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“If you saw Atlas, the giant who holds the world on his shoulders, if you saw that he stood, 

blood running down his chest, his knees buckling, his arms trembling but still trying to hold 

the world aloft with the last of his strength, and the greater his effort the heavier the world 

bore down upon his shoulders–What would you tell him to do?” 

“I . . . don't know. What . . . could he do? What would you tell him?” 

“To shrug.”  

Francisco d'Anconia to Hank Rearden in Atlas Shrugged (1957) by Ayn Rand 
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Abstract 

Ultrafast lasers have revolutionized research in fundamental physics, chemistry and biology 

as well as industrial applications. A great number of experiments benefit from the 

development of Yb-based high-power femtosecond laser sources. These systems typically 

include a low-power mode-locked oscillator followed by amplifier stages relying on fiber, slab 

or thin-disk technologies. In many cases, an additional nonlinear pulse compression scheme 

is necessary to obtain sufficiently short pulse durations. However, external amplification and 

compression of the pulses add cost and complexity and may degrade the spatial and temporal 

pulse quality. Moreover, many amplifier schemes are limited in repetition rate which is a 

challenge for numerous scientific and industrial applications. In contrast, ultrafast thin-disk 

laser (TDL) oscillators are a simple and compact approach to directly generate powerful 

ultrashort pulse trains at megahertz repetition rates. State-of-the-art high-power mode-

locked TDL oscillators operating around 1 µm central wavelength deliver hundreds-of-watt 

average power in pulses with hundreds of femtoseconds duration and several tens of 

microjoule pulse energy. These lasers have already been successfully used to drive initial 

experiments in high-field science at megahertz repetition rate without any external 

amplification. Yet, external pulse compression to the sub-100-fs regime was required for these 

experiments. Generating powerful sub-100-fs pulses directly from ultrafast TDLs would 

strongly improve their suitability for application fields such as material processing, bio-medical 

research, or fundamental science. Nevertheless, prior to this work, the power levels achieved 

by TDL oscillators in the sub-100-fs regime have been limited to 5 W and the minimum pulse 

duration was 60% longer than for bulk Yb-based oscillators.  

This thesis describes the development of novel ultrafast Yb-based TDL oscillators with 

improved performance at sub-100-fs pulse duration. During the last 17 years, the shortest 

pulse durations from ultrafast TDLs were obtained by semiconductor-saturable-absorber-

mirror (SESAM) mode locking of different Yb-doped gain crystals with broad emission cross 

sections. In this thesis, the potential of such broadband gain materials is explored in Kerr lens 

mode locking, which technique provides a faster response and a high modulation depth. The 

influence of key laser parameters is investigated for the generation of powerful ultrashort 

laser pulses. This research led to a Kerr lens mode-locked (KLM) TDL based on an Yb:LuO 

crystal with a record-high average power from any TDL in both sub-100-fs and sub-50-fs pulse 

duration regimes. With more than 10 W of average output power in 90 fs pulses, the laser 
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emits twice more power than previously achieved by sub-100-fs-class TDL oscillators. This 

proof-of-principle study opens avenues for average- and peak-power scaling towards the 

generation of ultrashort pulses from simple single-stage lasers with hundred watts of average 

power and multi-ten microjoules of pulse energy. These results confirm the potential for 

compact ultrafast Yb-based TDL oscillators to replace complex amplifier systems and 

Ti:sapphire-based lasers for an extensive range of applications. 

Benefiting from the fruitful combination of the Kerr lens mode locking scheme and the 

broad emission of the gain materials, TDL oscillators reach new pulse duration limits. 

Unprecedentedly, two ultrafast TDLs based on Yb:LuO and Yb:CALGO crystals generate shorter 

pulses than oscillators based on bulk crystals of the same materials. With 30 fs pulse duration, 

the first KLM Yb:CALGO TDL delivers pulses 60% shorter than any previously reported TDL. 

This pulse duration is also equally short to the shortest pulses emitted by any Yb-based bulk 

oscillator. Compared to the standard end-pumping configurations of bulk lasers, it appears 

that the TDL pumping scheme is advantageous to produce ultrashort pulses since it 

circumvents the need for an intra-cavity dichroic mirror that could limit the optical spectrum. 

While the shortest pulses of 35 fs from the Yb:LuO TDL feature optical spectra nearly three 

times larger than the gain bandwidth, the 30 fs pulses from the Yb:CALGO laser exploit only a 

fraction of the full bandwidth of the ultra-broadband gain material. These results indicate that 

further optimization of the mirror optical coatings for a broadband high reflectivity and flat 

dispersion is paramount to outperform the current 10-cycle pulses delivered by these two 

lasers.  

These novel sources aim at directly driving exciting new applications in the fields of 

spectroscopy and high-field physics. An initial experiment has been realized to highlight the 

potential and reliability of these lasers and demonstrates the first fully-stabilized optical 

frequency comb based on a TDL. The two degrees of freedom of the frequency comb are the 

carrier-envelope offset (CEO) and the repetition rate frequencies. Both are detected and 

stabilized to a highly-stable radio-frequency external reference. A tight phase lock of the CEO 

frequency is achieved with an active feedback to the pump-diode current and the repetition 

rate is stabilized via a cavity mirror mounted onto a piezo-electric actuator. This approach of 

TDL-based frequency combs will benefit from the power-scalability capabilities of TDL 

oscillators resulting in simple high average power frequency combs without the need for any 

external amplification or nonlinear pulse compression. These sources should open doors to 

numerous experiments in the areas of metrology and broadband high-resolution 



Abstract 

VIII 

spectroscopy, especially for future extreme ultraviolet (XUV) frequency combs generated via 

intra-cavity high-harmonic generation (HHG). 

