
1. Introduction

With the advent of laser cooling thirty years ago, thermal 
atomic beams were progressively replaced by cold atomic 
fountains to contribute to international atomic time (TAI) as 
primary frequency standards. This approach has made pos-
sible important advances in time and frequency metrology 
in such a way that the SI second is nowadays realized with 
an uncertainty below 10−15 [1–3]. Fountain clocks contrib-
uting to TAI are all based on a pulsed mode of operation: 
the atoms are sequentially laser-cooled, launched vertically 
upwards and interrogated during their ballistic flight before 
the cycle starts over again [4]. Although the evaluation of 
the uncertainty budget is different for every laboratory, the 
methods used to measure the frequency shifts are globally the 
same. Our alternative approach to atomic fountain clocks is 
based on a continuous beam of cold atoms. Besides making 
the intermodulation effect negligible [5–7], a continuous
beam is also interesting from the metrological point of view. 
Indeed, the relative importance of the contributions to the 
error budget is different [8, 9], in particular for density-related 

effects (collisional shift and cavity pulling), and the evalu-
ation methods differ notably. In this context, the evaluation 
of the second-order Zeeman shift, which requires a precise 
knowledge of the magnetic field between the two microwave 
interactions in the free evolution zone, is a case in point. The 
methods developed in pulsed fountains to measure the magn-
etic field are based on throwing clouds of atoms at different 
heights in the resonator. This technique is not applicable to 
the continuous fountain since the geometrical constraints limit 
the range of possible launching velocities, which corresponds 
to  ±0.05 m on the apogee of the nominal atomic parabola. 
Moreover, the atomic beam longitudinal temperature is higher 
in the continuous fountains (75 μK) than in a pulsed one  
(1 μK) and the distribution of apogees is wider. As a conse-
quence this large distribution of transit time modifies signifi-
cantly the Ramsey pattern, reducing the number of fringes as 
shown in figure 1.

In [10] it was shown that Fourier analysis of Zeeman-
sensitive Ramsey fringes ≠m 0 (see figure 1) gives access to 
valuable information about the time-of-flight distribution of 
the atoms, and also on the homogeneity of the time-averaged 
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magnetic field near the apogee of the atomic parabola. With 
this method, we were able to resolve magnetic field vari-
ations at the level of 0.1 nT although the absolute value of 
the field suffers from an indetermination of ×n 0.3 nT, with n 
unknown. Therefore in order to remove the indeterminacy, we 
needed to develop the present technique to give access to the 
magnetic field B T( ).

In the past, the use of Zeeman transitions Δ =F 0, 
Δ =±m 1 to probe the magnetic field was proposed [11] and 
successfully demonstrated for thermal beams [12]. Here we 
propose to adapt and improve this technique for the evalua-
tion of the continuous fountain clock FoCS-2 [8]. We report 
the use of time-resolved Zeeman spectroscopy to investigate 
the magnetic field in the atomic resonator where the free evo-
lution takes place. In section 2 we will give a brief descrip-
tion of the continuous atomic fountain FoCS-2. Then we will 
explain the principle of the time-resolved Zeeman spectr-
oscopy in section  3 and present the experimental results in 
section 4. An analysis of the numerical treatment is presented 
in  section 5 and the different sources of uncertainty are dis-
cussed in section 6.

2. Continuous atomic fountain clock FoCS-2

A simplified scheme of the continuous atomic fountain clock 
FoCS-2 is shown in figure 2. A slow atomic beam, produced 
with a two-dimensional (2D) magneto-optical trap [13], 
feeds a three-dimensional (3D) moving molasses which fur-
ther cools and launches the atoms at a speed of 4 m s−1 [14]. 
The longitudinal temperature at the output of the moving 
molasses is 75 μK. Before entering the microwave cavity, the 
atomic beam is collimated by transverse Sisyphus cooling 
and the atoms are pumped into = =F m3, 0F  with a state 
preparation scheme combining optical pumping with laser 
cooling [15]. After these two steps, the transverse temper ature 
is decreased to approximately 4 μK while the longitudinal 
temper ature stays the same. To prevent any light from entering 
the free evolution zone and perturbing the atoms, a light-trap 
is installed just after the last laser beam [16]. During the first 
passage through the microwave cavity, a π 2/ -pulse (duration
8 ms) creates a state superposition which evolves freely for 
approximately 0.5 s. The Ramsey interrogation is completed  

