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We demonstrate a high-performance pulsed optically pumped (POP) Rb vapor-cell clock based on

a magnetron-type microwave cavity of only 44 cm3 external volume. Using optical detection, an 
unprecedented 35% contrast of the Ramsey signal has been obtained. Both the signal-to-noise ratio

(of 30 000) and the estimated shot-noise limit of 1.7 � 10�14 s�1/2 are at the same level as those 
found with a bigger cylindrical TE011 cavity (100 cm3 inner volume) and are sufficient for 
achieving excellent clock stability. Rabi oscillations are measured and indicate a sufficiently

uniform microwave magnetic field distribution inside the cavity. The instability sources for the

POP clock’s performance are analyzed. A short-term stability of 2.1 � 10�13 s�1/2 is demonstrated 
which is consistent with the noise budget.

I. INTRODUCTION

Following its invention in late 1950s, and during 60-

years of continuous development, the lamp-pumped1 Rb 
clocks have been widely used in many industrial applications

such as telecommunication, navigation, and space applica-

tions (e.g., GPS, GALILEO, and COMPASS)2 because of 
their combined advantages of good frequency stability, com-

pactness, reliability, and low power consumption. Further

improvements on the stability of lamp-pumped Rb clocks are

limited, in particular due to the discharge lamp’s relatively

low optical pumping efficiency. Laser-pumped Rb clocks3–6

can achieve a better stability by at least one order of magni-

tude, and one of the most promising approaches is the pulsed

optically pumped (POP) Rb clock with optical detection

scheme.7 While in the continuous-wave (CW) scheme opti-cal 
pumping, microwave interrogation and optical detection take

place simultaneously, the POP scheme realizes these three

phases separated in time. This allows achieving a higher

signal-to-noise ratio (SNR) by individual optimization of the

optical intensities for pumping and detection, and the

suppression of the light shift (LS) effect.8 Recently, a POP Rb 
clock prototype with a state-of-the-art stability of 1.6 � 10�13 

s�1/2 at 1s–10 000s timescales has been reported,9 which is 
even better than that of a passive Hydrogen maser (PHM).10

This previous POP work9 used a Rb vapor cell of 20 mm 
diameter and length placed in cylin-drical TE011 microwave

cavity11 of �100 cm3 internal vol-ume. Here, we report a POP 
Rb clock demonstrator based on a slightly larger Rb vapor

cell, but placed in a more compact 44 cm3 volume magnetron-

type microwave cavity.12 This cavity has previously been 
applied in a Rb atomic clock based on CW interrogation,13,14

but thanks to its uniform microwave magnetic field

distribution, is also suitable for

POP operation. Due to the much smaller size of the

magnetron-type cavity, its implementation in a POP clock

allows reducing the size of thermal and magnetic shields and

thus enables a significant reduction in both volume and

power consumption of the clock physics package, and even-

tually reduced temperature inhomogeneity. In the present ar-

ticle, we report on the POP clock’s Ramsey signal, the

homogeneity of the microwave field via observation of Rabi

oscillations, and the POP clock’s short-term stability

performance.

II. POP Rb CLOCK SETUP

The schematic of our POP Rb clock prototype is shown

in Fig. 1. Optical pumping (duration Tp) creates a significant

atom population imbalance between the 87Rb clock transition 
hyperfine energy levels (5S1/2, F ¼ 1, mF ¼ 0 t o 5 S 1/2, F ¼
2, mF ¼ 0). The laser beam is then switched off and

interaction with two coherent p/2 microwave pulses (duration 
T1) sepa-rated by a Ramsey time interval (duration TRamsey)

probes the clock transition. Finally, a weaker optical detection

pulse (duration Td) produces a narrow clock-resonance

Ramsey signal (linewidth � 100 Hz).