Additionally, this thesis reports on the proof-of-principle realization of intra-cavity HHG 

inside an ultrafast TDL oscillator as a table-top pulsed source of XUV laser light. Using a state-

of-the-art SESAM mode-locked TDL, the HHG is driven in a high-pressure gas jet and results in 

a compact setup operating at megahertz repetition rate. XUV laser light has been detected up 

to the 17th harmonic (61 nm, 20 eV), whereas no severe disturbance of the laser operation 

from the gas jet and subsequent HHG process was observed. Replacing the current driving 

laser by the above-mentioned KLM TDLs delivering substantially shorter pulses in combination 

with optimized phase matching conditions for the HHG process and improved XUV extraction 

will allow for significantly higher photon flux at even higher harmonics. By stabilization of the 

repetition rate and CEO frequencies of the KLM driving oscillator, the generation of an XUV 

frequency comb from a simple single-stage source is within the reach of ultrafast TDL 

oscillators. Due to the high-photon flux resulting from the high intra-cavity average power of 

the laser, this class of compact coherent XUV light sources has the potential to become a 

versatile tool for areas such as attosecond science, nanometer-scale imaging and precision 

XUV spectroscopy. 

 

Keywords: ultrafast lasers, mode-locked lasers, thin-disk laser (TDL) oscillators, high-power 

lasers, ytterbium-doped (Yb-doped) materials, near infrared, optical frequency combs, carrier-

envelope offset (CEO), high-harmonic generation (HHG), extreme-ultraviolet (XUV) laser 

sources.  



 

IX 

Résumé 

Les lasers ultra-rapides ont révolutionné la recherche scientifique en physique fondamentale, 

en chimie, en biologie ainsi que de nombreuses applications industrielles. Un grand nombre 

d’expériences bénéficient du développement de sources lasers basées sur l’ytterbium qui 

émettent des trains d’impulsions femtosecondes de haute puissance. Ces systèmes incluent 

généralement un oscillateur à verrouillage de modes de basse puissance, suivi par des étages 

d’amplification basés sur les technologies à fibres, à plaques ou à disques fins. Dans de 

nombreux cas, une étape additionnelle de compression non-linéaire des impulsions est 

nécessaire pour obtenir des impulsions suffisamment brèves. Cependant, l’amplification 

externe et la compression des impulsions ajoutent un coût et une complexité et peuvent 

dégrader la qualité spatiale et temporelle des impulsions. De plus, beaucoup d’amplificateurs 

sont limités en termes de taux de répétition, ce qui est un problème pour de nombreuses 

applications industrielles et scientifiques. En revanche, les oscillateurs lasers ultra-rapides à 

disques fins (TDL pour « thin-disk lasers » en anglais) représentent une manière simple et 

compacte pour générer directement de puissants trains d’impulsions ultra-brèves à un taux 

de répétition dans les mégahertz. Les oscillateurs TDL à verrouillage de modes de haute 

puissance qui opèrent à une longueur d’onde centrale autour de 1 µm délivrent une puissance 

moyenne de plusieurs centaines de watts contenues dans des impulsions d’une durée de 

quelques centaines de femtosecondes et une énergie de plusieurs dizaines de microjoules. 

Ces lasers ont déjà été utilisés avec succès pour réaliser des expériences sans amplification 

externe dans le domaine de la science des champs forts à des taux de répétition dans les 

mégahertz. Cependant, une étape de compression externe des impulsions à moins de 100 fs 

était nécessaire pour ces applications. La génération d’impulsions puissantes de moins de 

100 fs directement à l’intérieur d’un TDL ultra-rapide améliorerait leur adéquation pour des 

domaines d’applications comme le traitement des matériaux, la recherche biomédicale, ou la 

recherche fondamentale. Néanmoins, avant ce travail de thèse, les niveaux de puissance des 

oscillateurs TDL pour les impulsions de moins de 100 fs était limité à 5 W et les durées 

d’impulsions les plus courtes étaient 60% plus longues que pour les oscillateurs à cristaux épais 

dopés à l’ytterbium.  

Cette thèse décrit le développement de nouvelles sources TDL ultra-rapides basées sur 

l’ytterbium qui montrent des performances supérieures pour des durées d’impulsions de 

moins de 100 fs. Durant les 17 ans passés, les records en termes de durées d’impulsions 
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étaient obtenus grâce au verrouillage de modes utilisant un miroir à absorbant saturable en 

matériaux semi-conducteurs (SESAM pour « semiconductor saturable-absorber mirror » en 

anglais) avec différents cristaux dopés à l’ytterbium présentant des surfaces d’émissions 

larges spectralement. Dans cette thèse, le potentiel de tels matériaux avec un gain très large 

est exploré avec le verrouillage de modes par lentille à effet Kerr (KLM pour « Kerr lens mode-

locked » en anglais), qui fournit une réponse plus rapide et une large profondeur de 

modulation. L’influence des paramètres clefs du laser est examinée pour la génération de 

puissantes impulsions ultra-brèves. Cette recherche a conduit à la réalisation d’un TDL KLM 

basé sur un cristal dopé à l’ytterbium qui délivre une puissance moyenne record pour les TDL 

dans les catégories de durée d’impulsions inférieures à 100 fs et 50 fs. Avec une puissance 

moyenne en sortie supérieure à 10 W et des impulsions de 90 fs, le laser délivre plus de deux 

fois plus de puissance que les autres oscillateurs TDL dans la catégorie de durée d’impulsions 

de moins de 100 fs. Cette démonstration de principe ouvre les portes à l’augmentation de la 

puissance crête et de la puissance moyenne en vue de la génération d’impulsions ultra-brèves 

à partir de lasers simples émettant des centaines de watts de puissance moyenne et des 

impulsions contenant des dizaines de microjoules d’énergie. Ces résultats confirment que les 

oscillateurs TDL compacts et ultra-rapides basés sur l’ytterbium ont le potentiel pour 

remplacer les systèmes complexes d’amplificateurs et les lasers titane-saphir dans une large 

gamme d’applications.  

