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We demonstrate the first diode-pumped Ti:sapphire laser
frequency comb. It is pumped by two green laser diodes
with a total pump power of 3 W. The Ti:sapphire laser
generates 250 mW of average output power in 61-fs pulses
at a repetition rate of 216 MHz. We generated an octave-
spanning supercontinuum spectrum in a photonic-crystal
fiber and detected the carrier envelope offset (CEO)
frequency in a standard f -to-2f interferometer setup. We
stabilized the CEO-frequency through direct current modu-
lation of one of the green pump diodes with a feedback
bandwidth of 55 kHz limited by the pump diode driver
used in this experiment. We achieved a reduction of the
CEO phase noise power spectral density by 140 dB at
1 Hz offset frequency. An advantage of diode pumping is
the ability for high-bandwidth modulation of the pump
power via direct current modulation. After this experiment,
we studied the modulation capabilities and noise properties
of green pump laser diodes with improved driver electron-
ics. The current-to-output-power modulation transfer func-
tion shows a bandwidth larger than 1 MHz, which should
be sufficient to fully exploit the modulation bandwidth of
the Ti:sapphire gain for CEO stabilization in future experi-
ments.

OCIS codes: (140.7090) Ultrafast lasers; (140.4050) Mode-locked

lasers; (140.3590) Lasers, titanium; (120.3940) Metrology.

The stabilization of the carrier envelope offset (CEO) frequency
and the realization of optical frequency combs was a major
breakthrough in optical science and photonics. Optical fre-
quency combs can serve as extremely accurate rulers in the fre-
quency domain and provide a phase-stable link between
microwave and optical frequencies [1–3]. They have been
enabling an impressive progress in a wide scientific range,
for instance precision metrology [4] and spectroscopy [5],
calibration of astronomical spectrometers [6,7], waveform syn-
thesis [3], stable microwave generation [8], and optical clocks
[9]. The first stable frequency combs were generated from
ultrafast Ti:sapphire lasers [2,3]. The emission bandwidth of

Ti:sapphire extends from 650 up to 1200 nm, which makes
it one of the best suited materials for ultrashort pulse generation
[10]. It requires pumping in the blue-green region of the spec-
trum, which until recently required complex and expensive
laser systems. Initially, Ti:sapphire crystals were pumped by
Ar:Ion lasers, which are very unpractical because of their lim-
ited lifetime and low wall-plug efficiency, which is typically in
the range of 0.1%. Today, they have been mostly replaced by
frequency-doubled solid-state lasers, which reach tens of watts
of output power with single-mode transverse beam quality.
However, their cost, complexity, and size is a major disadvant-
age for Ti:sapphire lasers compared to ultrafast laser systems
that can be directly diode-pumped like Yb- and Er-doped fiber
and solid-state lasers [11], which are currently the dominant
techniques for frequency combs [12].

The recent development of blue and green laser diodes [13]
finally enabled simpler and cheaper pumping options for
Ti:sapphire lasers. Recently, we have reported on a green di-
ode-pumped mode-locked Ti:sapphire laser reaching output
powers of 650 mW in continuous wave and 450 mW in
mode-locked operation [14], which is sufficient for many ap-
plication areas. However, the spectral purity and spatial beam
quality of the blue and green laser diodes are significantly worse
than frequency-doubled solid-state lasers, which typically oper-
ate in the fundamental transverse-mode. The noise properties
of green pump diodes have not been studied in detail and so far,
it was not clear if diode-pumping of Ti:sapphire lasers was a
viable alternative to traditional pumping schemes for frequency
metrology applications. In this Letter, we report on, to the
best of our knowledge, the first detection and stabilization
of the CEO frequency of a diode-pumped mode-locked
Ti:sapphire laser. The stabilization was realized by direct modu-
lation of the pump diode current, rather than using an external
acousto-optic modulator, which is often required in Ti:sapphire
lasers pumped by frequency doubled solid-state lasers [15]. We
also show that the currently available green laser diodes have
noise properties that are compatible with frequency comb
generation and can be directly modulated in the MHz range.