by a similar π 2/ -interaction in the second interaction zone.
Finally, the transition probability between =F m3, F  and 
=F m4, F  is measured by fluorescence detection of the 

atoms in F  =  4. The clock frequency is obtained by locking 
a local oscillator on the = = = =F m F m3, 0 4, 0F F→

Figure 1. Microwave spectrum of the seven Zeeman sub-levels. The ≠m 0 Ramsey fringes are slighly shifted and distorted on the top 
of the Rabi pedestal due the magnetic field inhomogeneity.

Figure 2. Schematic of the continuous atomic fountain clock 
FoCS-2. An intense, slow atomic beam of pre-cooled cesium atoms 
is produced in the 2D magneto-optical trap (2D-MOT). The atoms 
are then captured by the 3D moving molasses which further cools 
and launches the atoms at a speed of 4 m s−1. Then the atomic beam 
is collimated with Sisyphus cooling in the transverse directions 
and, before entering the microwave cavity, the atoms are pumped 
in = =F m3, 0  by state preparation [15]. A retro-reflected 
‘depumper’ beam, tuned to the F  =  4 to =′F 4 transition, empties
the F  =  4 level from its residual population. A rotating light-trap 
[16] shields the atoms in the interrogation zone from scattered and 
fluorescent light propagating along the atomic beam. The atoms 
evolve freely for ≈T 0.5 s in a graphite cylinder to avoid any 
high frequency perturbations. Finally, after the second passage in 
the microwave cavity, the transition probability is measured by 
fluorescence detection of the atoms in F  =  4. A magnetic field is 
applied vertically in the free evolution zone to remove the energy 
degeneracy of the Zeeman sublevels.
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resonance. To remove the energy degeneracy and ensure good 
magnetic homogeneity, a constant magnetic field is applied 
throughout the free evolution zone. This field is produced 
by a 440-turn solenoid (φ = 39.5 cm and H  =  56.1 cm) sur-
rounded by three cylindrical magnetic shields (μ-metal) plus 
one extra layer which embraces the whole fountain. Six extra 
coils (φ = 11 cm) located at both ends of the interrogation 
region limit the spatial variation of the magnetic field near the 
end caps. Last, but not least, a copper wire running vertically 
alongside the atomic trajectory can be used to demagnetize 
the four magnetic shields with a strong, low-frequency current 
(20 Hz). This wire is also used to produce the excitation field 
in the Zeeman spectroscopy measurements described below.

3. Zeeman spectroscopy principle

The magnetic field in the free flight region removes the degen-
eracy between the seven Zeeman sublevels of the F  =  3 and 
the nine Zeeman sublevels of the F  =  4 ground states of the 
cesium atoms. At first order, the frequency difference between 
the aforementioned sublevels ( ×m fz with m  =  0,±1,±2,±3) 
is directly proportional to the amplitude of the magnetic field 
B, according to = ×f K Bz z , where Kz  =  3.498 Hz nT−1 is
the sensitivity coefficient for the F  =  4 ground state [11]. 
Therefore, the evaluation of the spatial profile of the Zeeman 
frequency fz is directly proportional to the magnetic field 
probed by the atoms along their ballistic flight. Basically, 
in order to access spatially the Zeeman frequency, we use a 
pulsed excitation and measure the resulting transition prob-
ability as a function of the time delay between the pulse and 
the detection (i.e. the spatial position of the atoms). This mea-
surement is done in five steps. First, we prepare the atoms in 
= =F m3, 0  using a two-laser optical pumping technique 