Bénéficiant de la combinaison avantageuse du verrouillage de modes par lentille à effet 

Kerr et de l’émission large bande des matériaux de gain laser, les oscillateurs TDL atteignent 

de nouvelles limites en termes de durée d’impulsions. Pour la première fois, deux oscillateurs 

TDL ultra-rapides basés sur des cristaux d’Yb:LuO et d’Yb:CALGO génèrent des impulsions plus 

brèves que les oscillateurs basés sur des cristaux épais de mêmes matériaux. Avec des durées 

de 30 fs, le premier TDL KLM basé sur un cristal d’Yb:CALGO délivre des impulsions qui sont 

60% plus brèves que celles émises par les autres TDL jusque-là. Cette durée d’impulsion est 

aussi égale à la durée des impulsions les plus brèves délivrées par les oscillateurs à cristaux 

épais basés sur l’ytterbium. Comparé aux configurations standards de pompage des cristaux 

épais par la face arrière, il apparaît que le schéma de pompage des TDL est avantageux pour 

produire des impulsions ultra-brèves puisqu’il permet à des impulsions avec un spectre de 

fréquences plus large de résonner à l’intérieur de la cavité laser. Tandis que les impulsions les 

plus brèves (durée de 35 fs) délivrées par un TDL basé sur l’Yb:LuO présentent un spectre 

optique presque trois fois plus large que la bande passante du gain, les impulsions de 30 fs 

générées par le laser basé sur l’Yb:CALGO exploitent seulement une fraction de la très large 
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bande passante du gain du matériau. Ces résultats indiquent qu’une optimisation plus 

poussée des couches optiques des miroirs de la cavité laser pour obtenir simultanément une 

haute réflectivité qu’une dispersion plate dans une large bande spectrale est capitale pour 

surpasser les performances des impulsions de moins de 10 cycles optiques actuellement 

délivrées par ces deux lasers.  

Ces nouvelles sources visent à réaliser directement de nouvelles applications attractives 

dans les domaines de la spectroscopie et de la physique des champs forts. Une première 

expérience est réalisée pour mettre en valeur le potentiel et la fiabilité de ces lasers. Elle 

démontre le premier peigne de fréquences optiques entièrement stabilisé basé sur les TDL. 

Les deux degrés de liberté du peigne de fréquences sont la fréquence du décalage de phase 

entre la porteuse et l’enveloppe (CEO pour « carrier-envelope offset » en anglais) et celle du 

taux de répétition. Chaque fréquence est détectée et stabilisée sur un signal de référence 

externe radiofréquence. Un verrouillage serré de la phase du battement CEO est atteint avec 

un rétrocontrôle sur le courant d’alimentation de la diode de pompe. Le taux de répétition est 

stabilisé par un miroir de la cavité monté sur un actuateur piézoélectrique. Cette approche de 

peignes de fréquences basés sur les TDL bénéficiera des possibilités d’augmentation de la 

puissance des oscillateurs TDL, réalisant alors des peignes de fréquences de haute puissante 

sans le besoin d’amplification externe ou de compression non-linéaire des impulsions. Ces 

sources devraient ouvrir les portes vers de nombreuses expériences dans les domaines de la 

métrologie et de la spectroscopie large bande de haute résolution, tout particulièrement pour 

les futurs peignes de fréquence dans l’ultra-violet extrême (XUV pour « extreme-ultraviolet » 

en anglais) obtenus par génération d’harmoniques d’ordres élevés (HHG pour « high-

harmonic generation » en anglais). 

De plus, cette thèse expose une démonstration de principe de la réalisation de HHG à 

l’intérieur de la cavité d’un oscillateur TDL ultra-rapide comme source compacte de lumière 

laser pulsée dans l’XUV. En utilisant un TDL à verrouillage de modes par SESAM à la pointe de 

la technologie, la génération d’harmoniques est effectuée dans un jet de gaz à haute pression 

et donne lieu à un montage compact qui opère à un taux de répétition dans les mégahertz. La 

lumière XUV est détectée jusqu’à la 17ème harmonique (61 nm, 20 eV), alors qu’aucune sévère 

perturbation n’est observée dans le fonctionnement du laser sous l’effet du jet de gaz et du 

processus de HHG qui s’ensuit. Combiné avec l’optimisation des conditions d’accord de phase 

pour le processus HHG et une extraction améliorée de la lumière XUV, le remplacement du 

laser actuel par l’un des TDL KLM mentionnés précédemment qui émet des impulsions 
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considérablement plus brèves, permettra une augmentation significative du flux de photons, 

même à des harmoniques d’ordres plus élevés. En stabilisant les fréquences du taux de 

répétition et du CEO de l’oscillateur KLM, la génération d’un peigne de fréquences dans l’XUV 

à partir d’une source simple à une seule étape est à portée de main des oscillateurs TDL ultra-

rapides. Etant donné l’intense flux de photons résultant de la haute puissance moyenne 

présente à l’intérieur de la cavité laser, cette classe de sources compactes de lumière 

cohérente dans l’XUV a le potentiel pour devenir un outil polyvalent pour des domaines variés 

comme la science des phénomènes attosecondes, l’imagerie à l’échelle nanométrique et la 

spectroscopie de précision dans l’XUV.  