The laser gain is a 4-mm long Brewster-cut Ti:sapphire crys-
tal with 0.25% weight doping, 4.1 cm−1��20%� of small sig-
nal pump absorption at 532 nm and a figure of merit (FOM) of
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150 for the ratio of the absorption cross section at 820 and
514 nm. The cavity follows an X -shape configuration with
the gain crystal pumped from each side by a green laser diode
(model NDG7475 from Nichia Inc.). The pump diodes are
packaged in 8-mm TO cans and can each deliver up to
1.5 W of output power, running at 12% wall-plug efficiency.
We mounted them into copper heat sinks, which are water-
cooled at 15°C. The two pump beams have M 2 values of 2.7 ×
5.5 and 2.2 × 5.4 in the fast and slow axes, respectively. The
diodes emit at a central wavelength of 520 nm with a band-
width of ∼2.5 nm. The pump configuration consists of a
4-mm focal length collimating lens, followed by an expanding
telescope in the slow axis and a focusing lens with 75-mm focal
length. More details on the pump configuration can be found
in Ref. [14]. A scheme of the laser cavity is shown in Fig. 1.
Compared to the realization presented in Ref. [14], the reso-
nator is extended in the cavity arm containing the SESAM to
obtain a lower repetition rate. This arm also includes a Brewster
plate to generate additional self-phase modulation. The beam is
then focused onto a semiconductor saturable absorber mirror
(SESAM) with a modulation depth of approximately 1% at
810 nm that acts as an end mirror. In the other arm of the
cavity, the laser beam bounces twice on two Gires–Tournois-
interferometer (GTI) mirrors with a dispersion value of −150
and −120 fs2, respectively. This cavity arm ends with an output
coupler of 3%. The pulses are then compressed by another set
of dispersive mirrors giving a total dispersion of −270 fs2 to
compensate for the material dispersion of the output coupler
and of a subsequent lens that collimates the slightly diverging
beam. A small fraction of the output power is reflected by a
beam sampler for diagnostics.

The laser is SESAM-mode-locked with self-starting opera-
tion. SESAM mode-locking operation of the laser was preferred 
to Kerr-lens mode-locking that we also implemented previously 
with this laser [14] for its better long-term stability that is re-
quired for frequency comb applications. The laser emits 
250 mW of average output power with 61-fs pulse duration 
[Fig. 2(a)] at a repetition rate of 216 MHz. The optical spec-
trum is centered at 815 nm with a full width at half maximum 
of 12 nm as shown in Fig. 2(b).

The collimated beam was sent through a half wave plate to 
optimize its polarization and was coupled into a polarization 
maintaining (PM) photonic crystal fiber (PCF) using an anti-
reflection-coated aspheric lens with 4.5-mm focal length. The 
PCF (model NKT NL-PM-750) is 8 cm long, has 1.8-μm core 
diameter and a zero-dispersion wavelength of 750 nm. To pre-
vent possible back reflections from perturbing the laser, the fi-
ber ends were angle-cleaved at ∼20°. The light exiting the PCF 
was collimated using another anti-reflection coated aspheric 
lens with a focal length of 8 mm. An octave-spanning super-
continuum spectrum was generated with significant peaks 
approximately 532 and 1064 nm as shown in Fig. 3(a). The 
supercontinuum spectrum with 70 mW of average power was 
launched into a standard f -to-2f interferometer. A dichroic 
mirror at the input of the interferometer split the

Fig. 1. Diagram of the complete setup (OC, output coupler; DM,
dispersive mirror; BP, Brewster plate; HWP, half wave plate; PCF,
photonic crystal fiber; PPLN, periodically-poled lithium niobate crys-
tal; PBS, polarizing beam splitter; BPF, band pass filter; DCM,
dichroic mirror).

Fig. 2. (a) Autocorrelation trace of the pulse train (solid, black) with
a fit by a sech2-pulse (dashed, red). (b) Optical spectrum measured at a
resolution bandwidth (RBW) of 0.5 nm (solid, black) with a sech2 fit
(dashed, red).