The core of our clock’s physics package (PP) is the

magnetron-type cavity whose resonant frequency is tuned to

the 87Rb clock’s transition frequency (�6.835 GHz), with a

loaded quality factor of about 200. The cavity has an external

diameter and length of 40 mm and 35 mm, respectively (total

external volume: 44 cm3) and holds a home-made 25 mm

diameter vapor cell with enriched 87Rb and a total 26 mbar

of mixed buffer gas inside (Argon and Nitrogen, PAr/PN2

¼ 1.6). The vapor cell and the stem temperature are kept at

64 �C and 58 �C, respectively. The good homogeneity of the

microwave magnetic field across the vapor cell volume

makes the p/2 pulses sufficiently well realized for the major-

ity of the atoms, to create a high contrast Ramsey signal. A

telescope assembly in front of the cell expands the laser

beam to �19 mm diameter and a C-field coil creates a
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�40 mG static magnetic field parallel to the laser propaga-

tion vector (Z direction). Behind the cell, a photo detector

collects the transmitted light. A two-layer magnetic shield

surrounds the whole PP to suppress external magnetic field

fluctuations.

The laser source is a 780 nm distributed-feedback laser

(DFB) frequency stabilized to the Doppler-free 87Rb cross-

over transition CO 1-01 (F¼ 1 to F0 ¼ 0, 1) from an auxiliary

evacuated 87Rb reference cell (10 mm diameter, 19 mm

length). An acousto-optic modulator (AOM) driven by a 110

MHz radio frequency (RF) signal is used as an optical switch

to control the durations and optical powers of optical pumping

and detection pulses. The AOM also serves to detune the laser

frequency by �110 MHz, thus close to the center of the

optical transition in the Rb vapor cell (that is shifted by the

presence of the buffer gas). The laser extinc-tion ratio during

the Ramsey phase is 30 dB. The local oscil-lator (LO) is

composed of the microwave synthesizer, the servo loop, and

an oven-controlled crystal oscillator (OCXO) quartz

oscillator.15 The phase noise of the LO at 6.8 GHz that may 
limit the POP clock’s stability through the well-known Dick

effect,16 is about �105 dBrad2/Hz in the range from 100 Hz to 
1000 Hz (at 6.8 GHz carrier).

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Ramsey fringes

During the pumping pulse (TP ¼ 0.4 ms) the laser power

entering into the PP is set as high as possible (�15 mW) to
maximize the atomic ground-state population difference. The

detection (Td ¼ 0.5 ms) laser power is set to about 100 lW, 
more than two orders of magnitude lower than the pumping

power, to avoid re-pumping. The microwave power sent into

the cavity and the pulse time (T1) are about �20 dBm and 0.4

ms, respectively, for optimized Ramsey signal contrast. The

Ramsey time (TRamsey) i s 3 m s . F i g . 2 shows the

experimental Ramsey fringes using the magnetron-type

cavity, and the numerical simulation for the case of an ideal

magnetic field (Bz totally homogeneous) running in p/2 pulse. 
The numerical simulations are carried out using the density

matrix approach17 and taking into account the other Zeeman 
sublevels in the ground state and an optical thick Rb vapor. In
both cases, the central fringe’s full width at half

maximum (FWHM) is around 160 Hz (shown in the inset)

and the cut-off frequencies (Df) of the zero-order Rabi ped-

estal detuning from the clock transition frequency are about

2500 Hz. These values are consistent with the theoretical

predictions (FWHM ¼ 1/2 TRamsey � 167 Hz and Df ¼ 1/T1 ¼ 
2500 Hz). The ideal field would produce a central fringe

contrast up to 49% due to the fact that all the atoms in the cell

undergo a p/2 pulse while the magnetron-type cavity gives a 
slightly lower contrast of 35% due to the residual microwave

field inhomogeneity. 35% is, however, the high-est contrast

reported to date for POP Rb clock with optical detection. The

shot noise limit can be expressed as9

ry;sn sð Þ ¼ 1

pQaRsn

ffiffiffiffiffi
Tc

s

r
; (1)

where Qa is the quality factor of the clock transition

(�4.3� 107) and Tc is the cycle time (¼4.74 ms). Rsn is the

SNR defined as

Rsn ¼ C
ffiffiffiffiffiffiffiffiffiffiffi
gNopt

p
; (2)

where C is the central Ramsey fringe contrast and g is the ef-

ficiency of the photo detector. Nopt is the number of optical

photons during the detection time Td. For our magnetron-

type cavity, Rsn is at a level of 30 000 and the expected shot-

noise stability limit is 1.7� 10�14 s�1/2, both of which are

FIG. 1. Schematic setup of POP Rb

clock with optical detection. TP:

Pumping time, T1: Microwave pulse,

TRamsey: Ramsey time, Td: Detection

time, and OI: Optical isolator.