 

Mots clefs : lasers ultra-rapides, lasers à verrouillage de modes, oscillateurs lasers à disques 

fins, lasers de haute puissance, matériaux dopés à l’ytterbium, infrarouge proche, peignes de 

fréquences optiques, fréquence de décalage de phase entre la porteuse et l’enveloppe, 

génération de hautes harmoniques, sources lasers dans l’ultra-violet extrême.  
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 High-power femtosecond laser 

oscillators: achievements and challenges 

These doctoral studies focus on the development of novel ultrafast high-power thin-disk 

laser (TDL) oscillators and their applications. This first chapter aims at giving the reader a brief 

introduction to high-average-power lasers with a strong emphasis on the TDL technology. 

Section 1.1 briefly describes the conventional high-power laser technologies. Section 1.2 

concentrates on the specific properties of the TDL geometry for laser-light amplification. 

Section 1.3 reports on the evolution of the performance achieved from soliton mode-locked 

TDL oscillators. The key factors for these improvements and the current limitations are 

presented. Section 1.4 spotlights the two most promising gain materials for the generation of 

powerful ultrashort pulses from TDL oscillators. Their characteristics are compared to the ones 

of Yb:YAG the standard gain medium for ultrafast TDLs. 

1.1 Technologies for ultrafast high-power laser sources 

Ultrafast high-power lasers are highly attractive light sources which find applications both in 

industry and fundamental research [1]. For a given pulse energy, increasing the average power 

corresponds to increasing the repetition rate, i.e., the number of pulses per second. Laser 

systems delivering high average power in ultrashort light pulses are beneficial in many ways. 

They increase the processing quality, speed and precision in industrial applications such as 

cutting and welding. Additionally, they decrease the acquisition time, and enhance the signal-

to-noise ratio for measurements in fundamental science experiments. Unfortunately, the 

generation of high optical power induces a significant heat load in the gain medium, which 

mainly originates from the quantum defect and non-radiative decays. The temperature 

increase of the component and the subsequent temperature gradient are converted into 

deformation, stress and change of the optical properties of the material, which are quantified 
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by its thermo-mechanical and thermo-optical coefficients. This affects the laser beam 

propagation and beam quality, e.g., by creating a thermal lens inside the resonator, and may 

even lead to damage. Consequently, efficient heat removal from the gain element is 

paramount for high-power operation. 

To minimize the amount of generated heat, laser materials are selected to feature a low 

quantum defect and good structural quality. Yb-doped materials hold several advantages as 

gain media for high-power femtosecond lasers [2]. In most cases, they operate in a quasi-

three-level system with a quantum defect smaller than 10%. They usually exhibit a relatively 

large absorption band, typically broader than 3-nm full-width at half maximum (FWHM) in the 

spectral region 910-950 nm and a zero-phonon line usually narrower than 3-nm located 

around 960-980 nm, which brings the advantage of a smaller quantum defect. These 

wavelength ranges are directly accessible by InGaAs-based laser diode systems which are 

commercially available with kilowatts power levels coupled into a multimode fiber. Moreover, 

volume-Bragg-grating (VBG) wavelength-stabilization has proven to be a successful way to 

reduce the diode spectral bandwidth to less than 1-nm FWHM and match the zero-phonon-

line absorption peak [3].  

Efficient heat removal is a crucial factor to operate the laser at a high average power. The 

thermal conductivity of the laser gain element controls the cooling efficiency with which the 

heat can be evacuated from within the volume of the gain element. Gain materials are 

generally chosen according to distinct laser properties for a given application such as the gain 

bandwidth or the thermal conductivity. Whereas most physical properties are set by the 

choice of the laser material, the component geometry can be adjusted for optimal heat 

management. Excellent heat extraction is achieved in configurations which feature a high 

surface-to-volume ratio (see Figure 1) [5]. In the slab geometry, the gain component is shaped 

like a large thick slice. The beam propagates along the longitudinal direction and the heat is 

removed in the perpendicular direction through the large surface of the gain element. The 

fiber geometry increases more dramatically the surface-to-volume ratio of the gain medium. 

The laser beam propagates in the waveguiding structure and the thermal load is efficiently 

dissipated in the radial direction. Nonlinear effects resulting from the long interaction length 

of the ultrashort pulses in the gain medium nevertheless compromise the high-amplification 

capabilities of these two concepts. Due to the difficulties to geometrically relax the laser peak 

intensity, temporal stretching of the pulses is often required. Therefore, these technologies 

are mostly used in amplifier architectures for high-power operation. In contrast, TDLs rely on  
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Figure 1. a) Slab, b) fiber and c) thin-disk geometries enable high-average-power operation due to 
their good heat management resulting from a high surface-to-volume ratio. Figure courtesy of 
Martin Saraceno [4].  

a small interaction length between the gain medium and the laser light, at the expense of a 

small gain per pass. The beam propagates along the thin direction and the heat is extracted 

through the large surface of the gain element. This offers the possibility to decrease the laser 

peak intensity by simply increasing the laser mode size, allowing for reduced nonlinear 

propagation issues. This technology is therefore compatible with both amplifier and oscillator 

schemes for the generation of powerful ultrashort pulses.  