[15] and consecutively transfer them into = =F m4, 0  
clock state with a π-interaction after a first passage through 
the microwave cavity. Then, we drive the Δ =±m 1 trans-
itions with a short pulse of ac magnetic excitation (12 ms) on 

the whole atomic beam present in the atomic resonator. This is 
done by applying a low-frequency current of the order of the 
Zeeman frequency (100 to 400 Hz) on the copper wire run-
ning vertically in the free ballistic flight region (see figure 2). 
After that, the atoms remaining in = =F m4, 0  are trans-
ferred back into = =F m3, 0  with a second microwave π-
interaction after the second passage through the microwave 
cavity. Finally, we measure by fluorescence detection the 
F  =  4 total atomic population, which is therefore proportional 
to the Δ = Δ =±F m0, 1 transition probability. A precise 
knowledge of the atomic beam trajectory and of its timing 
allows us to calculate the position of atoms contributing to the 
signal at the moment of the pulse. This gives us a method to 
measure the intensity of the dc magnetic field at each position 
in the atomic resonator and to reconstruct its profile along the 
atomic beam trajectory with a worst-case spatial resolution of 
0.03 m. Experimentally, the latter is related to the maximum 
distance traveled by the atoms during the short pulse of the ac 
magnetic excitation.

4. Experimental results

4.1. Measurement of the resonance signal

To evaluate the Δ =±m 1 transition probability, we record the 
fluorescence signal of the = =′F F4 5→  optical transition
as a function of the time delay td after the ac Zeeman magnetic 
pulse for different values of the excitation frequency f. The 
amplitude of the pulse (0.7 mArms) and its duration (∼12 ms) 
are chosen to avoid any saturation of the transition (proba-
bility �1) and to guarantee a sufficient spectral resolution. 
We show in figure 3 the measured resonance signal as a func-
tion of f between 125 Hz and 385 Hz with 10 Hz steps and 
the time delay td. The solid black lines represent the recorded 
signals, while the light-blue surface is a 3D interpolation  
of the experimental data. We highlighted in red the shape 
of the atomic Zeeman resonance at td  =  0.4 s as a function of f  
(see section 4.2).

Figure 3. Δ =±m 1 resonance signal as a function of the time delay td measured for different values of the excitation frequency f from 
125 Hz to 385 Hz by 10 Hz steps. The solid black lines are the measured signals, while the blue surface is a 3D interpolation of the 
experimental data.
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4.2. Model of the excitation probability and determination 
of the Zeeman frequency

The excitation pulse is given by the function:

π= Δh t ect t t ftr sin 2( ) ( / ) ( ) (1)

where the ect xr ( ) function is equal to 1 for 0  <  x  <  1 and 
0 otherwise, Δt is the pulse duration and f is the excitation 
frequency. For a low ac amplitude, the Δ =±m 1 transition 
probability is proportional to the power spectral density of the 
excitation pulse at a Zeeman frequency fz:

∝P f h fz
2( ) ˆ( ) (2)

where ĥ is the Fourier transform of the excitation pulse h.
With the excitation function above (equation (1)), we obtain:
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with ϕ π= Δf t2 . Experimentally, the pulse duration Δt is 
related to the number of cycles of the ac excitation n and its 
frequency f. When n is an integer, as it can be selected on the 
function generator used for this measurement, Δ =t n f/  and
equation (3) reduces to:
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In order to deduce the local Zeeman frequency fz from the 
resonance profiles, we fit the experimental curves (figure 3) 
with the model function +a P f c( ) , where P(  f ) is given by

Figure 4. (a) Resonance signal as a function of the time delay td measured for an excitation frequency f  =  250 Hz. This curve represents 
one of the black solid lines described in figure 3. The first maximum at td  =  0.2 s is due to the high local coupling between the ac field 
and the atoms at the output of the microwave cavity (see figure 9 for details). (b) Example of the atomic Zeeman resonance at td  =  0.4 s 
after the ac low-frequency pulse. The dots represent the Δ =±m 1 resonance signal as a function of the excitation frequency f. These data 
represent a transverse cut through the 3D interpolation of the figure 3. The solid red line is a fit of our excitation probability model to the 
experimental data. The fit parameters are the Zeeman frequency fz  =  247.84 Hz, the amplitude scaling factor a  =  0.0718, and the constant 
offset = × −c 9 10 5.