FIG. 2. Typical measured Ramsey pattern fringes based on the magnetron-

type cavity (red squares) and simulation results for a hypothetical ideal field

(solid black line, blue bullets show the Rabi pedestal). Inset: Central fringes.
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the same as those with the bigger cylindrical TE011

cavity.9,18

B. Rabi oscillation

Because in a buffer-gas cell the Rb atoms are subject to

the local microwave magnetic field, the spatial homogeneity

of the magnetic field (more specifically, of the Bz component

driving the clock transition) over the vapor cell volume is of

high importance for the Ramsey signal’s contrast that will

determine the POP clock’s short-term frequency stability. In

order to investigate the field distribution inside the

magnetron-type cavity, we measured the normalized change

in optical absorption R induced by the microwave pulse area

(i.e., Rabi oscillations) when the microwave frequency is set

to the center of the clock transition. Here, the normalized

change in optical absorption R is defined as

R ¼ 1� It=I0; (3)

where It and I0 are the transmitted detection pulse intensities

for microwave pulse areas of h and h¼ 0, respectively. For

comparison, we simulated the Rabi oscillations for two other

cavities’ Bz distributions over the same cell volume: The

ideal field distribution and a quasi TE011-type cavity whose

field distribution across the cell is expressed as

BquasiTE011
z r; h; zð Þ ¼ B0J0 1:127

r

R

� �
sin

pz

L

� �
;

0 � r � R; 0 � z � L; (4)

where B0 is the microwave magnetic field amplitude, R and L 
are the radius and length of the vapor cell, J0 is the zero-order 
Bessel function, and the constant 1.127 is chosen to restrict 
the amplitude variation in radial (r) direction to the 30% of its 
maximum value demonstrated before.19 The experimental and 
simulated results for R as a function of microwave pulse area 
(realized by varying the microwave power) are shown in Fig. 
3. For convenient comparison of their evolution, we 
normalize the first-cycle’s highest value of normalized change 
in optical absorption R for each cavity to occur at p/2 pulse 
area. As expected, the simulation result for the ideal field 
configuration shows an undamped oscilla-tion of R and each 
extremum position occurs at h ¼ n�p/2 (n is an integer) pulse. 
The quasi TE011-type cavity, because of its residual Bz 
inhomogeneity, results in different atoms experiencing a 
range of pulse areas, and therefore shows a smaller oscillation 
amplitude with a damping, and a shift of extremum position 
for higher pulse areas. The experimental results for the 
magnetron-type cavity show intermediate per-formances on 
the amplitude, damping rate, and extremum position shift. It 
is clear that although not as good as the ideal field 
configuration, the magnetron-type cavity still has a more 
uniform Bz distribution than that in the quasi TE011-type 
cavity, most likely due to its better homogeneity in the Z-

direction.

C. Light-shift

In POP Rb clocks, the optical and microwave interroga-

tion are separated in time and therefore the intensity and fre-

quency LS can be considerably reduced compared to the CW

scheme. The intensity LS coefficient a is defined as

a ¼ dtclock

dIL
; (5)

for a fixed laser frequency �L, with �clock as the clock

frequency, and IL as the laser intensity. The frequency LS

coefficient b is defined as

b ¼ dtclock

dtL
; (6)

for a given constant laser intensity IL. Figs. 4(a) and 4(b) 
show the preliminary LS measurements for our POP Rb 
clock. At the clock working point (black dotted circle), the 
intensity light shift coefficient a is 5 � 10�14/% and the

FIG. 3. Normalized change in optical absorption R as a function of micro-

wave pulse area in units of p/2 for the magnetron-type cavity (experimental,

red bullets), quasi TE011-type cavity (simulation, blue dashed line), and ideal

field (simulation, black solid line).