1.2 Thin-disk geometry: a versatile concept for laser-light amplification 

The TDL geometry is a scalable concept for diode-pumped solid-state lasers which enables 

light amplification to high power levels [6,7]. The disk element is generally used in reflection 

and often referred to as an “active mirror”. The front and back surfaces of the disk are coated 

to act as an anti-reflective (AR) surface and as a high-reflective (HR) mirror, respectively, for 

both pump and laser wavelengths. The disk is mounted onto a heat sink, which is cooled from 

the back side (see Figure 2). The thermal effects are greatly reduced compared to bulk media 

owing to the thin gain-medium geometry (typically 100-300 μm thickness), used with 

millimeter- to centimeter-size beam diameters. In combination with a nearly flat-top pump 

beam, the heat flows homogenously in the direction perpendicular to the disk surface, along 

the laser axis. The outstanding heat removal capability combined with efficient laser operation 

from Yb-doped gain crystals allow for laser operation at kilowatt pump power levels and pump 

densities exceeding 10 kW/cm2. Geometrical average-power scaling is simply achieved by 

increasing both pump and laser mode areas on the disk, maintaining a constant intensity on 

the gain element.  

However, the reduced thickness of the gain element provides only a small pump absorption 

and low gain per single pass. A geometrical configuration with 24-44 passes of the pump 

through the disk crystal is applied to recycle the pump photons as illustrated in Figure 3. This 
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Figure 2. a) Picture of a thin-disk laser crystal contacted onto a diamond heat sink and placed onto 
a water-cooled mount (Trumpf GmbH). b) The heat generated in the gain crystal is efficiently 
transferred to the sink owing to the small disk thickness, typically 100-300 µm. The thermal load is 
then dissipated by water cooling the back side of the heat sink. c) The mm-scale beam diameter 
on the thin disk favors a quasi-one-dimensional heat flow which limits the detrimental thermally-
induced changes of the optical properties of the crystal. 

enables efficient pump absorption generally reaching more than 90%. The low single-pass gain 

of typically 10-15% limits the tolerable total cavity losses. This issue is often mitigated by 

implementing several bounces of the laser beam on the disk [8] or using setups with a 

combination of multiple disks [9,10]. Interestingly, the relatively low output coupling degree 

imposed by the gain can be beneficial and enables intra-cavity experiment benefiting from the 

high average and peak power present inside the resonator. For example, molecular alignment 

experiments have been realized using a high-finesse TDL resonator that reached an intra-

cavity average power higher than 100 kW from 50 W of pump power [11].  

Besides advantageous thermal properties, the TDL technology stands out for ultrafast 

operation. Ultrashort laser pulses experience only a limited nonlinear phase shift inside the 

gain medium owing to the small interaction length and the reduced peak intensity exhibited 

 

 

Figure 3. Illustration of the multi-pass pump geometry used to compensate the low absorption per 
single-pass of the thin gain medium. The pump photons are recycled, allowing for high absorption. 
24 pump passes through the disk are shown here. Figure courtesy of Martin Saraceno [4]. 
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by the large-diameter laser beam. In the case of TDL oscillators, the gain is usually not the 

main contributor to the nonlinear phase shift of the pulse. In contrast to standard laser 

oscillators based on bulk crystals, the total intra-cavity nonlinearities can thus be adjusted 

independently from the gain element. This facilitates the laser design, power scaling and 

optimization of the ultrafast laser performance. In the case of amplifier systems, the reduced 

interaction length greatly suppresses nonlinear propagation effects and allows, for example, 

chirp pulse amplification (CPA) with a low stretching factor. 

Due to their remarkable properties, TDLs have been developed intensively and used in a 

large variety of applications. In multi-mode continuous-wave (cw) operation, up to 6 kW of 

average power have been achieved from a single disk with a high optical-to-optical efficiency1 

of 70% [10]. Additionally, an output power higher than 4 kW has been reported with a high 

beam quality (M2 < 1.4) [12]. Multi-pass and regenerative TDL amplifiers demonstrated multi-

ten GW of peak power, kW of average power and mJ of pulse energy with ps-pulses. The 

interested reader may refer to [5,9,13,14] for more detailed results from TDL amplifiers. 

1.3 Soliton mode locking of thin-disk laser oscillators 

Following the demonstration of the first mode-locked TDL oscillator more than fifteen years 

ago [15], tremendous progress in the area of power scaling has been achieved [16]. In this 

period, the field of mode-locked TDLs has evolved into being the leading technology for high-

power and high-pulse-energy ultrafast laser oscillators. An ultrafast TDL oscillator and 

conventional mode-locking techniques are illustrated in Figure 4. 

State-of-the-art ultrafast TDLs emit nearly 300 W of output power [18,19] and multi-tens 

of μJ of pulse energy [20] with several hundred femtoseconds pulse duration. Such 

performance has enabled TDLs to directly drive applications which previously required the use 

of complex amplifier systems [21–23]. However, reducing the pulse duration of high-power 

oscillators is a major challenge. The first TDL emitting sub-100-fs pulses has been 

demonstrated only in 2012 [24] and even today, the power levels in this regime are limited to 

5 W [24,25] (see Figure 5). Therefore, many applications in areas such as high-field physics, 

frequency conversion and frequency-comb generation rely on external nonlinear pulse 

compression. This introduces an additional stage of complexity to the system and may reduce 

the beam quality, power level and degrade the temporal pulse profile. Overcoming the trade- 

                                                                 

1 The term “optical-to-optical efficiency” is shortened to “optical efficiency” in the rest of the manuscript 
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Figure 4. a) Schematic of an ultrafast thin-disk laser oscillator. The thin-disk laser crystal is mounted 
in the thin-disk laser head which provides a multi-pass pump arrangement (figure courtesy of 
Martin Saraceno [4]). Passive soliton mode locking is typically achieved by using either b) a SESAM 
(picture taken from [17]) or c) via the Kerr lensing effect, represented here by a hard aperture. 