Figure 5. Measured Zeeman frequency as a function of the time 
delay after the ac excitation pulse. Every point and its associated 
uncertainty are obtained through the fit of our excitation model 
with the experimental data (see the text for details). The Zeeman 
frequencies are not well defined for td  <  0.155 s and td  >  0.680 s. 
The first limit corresponds to the time of flight between the 
microwave cavity and the detection, while the second corresponds 
to the output of the first passage in the microwave cavity.

Figure 6. Relation between the time delay td and the average 
vertical position of the atoms z. The blue dashed line is calculated 
by numerical averaging of the nominal trajectory over the measured 
transit time distribution. The solid red line corresponds to the 
nominal trajectory of a mono-kinetic beam.
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equation  (4) and the only three adjustable parameters are  
fz, a (an amplitude factor) and c (a constant offset). Figure 4(a) 
presents the raw resonance signal as a function of the time 
delay td and figure 4(b) shows the experimental data presented 
in figure 3 for a fixed time delay td  =  0.4 s (blue dots) together 
with the fit model (red curve). The very good agreement 
between the data and the analytical formula allows us to repeat 
this procedure for all time delays in figure 3 (0.0 s to 0.8 s) to 
determine the atomic Zeeman frequency as a function of td 
with the associated fit parameter uncertainty =u 0.7f esm

 Hz.  
The results of this analysis are shown in figure 5 and give con-
sistent values for 0.155 s  <  td  <  0.68 s. These boundaries cor-
respond to the atomic time of flight inside the C-field region, 
above the microwave cavity, regarding the detection time.

4.3. Determination of the spatial magnetic field profile

In order to determine the spatial magnetic field profile, we 
have to calculate the relation between the time delay td and 
the average vertical position of the atoms z at the moment 
of the excitation pulse. To this end, we used Fourier anal-
ysis of the Ramsey fringes [10] to measure the distribution 
of transit times of the atoms in the interaction zone. With 
this method, we obtained T  =  0.533 s and σ =T 0.019( )  s
where T is the transit time for this measurement. Note that, 
in order to explore the magnetic field around the nominal 
apogee, we used a launching velocity of 4.05 m s−1 which is 
higher than the nominal velocity of 3.98 m s−1. The average 
vertical position can then be computed by averaging the 
nominal atomic trajectory (mono-kinetic beam) over the 
transit time distribution. Moreover, one has to be aware that 
the ac magnetic excitation zone is slightly different from the 
Ramsey free evolution zone due to the shielding effect of the 
microwave cavity. If we define z  =  0 mm to be the altitude 
above which ac excitation of the atoms is detectable, then the 
microwave cavity center corresponds to zc  =  −15 mm and 
the Ramsey free evolution zone, according to [17], begins 
at z0  =  −18 mm. The result of the averaging is shown in 
figure 6.

This numerical function allows us to compute the Zeeman 
frequencies along the vertical trajectory. This spatial profile is 
shown in figure 7(a).

As we can see, the Zeeman frequencies are almost identical 
for atoms going up and down above z  =  0.1 m. The difference 
below z  =  0.1 m is due to a component of the fixed cavity 
cradle which creates a magnetic field inhomogeneity (this 
assumption has been verified by turning the cavity by �180 ). 
Because the evaluation of the second-order Zeeman shift only 
requires knowledge of the average of the magnetic field probed 
by the atoms on the parabolic trajectory (see section 6), we 
calculated the average between the Zeeman frequency probed 
on the way up ( fup) and on the way down ( fdn) as ( )/+f f 2p nu d
and divided the result by Kz(F  =  4)  =  3.498 Hz nT−1 to obtain 
the magnetic field profile shown in figure 7(b). Note that this 
averaging leads to an additional uncertainty which has been 
numerically evaluated in section 5. The value of the magnetic 
field at z0  =  −18 mm was obtained with the position of the 
m  =  −1 Rabi pedestal of the microwave spectrum.