FIG. 4. POP Rb clock fractional fre-

quency shift measured as a function of

(a) laser’s output power when laser fre-

quency is locked to the sub-Doppler

cross-over peaks CO 1-01 and AOM

shifts the frequency �110 MHz and

(b) laser frequency detuning from CO

1-01 plus �110 MHz shift when laser

output power is fixed at 21 mW. The

black dotted circle presents the final

clock operating point.
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frequency light shift coefficient b is �4.4 � 10�13/MHz both 
of which are at least one order of magnitude lower than those 
observed in CW scheme.13,14,20

D. Short-term stability

The short-term stability of a POP Rb clock with optical

detection can be simply expressed by

ryðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

y;LSðsÞ þ r2
y;Dick
ðsÞ þ r2

y;det
ðsÞ

q
; (7)

where ry,LS (s) is the instability due to the intensity and fre-

quency light shifts via the laser intensity noise and frequency 
instability on short-time scales. ry,Dick (s) is the contribution 
of local oscillator’s phase noise through the Dick effect. ry,det 
(s) is the instability from the total optical detection noise 
which includes shot noise, laser’s amplitude-modulation 
(AM) noise, AOM’s additional AM noise and the noise from 
frequency-modulation (FM) noise (laser þ AOM) to AM 
noise conversion in the vapor cell.21 Table I presents the 
budget of the instability sources. The final expected stability 
limit is 2.07 � 10�13 s–1/2 where the domi-nant contribution 
comes from the detection noise. Further analysis of the 
instability contribution for the detection noise is shown in 
Table II. The FM-to-AM noise is the major source of 
instability, similar to other high-performance vapor-cell 
clocks under study.9,13,22 Additional AM noise from the AOM 
also introduces some non-negligible instabil-ity, mainly due 
to the RF signal’s amplitude noise.

The present experimental short-term stability of POP Rb 
clock prototype is shown in Fig. 5. A numerical fitting gives a 
short-term stability of 2.1 � 10�13 s�1/2, in good agreement 
with the predicted value. If the AOM’s additional AM noise 
can be completely suppressed, the POP Rb clock would 
achieve a stability of 1.7 � 10�13 s�1/2 which is very close to 
the best previously demonstrated vapor-cell clock stabil-

ities.4,9,13 Our POP clock prototype is still a relatively open 
setup, and its medium- to long-term performances are cur-

rently dominant by the temperature variation of cell’s stem 
due to its enhanced temperature sensitivity (ETS).23 However, 
the prototype’s suppression of the light-shift effect is 
expected to reduce its light-shift stability limitation down to 
the level of 1 � 10�15 at the timescale of 104 s.13

IV. CONCLUSIONS

A good trade-off between the stability and compactness 
for the POP Rb clock based on the magnetron-type cavity has 
been demonstrated, while preserving the advantage of 
suppressed light shift. Based on a qualitative comparison of 
Rabi oscillations, the magnetron-type cavity demonstrates 
good uniformity of the microwave field across the vapor cell, 
suitable for POP operation. The POP Rb clock prototype 
achieves a Ramsey signal with high contrast of 35% with a 
linewidth of 160 Hz. Its shot-noise limit is estimated as 1.7 � 
10�14 s�1/2, comparable to that obtained with a much larger 
TE011 cavity. The measured stability of 2.1 � 10�13 s�1/2 

agrees with the theoretical estimations. The short-term 
stability budget shows that FM-to-AM noise conversion and 
the AOM’s additional AM noise account for the dominant 
instability contribution. Suppression of optical detection AM 
noise would allow a short-term stability of 1.7 � 10�13 s�1/2, 
and with further improvements even below 1.0 � 10�13 s�1/2 

can be feasible. Such a compact high-performance Rb clock 
could find applications in industrial applications, such as 
telecommunication, navigation, and space applications. Our 
results also show that a high quality factor of the microwave 
cavity is not necessarily required for the realization of a 
vapor-cell POP clock with state-of-the art stability perform-

ance: The very moderate quality factor of 200 of our 
magnetron-type cavity is sufficient for operating our POP 
clock and is highly desirable for achieving low instability 
contributions due to the cavity pulling effect.24
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TABLE I. POP Rb clock prototype’s short-term stability budget.

Instability source LS effect Dick effect Detection noise

ry(s)� s�1/2 1� 10�15 7� 10�14 1.95� 10�13

Total 2.07� 10�13 s�1/2

TABLE II. Instability budget for the optical detection noise.

Noise source Shot noise

AM

(Laser)

AM

(Laser þ AOM) FM-to-AMa

ry(s)� s�1/2 1.7� 10�14 2.6� 10�14 1.21� 10�13 1.52� 10�13

aLaser’s FM and AM noise (after AOM) are assumed to be uncorrelated

here.

FIG. 5. Measured short-term stability of the POP Rb prototype.
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