 

Figure 5. Overview of sub-200-fs thin-disk laser oscillators based on Yb-doped gain  
materials [24–34]. The colored area spotlights the targeted performances of ultrafast oscillators to 
directly drive applications such as high-field physics, frequency conversion and frequency-comb 
generation. The results presented in this thesis are highlighted with star symbols. 

off between output power and pulse duration by providing a compact and simple laser 

oscillator delivering hundred watts and tens of micro-joules in sub-100-fs pulses will simplify 

many existing experiments and open new application areas. 

Initially, all ultrafast TDLs were passively mode-locked using a semiconductor saturable 

absorber mirror (SESAM, [35]) [36,37]. Besides self-starting pulsed operation and simplicity of 

the cavity design, the combination of TDLs and SESAMs enables power scalability of the 

ultrafast laser performance [16]. At constant pump intensity and repetition rate, the average 

power scales with the laser mode areas on the disk and SESAM, if the dispersion is adapted to 

the increasing self-phase modulation (SPM). SESAM mode-locked TDLs usually operate at 

moderate levels of modulation depth (typically in the range of 0.5% to 2%) with a limited 

spectral bandwidth originating from the spectrally-dependent saturable absorber element, 

e.g., a quantum well. SESAMs with higher modulation depths usually exhibit higher non-



High-power femtosecond laser oscillators: achievements and challenges 

7 

saturable losses and a higher coefficient of two photon absorption [38,39]. It can cause 

thermal issues or even damage at typical kW-average powers and peak powers approaching 

the GW level inside the cavity. These challenges have so far hindered the generation of sub-

500-fs pulses from SESAM mode-locked TDLs based on the well-established Yb:YAG gain 

crystals. One promising direction to overcome this issue is the use of multiple quantum well 

absorbers and dielectric top coatings [40] in combination with a semiconductor substrate 

removal method for improved flatness over a large area and better heat extraction [17].  

In contrast, Kerr lens mode locking is based on a peak-intensity-dependent  

χ(3)-nonlinearity, and is usually triggered in a bulk crystal [41–43]. The additional lens created 

by the nonlinear Kerr effect changes the beam propagation inside the cavity. The resonator is 

designed such that the round-trip losses are reduced for the pulsed operation compared to 

the cw operation. The scheme is referred to as “hard-aperture mode locking” in case an intra-

cavity slit or pinhole is used to block a part of the cw laser beam. This term is opposed to the 

“soft-aperture mode locking” technique, in which the pulse experiences a better overlap with 

the pump beam in the active material compared to the cw laser light. The absence of 

spectrally-dependent losses combined with a high modulation depth and a fast response time 

of the self-amplitude modulation are beneficial for ultrashort pulse generation. It allows 

mode-locked operation with very broad pulse bandwidths [33] and operates at different 

wavelength ranges, e.g., as recently demonstrated around 2 μm from an Ho:YAG laser [44]. 

The major drawback of Kerr lens mode-locked (KLM) lasers lies in the resonator design that 

usually requires operation close to a stability edge [45] and couples the spatial and temporal 

soliton dynamics [46]. Following the demonstration of the first KLM TDL [26], similar scaling 

laws as for SESAM mode-locked TDLs have been demonstrated. It resulted in average output 

powers up to 270 W in 330-fs pulses from Yb:YAG gain material [19]. Recently, 140-fs pulses 

have been generated directly from a KLM Yb:YAG TDL oscillator at an average output power 

of 155 W and an optical efficiency of 29% [34]. These experiments clearly indicate that KLM is 

a promising approach for the generation of powerful ultrashort pulses from TDLs based on Yb-

doped gain materials.  

1.4 Gain materials for powerful ultrashort-pulse thin-disk lasers 

The requirements on the crystal properties for high-power ultrashort TDLs have been 

thoroughly discussed in [47]. Amongst all, decisive characteristics are a broad gain bandwidth, 

high thermal conductivity, and reliable manufacturing possibilities granting access to large-

diameter high-quality thin-disk crystals. Broad gain materials are typically achieved by 
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disordered host materials, which however feature a lower thermal conductivity. Therefore, 

different materials have been investigated to find the best host for Yb-ions. It is important to 

highlight that it is usually not sufficient to consider only the emission bandwidth of a material 

to estimate the minimum achievable pulse duration but instead the inversion-dependent gain 

cross section. Besides, for any given material, the combination of doping concentration and 

crystal thickness must be carefully selected. While a higher doping enables a higher pump 

absorption and higher gain, it typically reduces the thermal conductivity. Similarly, thinner 

crystals offer a lower thermal resistance and reduced thermo-optical effects, which allows for 

higher pumping densities. However, it then exhibits a lower gain and a higher number of pump 

passes is necessary for high pump absorption.  