Fig. 3. (a) Octave-spanning supercontinuum spectrum obtained by
launching the laser pulses into an 8-cm long PCF (RBW � 1 nm).
(b) RF spectrum of the CEO beat signal with 40-dB SNR obtained
at the output of an f -to-2f interferometer (RBW � 100 kHz).
(c) Single sideband (SSB) phase noise (PN) power spectral density
of the CEO beat when free-running (solid, black) and stabilized
(dashed, red).
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532-nm component into one arm and the 1064-nm compo-
nent into the other arm, where it was frequency-doubled in 
a 10-mm long MgO-doped periodically-poled lithium niobate 
(PPLN) crystal with a poling period of 6.90 μm (from 
Covesion Inc.). The two beams were then recombined in a po-
larizing beam combiner and passed through a polarizer to align 
their polarization. A 10-nm-wide spectral band centered at 
532 nm was filtered, then the two beams were coupled into 
a single-mode fiber to enhance their spatial overlap. A beat sig-
nal was finally detected in an amplified avalanche photodetec-
tor (model APD430A from Thorlabs). The beat signal was 
measured at approximately 87 MHz with a signal-to-noise ratio 
(SNR) of 40 dB at a resolution bandwidth (RBW) of 100 kHz 
[Fig. 3(b)]. The output signal of the detector was low-pass 
filtered to extract the lowest frequency CEO beat signal, which 
was then amplified to a power of approximately 0 dBm. The 
amplified CEO beat signal was compared in a digital phase 
detector (model DXD200 from Menlo Systems) to a reference 
signal delivered by a waveform generator. The resulting phase 
error signal was fed into an analog proportional-integral-
derivative (PID) controller (model D2-125 from Vescent 
Photonics) and the amplified correction signal directly con-
trolled the pump laser driver (model 525 from Newport). 
The phase noise spectra of the free-running and stabilized 
CEO beat, measured with a phase noise analyzer (FSWP from 
Rohde–Schwarz), are shown in Fig. 3(c). The phase noise is 
reduced by up to 140 dB at 1 Hz offset frequency when 
the CEO frequency is locked. The servo bump observed at 
approximately 55 kHz corresponds to the stabilization band-
width, which was limited by the phase shift of the pump diode 
driver used in this experiment.

In a separate, later performed experiment, we investigated 
the modulation capabilities of the 1.5-W green laser diodes. 
For this purpose, we developed an in-house modulation box 
capable of delivering an AC current with an amplitude of 
up to 1 A and a modulation bandwidth of at least 1 MHz. 
A constant current source was used in parallel with this 
modulator. We measured the diode-current-to-output-power 
modulation transfer function in amplitude and phase using 
a lock-in amplifier (model HF2LI from Zurich Instruments). 
The measured curves show a −3 d Bcutoff frequency of 4 MHz 
and a phase shift of −90° at 2 MHz as displayed in Fig. 4. Both 
the amplitude and phase responses are very flat up to at least 
1 MHz. These modulation properties are sufficient to exploit 
the full modulation bandwidth of the Ti:sapphire gain for 
fast CEO control, which is typically in the range of 
500 kHz to 1 MHz [16]. The implementation of such a high

CEO modulation bandwidth in our laser will enable a signifi-
cant improvement of the CEO lock.

Moreover, we measured the relative intensity noise (RIN) of 
the green laser diode operated at 1.5 W of output power 
(Fig. 5). An RMS RIN of 0.04% was obtained from this 
spectrum, integrated from 1 Hz to 1 MHz. This noise level 
is comparable to the value of approximately 0.02% integrated 
from 2 Hz to 625 kHz reported for commercially-available 
standard Ti:sapphire pump lasers [15].

In summary, we have demonstrated the first proof-of-
principle detection and stabilization of the CEO frequency
of a diode-pumped Ti:sapphire laser. We achieved coherent oc-
tave-spanning supercontinuum spectrum generation. We mea-
sured a CEO beat signal with an SNR of 40 dB in 100-kHz
RBW, which is sufficient for phase locking. We stabilized the
CEO frequency by direct pump current modulation with a
feedback bandwidth of ∼55 kHz, reaching a noise reduction
of 140 dB at 1 Hz offset frequency. This stabilization scheme
circumvents the need for an additional external optical modu-
lator. We showed low noise operation of the pump diodes with
an RMS RIN of 0.04%. We investigated the modulation capa-
bilities of these green diodes, demonstrating a bandwidth of
>1 MHz. This is sufficient for high bandwidth CEO stabili-
zation that is not limited by the pump power modulation. Our
results show that expensive and complex green pump sources
are not necessary for the realization of Ti:sapphire optical
frequency combs. Instead, diode laser pumping is a suitable
solution for simple, robust, energy efficient and cost-effective
Ti:sapphire frequency combs.
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