4.4. Determination of the time-averaged magnetic field

We determined the time-average of the magnetic field B T( )
seen by the atoms during their free evolution (i.e. between 
the two Ramsey interactions) by numerical integration of the 
spatial magnetic field profile B(z) shown in figure  7(b). We 
calculated B T( ) as follows:

∫=B T
T

B z t T t
1

, d
T

0
( ) ( ( )) (5)

where = − +z t T g t T t z, 2 0( ) ( )/  is the trajectory of the
atomic beam and g  =  9.81 m s−2. We repeated this procedure 
for different values of the transit time around the nominal 
value of T  =  0.512 s to represent graphically the temporal 
variation of the magnetic field B T( ). The result is shown
in figure  8 together with the σ±1  error band. This band is 
calculated using the same analysis and the propagation of 
the errors in equation (5) by considering the uncertainty on 
the magn etic field measurement u f esm

 (see section  4.2) and 

Figure 7. (a) Zeeman frequency as a function of the vertical position z calculated from the time-resolved measurement of the Zeeman 
frequency shown in figure 5. The blue (red dashed) lines correspond to atoms going down (up) at the moment of the excitation pulse.  
Note: z  =  0 mm is defined to be the altitude above which the atoms feel the ac excitation pulse, i.e. 15 mm above the microwave cavity 
center. (b) Averaged spatial magnetic field profile probed by the atoms ( )/+f f 2p nu d  (see the text for details). To measure the magnetic field
at z0  =  −18 mm we used the position of the m  =  −1 Rabi pedestal of the microwave spectrum.
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the uncertainty on the transit time distribution ρu T( ) (see sec-
tion 4.3). At T  =  0.512 s we obtain =B 0.512 71.2( )  nT and

=u 0.2B esm  nT.

5. Simulation

In order to validate the method and the experimental analysis, 
we perform a numerical simulation and estimate the uncer-
tainty due to the approximation in the relation between the 
position of the atoms and the extraction of the resonance fre-
quency. For a given Zeeman frequency dependence on z, we 
numerically compute the expected transition probability as 
a function of the time delay and of the excitation frequency. 
From those simulated data, we extract a Zeeman frequency 
dependence as we did in the experiment. Finally we compare 
the estimated Zeeman frequency with the original one, the dif-
ference giving us an estimate of the experimental uncertainty.

In a first step, we numerically simulate the amplitude of 
the ac magnetic field in the plane of the atoms’ trajectories. As
mentioned previously, the field is created by the copper wire 
located in the vacuum chamber. Using a finite-element algo-
rithm for the known geometry, we compute the amplitude of 
the ac field A(x, z) in the whole atomic resonator as shown in 
figure 9. To determine the transition probability as a function 
of the detection time td and the applied ac excitation frequency 
f, we would have to compute the transition probability from 
the time-dependent Schrödinger equation. For simplicity, we
use here a more basic model. We define the transition prob-
ability for an atom with a time of flight T and subjected to a 
weak ac field A(x, z) with a square pulse shape by:

⎛
⎝⎜

⎞
⎠⎟π=

−
Δ ×p f T inc

f f z
t A x z, s 2

2
,z

2
2( )

( )
( ) (6)

where Δt is the pulse duration. Finally the total signal at the 
detection is computed by integrating this probability over 
the time where the ac pulse is on and averaging over the 
 time-of-flight distribution F T( ):
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From the resulting function p t f,d( ), an estimation of the
Zeeman field is obtained with the same treatment as that 
used for the experimental data (see section 4.2). The resulting 
dependence of B T( ) is shown in figure 10 together with the
original given ac Zeeman field. The estimated uncertainty 
on B T( ) due to this analysis is measured as the difference
between the original field (black triangles) and that computed 
with our method (blue dots). The numerical treatment adds an 
error on the time-averaged magnetic field of 10 pT.