While Yb:YAG may be the best choice for high average power, its gain bandwidth of 8 nm 

(FWHM) does not directly support pulses shorter than 120 fs (see Table 1). In order to 

generate sub-100-fs pulses from TDL oscillators, numerous Yb-doped laser materials with 

broader gain bandwidths have been developed [47]. Figure 6 presents the timeline of the 

evolution of the minimum pulse duration achieved by bulk and TDL oscillators based on Yb-

doped gain materials. Benefiting from optimized SESAMs and broad gain bandwidths, the 

minimum pulse duration from TDL oscillators has been decreased from initially 680 fs [15] to 

49 fs, which was delivered by a SESAM mode-locked Yb:CALGO TDL at 2-W average 

power [32]. However, the multi-watt power level is comparable to state-of-the-art bulk 

oscillators performance [48] and Yb-based bulk oscillators already demonstrated 40% shorter 

pulses [49]. Most of the recently demonstrated Yb-based broadband gain materials are still in 

an early phase of thin-disk development, suffering from growth defects and non-optimized 

disk processing technologies. Many of the gain media exhibit a comparably low thermal 

conductivity due to their disordered nature. These factors prevent further power scaling at 

the moment. 

On the other hand, KLM TDL oscillators were exclusively based on the widely-used Yb:YAG 

gain medium until recently. This material is extremely attractive for ultrafast high-average-

power laser applications owing to its excellent thermo-mechanical and spectroscopic 

properties. The high structural quality, thermal conductivity and gain allow for the generation 

of sub-ps pulses in more than hundred watts of average power. Yb:YAG crystals are easily 

produced via the Czochralski growth method [60,61]. Consequently, high-optical-quality 

crystals are commercially available with large disk diameters, which has been a key element 

for the rapid progress of the laser performance. Figure 7 reviews the evolution of the 
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maximum average output power and shortest pulses obtained from Yb:YAG TDL oscillators. 

Even though SESAM mode-locked and KLM TDLs reach similar output power levels, it turns 

out that KLM Yb:YAG TDLs enable the generation of much shorter pulses than SESAM mode-

locked Yb:YAG TDLs. Although Yb:YAG features a narrow gain bandwidth, KLM Yb:YAG TDL 

oscillators generated 49-fs pulses at 3.5-W average power [33]. Even shorter pulses of 35 fs 

have been achieved in bulk oscillators based on this gain material [62]. The large optical 

bandwidth in excess of 30 nm resulted on intra-cavity pulse spectral broadening, where 

additional spectral components well beyond the gain spectral limitation are generated via 

SPM [63].  

An extremely promising approach to generate powerful ultrashort laser pulses lies in the 

combination of KLM TDL oscillators and broadband gain materials. Amongst all Yb-doped gain 

 

Figure 6. Evolution of the minimum pulse duration generated by ultrafast oscillators based on 
Yb-doped laser crystals in the bulk and TDL geometries [14,22–25,30,31,41–51]. The gain materials 
used in the TDL results are shown in boxes for information. Bulk: [49–57]; TDL, 
SESAM: [15,24,25,27,32,58,59]; TDL, KLM: [26,33]; the results presented in this thesis are 
highlighted with star symbols. 

 

Figure 7. Evolution of the a) maximum average output power and b) minimum pulse duration 
achieved from ultrafast Yb:YAG TDL oscillators. TDL, SESAM: [8,15,18,64,65];  
TDL, KLM: [18, 25,32,66].  
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Figure 8. Spectroscopic properties of highly promising Yb-doped gain materials for the generation 
of powerful ultrashort pulses from TDL oscillators. a) Absorption, b) emission and c) gain cross 
sections of the different materials. Properties of Yb:CALGO crystals are shown for both 𝜎- and 𝜋-
polarization. The gain cross sections are calculated for an inversion level2 𝛽 of 0.3 according to 
𝜎𝑔𝑎𝑖𝑛 = 𝛽 ∙ 𝜎𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 − (1 − 𝛽) ∙ 𝜎𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛. Data taken from [2,67].  

materials, Yb:Lu2O3 (Yb:LuO) and Yb:CaGdAlO4 (Yb:CALGO) stand out for their specific 

properties and advantages over Yb:YAG crystals. Figure 8 shows a comparison of the 

spectroscopic properties of these gain materials and Table 1 summarizes their main thermo-

mechanical and optical characteristics. 

The Yb-doped sesquioxyde Yb:LuO is an excellent candidate to outperform Yb:YAG as gain 

material for the delivery of sub-100-fs pulses at hundred-watt average power levels. It 

features a high thermal conductivity and its gain bandwidth directly supports the sub-100-fs 

pulse duration. Moreover, average power higher than 140 W has been achieved in mode-

locked operation [68] and Kerr lens mode-locking in the TDL configuration has been 

demonstrated recently [69]. In this proof-of-principle demonstration, the laser delivered sub-

200-fs pulses at multi-watt power level. Chapter 2 details successive investigation on KLM TDL 

oscillators based on Yb:LuO crystals which led to record-high average power generated by TDL 

oscillators in pulses with sub-100-fs and sub-50-fs duration. This laser enabled the realization 

of the first fully-stabilized optical-frequency comb based on a TDL oscillator, which is 

presented in Chapter 4.  

On the other hand, Yb:CALGO features by far the broadest spectral gain bandwidth of the 

Yb-doped materials that have been previously developed for TDL applications. This gain 

material directly supports sub-50-fs pulse generation and currently holds the record for the 

shortest pulses emitted from TDL oscillators. Additionally, multi-ten-watt average power has 

                                                                 

2Reasonable inversion level for TDL oscillators used as a reference value in the manuscript. 
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been reported from SESAM mode-locked Yb:CALGO TDLs. Owing to their remarkable potential 

to generate even shorter pulses, KLM TDL oscillators based on Yb:CALGO laser crystals are 

investigated. A proof-of-concept realization is presented in Chapter 3 and demonstrates 

record-short pulses of 30 fs from Yb-doped bulk and TDL oscillators. 

