model.

Preliminary validation of
the innovative sealing
method :
-Determination of the
leak rate of the sealing by
linear absorption and DR
spectroscopy.

Wall Coating
(WaCo)

Evaluation of Cell filling
update for wall coating,
and two deposition
methods for the
production of wall coated
cell.

Test of innovative
coatings: Parylen N & C.e

Spectroscopic evaluation
of Tetracontane:
- Observation of the
ripening process by DR
spectroscopy;
- Measurement of an α-LS
coeficient inversion.

Currently incompatible
technologies.

First ever MEMS OTS
wall-coated cell.

Validation of the
antirelaxing properties by
spectroscopic evaluation.

Evacuated
(Evac.)

Improvement of the cell
cleaning procedure.

Realization of optical
frequency references for
laser stabilization.

Not studied here. For a
realization, of such a cell
see [169].

Preliminary validation of
the innovative sealing
method :
-Determination of the
leak rate of the sealing by
sub-Doppler absorption
spectroscopy.

aCells fabricated by M. Pellaton
bCells fabricated by R. Straessle & Y. Pétremand
cCells fabricated by R. Straessle
dµ-wave resonator realized by LEMA, EPFL
eCells fabricated by M. Pellaton & R. Straessle
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Appendix A

Spin composition: Clebsch-Gordan

Coefficients

This appendix gives the Clebsch-Gordan coefficients describing the combination of two angular

momenta (electron spin and nuclear spin). The new representation is expressed as follow:

|F,mF 〉 = CF,mFJ,I,mJ ,mI
|J, I,mJ ,mI〉 , (A.1)

where CF,mFJ,I,mJ ,mI
are the Clebsch-Gordan coefficients given in table A.1.

Table A.1: Clebsch-Gordan coefficients for 87Rb (I = 3/2, S = 1/2)

F 2 2 2 2 2 1 1 1

mF 2 1 0 -1 -2 1 0 -1

mS mI

1/2 3/2 1

-1/2 3/2
√

1/4
√

3/4

1/2 1/2
√

3/4 −
√

1/4

-1/2 1/2
√

1/2
√

1/2

1/2 -1/2
√

1/2 −
√

1/2

-1/2 -1/2
√

3/4
√

1/4

1/2 -3/2
√

1/4 −
√

3/4

-1/2 -3/2 1
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Appendix B

Magnetic transition probabilities in

terms of intensity

In Chapter 1 we decomposed the RF magnetic field as follow

~BRF (t) = ( ~B‖ + ~B⊥) cos(ωM t) with

 ~B‖ =
~BRF · ~C0

|| ~C0||
~C0

|| ~C0||

~B⊥ = ~BRF − ~B‖

(B.1)

considering the amplitudes of the field known and a static geometry (no rotating field). Switching

now in term of known intensities of electromagnetic waves, one can decompose the RF field in

the local orthonormal basis {~ez, ~e+, ~e−} induced by the C-field, as follow:

~BRF (t) =
(
B‖~ez +B+~e+ +B−~e−

)
cos(ωM t) with

 ~ez =
~C0

|| ~C0||

~e± = 1√
2

(~ex ± i~ey)
(B.2)

B‖~ez correspond to the magnetic field of a πM polarized RF field, B+~e+ and B−~e− to the mag-

netic fields of σ+ and σ− polarized RF fields, respectively. Figure 1.6 schemes these polarizations.
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Appendix B: Magnetic transition probabilities in terms of intensity

with the same argumentation as in Chapter 1, we obtain the following pumping rates:

ΓMif
(ωM ) =



(
BzµB

~

)2
2πg(ωM − ωif ) | 〈f |Sz |i〉 |2︸ ︷︷ ︸

(µπif )2(
B+µB

~

)2
2πg(ωM − ωif ) | 〈f | 1√

2
S+ |i〉 |2︸ ︷︷ ︸

(µ+if )2(
B−µB

~

)2
2πg(ωM − ωif ) | 〈f | 1√

2
S− |i〉 |2︸ ︷︷ ︸

(µ−if )2

(B.3)

with S± = ~S · ~e± = (Sx ± iSy), the spin ladder operators. The matrix elements, µπ,±if are given

in Table B.1. One can notice this time that:

1

(B‖)2

∑
i

(Ωπ
Mii

)2 =
1

(B+)2

∑
i,j

(Ω+
Mij

)2 =
1

(B−)2

∑
i,j

(Ω−Mij
)2 (B.4)
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Appendix B Magnetic transition probabilities in terms of intensity

Table B.1: Magnetic dipole matrix elements, µπif , top table, µ−if , lower left table and µ
+
if , lower

right table, within the ground state 52S1/2. We use: i↔ m1, and f ↔ m2.

mF=1

mF=2
-2 -1 0 1 2

-1
√

3
4

0 1
2

1
√

3
4

m1

m2
-2 -1 0 1 2

-1 −
√

3
2
√

2

0 −
√

3
4

1 −1
4

m1

m2
-2 -1 0 1 2

-1 1
4

0
√

3
4

1
√

3
2
√

2
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Appendix C

Lineshape optimization at 80 ◦C

In Chapter 6 we gave the optimization of the 3D8 cell and µ-LGR resonator clock signal as a

function of light intensity and microwave power at a temperature of 67◦C, imposed by the desire

to minimize the temperature sensitivity. Here, we show for comparison a similar optimization at

a higher temperature of 80◦C for the same setup.
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Figure C.1: 3D8 cell and µ-LGR resonator clock signal lineshape optimization as a function
of the light intensity in the D2 line. Temperature is set to T=80 ◦C, and microwave power

PµW=-15 dBm.
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Appendix D

Relative optical transition strengths of
87Rb atoms for D1 and D2 lines
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Figure D.1: Relative optical transition strengths of 87Rb atoms for the D1 line, expressed as
multiple of | 〈Je = 1/2| |er| |J = 1/2〉 |2 [13].
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Figure D.2: Relative optical transition strengths of 87Rb atoms for the D2 line, expressed as
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