Furthermore, to estimate the contribution of the non-
homogeneous ac field to the uncertainty, we repeated the same 
simulation with a uniform ac field in the free evolution zone 
(not shown here). The difference between the two results for 

Figure 8. Time-averaged magnetic field along the atomic trajectory 
as a function of the transit time T. The solid red line has been 
determined by numerical integration of the spatial profile of the 
magnetic field B(z) shown in figure 7(b). The red dashed lines 
represent the  ± σ1  error band. They were calculated using the 
propagation of the errors in equation (5) (see the text for details).

Figure 9. Relative amplitude A(x, z) of the low-frequency ac 
electromagnetic field in the plane of the atomic trajectories 
produced by the vertical copper wire running in the free evolution 
zone. We can see the variations of the field probed by the atoms 
on the way down which is due to the close proximity of the copper 
wire.
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T  =  0.512 s differs by 0.1 nT. By summing quadratically these 
two contributions, we compute that the numerical analysis 
performed on the experimental data adds a total uncertainty 
on the time-averaged magnetic field =u 0.1B umn  nT.

6. Discussion

The second-order Zeeman shift in atomic clocks scales with 
the time average of the square of the magnetic field probed by 
the atoms in the free evolution zone. This effect is calculated 
using [11]:

ν ν ν

ν

μ

Δ = − =

=
+

B K B

g g

h
B

1

2

z 0 0 0
2

0

J I
2

B
2

2
2

( )
( ) (8)

where ν0 is the unperturbed cesium frequency, gJ and gI are the 
Landé factors of the angular momentum for the electron and
the nucleus, μB is the Bohr magneton, h is the Planck constant 
and B2 is the time average of the square of the magnetic field 
probed by the atoms between the microwave interactions. We 
discuss now how the magnetic field uncertainties affect the 
evaluation of the second-order Zeeman shift. For this purpose, 
we decompose the total measurement uncertainty of B(T ) into 
two contributions.

In section  4.4 we saw that this time-resolved Zeeman 
spectr oscopy technique gives direct access to the spatial 
magn etic field profile in the free evolution zone. However to 
evaluate the time-averaged magnetic field probed by the atoms 
and the second-order Zeeman shift, we compute the integral 
(equation (5)). By definition, this calculation gives B T( ) and
thus the resulting error using B T 2( ( ))  instead of B T2( ) must
be considered:

σ=σu K TB0
2

B
2 ( ) (9)

where σ = −T B T B TB
2 2 2( ) ( ) ( ( ))  represents the variation of

the magnetic field B tr( ( )) along the atomic trajectory. In our

case we use half of the difference between the minimum and 
the maximum magnetic field probed by the atoms. The results 
shown in figure 7(b) give us σ =T 2B( )  nT, which corresponds

to an uncertainty = ×σ
−u 2 10 7

B
2  Hz.

The second contribution is related to the uncertainties of the 
magnetic field measurement =u 0.2B esm  nT (see  section 4.4) 
and the uncertainty coming from the numerical treatment 

=u 0.1B umn  nT discussed in section 5. We also add the uncer-
tainty on the temporal fluctuations of the magnetic field uB ni  
which may result from any variation of the ambient field. 
We evaluate this term by locking the clock on a magnetic-
field-sensitive transition = = = =F m F m3, 1 4, 1F F→
for five days. Over this period, we recorded small short-
term fluctuations  <0.01 Hz with a frequency drift of 0.1 Hz. 
Extrapolating this drift over one month gives us an addi-
tional conservative uncertainty =u 0.2B ni  nT [1]. Note that 
in the near future, we plan to repeat the present analysis to 
evaluate the long-term evolution of the magnetic field. The 
quadratic sum of these contributions allows us to calculate the 
 uncertainty on the frequency:

= + +νΔu K B T u u u2B
B B B0
2 2 2

z es um nm n i
( ) (10)

which leads to = ×νΔ
−u 1.9 10B 6

z
 Hz for the measured magn-

etic field at the optimal transit time =B 0.512 71.2( )  nT.
Finally, we compute the total uncertainty for the second-

order Zeeman shift as the quadratic sum of the two terms 
described above:

= + = ×ν ν σΔ Δ
−u u u z1.9 10 HB 2 2 6

z z B
2( ) ( ) (11)

At this point, it should be emphasized that the present 
Zeeman spectroscopy technique allows us to compute B T2( )
instead of B T 2( ( ))  and then get rid of the additional σu

B
2

uncertainty term. We can show that the present calcul ation 
is actually consistent with the integration of B z t T, 2( ( ))  over
the transit time T and it does not affect the final value for the 
second-order Zeeman shift and its associated uncertainty. That 
being said, this analysis with B T( ) is useful for a direct com-
parison with the measurements exposed in [10], as explained 
in section 1.

7. Conclusion

In this paper we presented an evaluation of the second-order 
Zeeman shift in the continuous fountain FoCS-2 using time-
resolved Zeeman spectroscopy to probe the Zeeman frequency 
along the atomic trajectories. This technique allowed us to 
determine a time-averaged magnetic field of 71.2 nT with 
an uncertainty of ±0.3 nT, which corresponds to a  frequency 
shift:

ν
ν
Δ
= ± × −23.6 0.2 10z

0

15( )

This new measurement paves the way for the complete 
evaluation of the continuous fountain FoCS-2.

Figure 10. Simulated time-averaged magnetic field along the 
atomic trajectory as a function of the transit time T for the ac 
field shown in figure 9. The purple squares (yellow diamonds) 
correspond to atoms going down (up) and the blue dots are the 
average of both. The black triangles are the given time-averaged 
field dependence used for the simulation.

7



Acknowledgments

This research was supported by the grant 200021 141338 of 
the Swiss National Science Foundation (SNF).

References

[1] Gerginov V, Nemitz N, Weyers S, Schröder R, Griebsch D and
Wynands R 2009 Metrologia 47 1–35

[2] Szymaniec K, Park S E, Marra G and Chałupczak W 2010
Metrologia 47 363–76

[3] Guena J et al 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. 
Control 59 391–410

[4] Wynands R and Weyers S 2005 Metrologia 42 64–79
[5] Joyet A, Mileti G, Dudle G and Thomann P 2001 IEEE Trans. 

Instrum. Meas. 50 150–6
[6] Guéna J, Dudle G and Thomann P 2007 Eur. Phys. J. Appl.

Phys. 38 183–9
[7] Devenoges L, Di Domenico G, Stefanov A, Joyet A and 

Thomann P 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. 
Control 59 211–6

[8] Devenoges L 2012 PhD Thesis University de Neuchâtel,
Neuchâtel

[9] Jallageas A, Devenoges L, Petersen M, Morel J, Bernier L G, 
Thomann P and Sudmeyer T 2016 J. Phys.: Conf. Ser. 
723 012010

 [10] Di Domenico G, Devenoges L, Stefanov A, Joyet A and 
Thomann P 2011 Eur. Phys. J. Appl. Phys. 56 11001

 [11] Vanier J and Audoin C 1989 The Quantum Physics of Atomic 
Frequency Standards (Bristol: Adam Hilger)

 [12] Shirley J H and Jefferts S R 2003 PARCS magnetic field 
measurement: low frequency Majorana transitions and 
magnetic field inhomogeneity Proc. 2003 IEEE Int. 
(Tampa, FL) pp 1072–5

 [13] Castagna N, Guéna J, Plimmer M D and Thomann P 2006
Eur. Phys. J. Appl. Phys. 34 21–30

 [14] Berthoud P, Fretel E and Thomann P 1999 Phys. Rev. A 
60 4241–4

 [15] Di Domenico G, Devenoges L, Dumas C and Thomann P 2010 
Phys. Rev. A 82 053417

 [16] Füzesi F, Jornod A, Thomann P, Plimmer M D, Dudle G,
Moser R, Sache L and Bleuler H 2007 Rev. Sci. Instrum. 
78 103109

 [17] Joyet A 2003 PhD Thesis University de Neuchâtel, Neuchâtel

8