Table 1. Physical properties at 300 K of few promising Yb-doped gain materials for the generation 
of powerful short pulses from TDL oscillators. Data taken from [67,70–72]. 

 Yb:YAG Yb:LuO Yb:CALGO  
(σ/π pol.) 

Chemical formula Yb:Y3Al5O12 Yb:Lu2O3 Yb:CaGdAlO4 

Melting point (undoped) (°C)  1930 2500 < 1700 

Thermal conductivity (undoped) (W/m·K) 9.8 12.2 ~10 

Thermal conductivity (3 at.% Yb-doped) (W/m·K) 7.1 10.8 6.6 

Fluorescence lifetime (μs) 1040 820 445 

Zero-phonon line (ZPL):    

Central wavelength (nm) 969 976 979 

Absorption bandwidth FWHM (nm) 2.5 2.9 > 5 

σabs (10-20 cm2) 0.83 3.1 1.4/3.8 

Absorption band:    

central wavelength (nm) 940 950 - 

Absorption bandwidth FWHM (nm) > 10 8 - 

σabs (10-21 cm2) 0.82 0.96 - 

Gain at inversion level 𝜷 = 0.3:    

Central wavelength (nm) 1030 1033 1042/1010 

Bandwidth FWHM (nm) 8 13 > 60 

Fourier transform limited pulse duration (fs) 120 90 < 20 

σgain (10-21 cm2) 0.55 0.33 0.15/0.15 

ZPL quantum efficiency (%) 94 94 94/97 

Absorption-band quantum efficiency (%) 91 92 - 
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 Cutting-edge sub-100-fs Kerr 

lens mode-locked thin-disk laser oscillators 

Given the limited performance or the high complexity of the current laser systems, novel 

simple laser sources delivering powerful ultrashort pulses are highly attractive to drive a 

plethora of experiments [73]. As highlighted in Chapter 1, ultrafast TDL oscillators are an ideal 

technological choice to perform intra- and extra-cavity experiments using a single-stage laser 

source with an excellent spatio-temporal pulse quality. To extend the performance of these 

lasers to sub-100-fs pulse durations, numerous Yb-doped broadband gain materials have been 

investigated in SESAM mode-locked TDLs. On the contrary, little work has been reported on 

KLM TDLs based on Yb-doped broadband laser crystals, although the narrow gain spectral 

bandwidth of standard Yb:YAG crystals may be detrimental for operation at sub-100-fs pulse 

duration. In particular, the average power of sub-100-fs TDL oscillators has been limited to 

5 W prior to this work. 

This chapter presents state-of-the-art sub-100-fs TDL oscillators which combine the 

benefits of the broadband Yb:LuO gain material and Kerr lens mode-locking scheme. 

Section 2.1 discusses the thermo-mechanical characteristics and spectroscopic properties of 

Yb:LuO crystals. Additionally, previous laser results are reviewed and confirm the potential of 

this gain medium for the generation of powerful ultrashort laser pulses. Section 2.2 describes 

cw experiments conducted to evaluate the capabilities of the specific thin-disk crystal later 

used for mode-locking experiments. Section 2.3 details an investigation into the influence of 

several laser parameters on the laser behavior. More than 300 laser configurations have been 

tested to determine the maximum output power achievable at sub-100-fs pulse duration as 

well as the minimum pulse duration for a given laser mode size on the Kerr medium. 

Section 2.4 presents the laser performance scaling by enlarging the laser mode size on the 

Kerr medium. Both higher average output power and shorter pulses are obtained. Section 2.5 
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concludes and gives an outlook towards further increase of the average and peak power from 

Yb-based sub-100-fs TDL oscillators.  

2.1 Yb:LuO: a gain material well-suited for the generation of powerful 

sub-100-fs pulses 

The Yb-doped sesquioxyde Yb:LuO is among the most promising candidates to outperform 

Yb:YAG in pushing the performance of high-power ultrashort TDL oscillators [2,47]. Yb:LuO 

exhibits a 60% broader gain bandwidth than Yb:YAG, amounting to 13 nm (FWHM at 𝛽 = 0.3), 

and directly supports sub-100-fs pulse formation. Figure 8 in Chapter 1 shows its absorption, 

emission and gain cross sections and Table 1 in Chapter 1 summarizes its main properties. The 

zero-phonon line of Yb:LuO around 976 nm offers 4-times larger absorption cross sections 

than in the absorption band around 950 nm. It also represents a threefold increase compared 

to the cross sections of Yb:YAG. Additionally, pumping at the zero-phonon line brings the 

advantage of an increased Stokes efficiency and thus a lower amount of generated heat due 

to the quantum defect [74]. The cubic host lutetia (Lu2O3) crystal features a high thermal 

conductivity of 12 W∙m-1∙K-1. Because of the small atomic mass difference between Yb3+-ions 

and Lu3+-ions, doping of lutetia leads to only a small distortion of the phonon propagation 

responsible for heat transport in the crystal. Consequently, the thermal conductivity is nearly 

independent of the doping concentration [75], in contrast to Yb:YAG in which the thermal 

conductivity drops by nearly a factor of two down to 7 W∙m-1∙K-1 at Yb-doping concentrations 

required in the TDL configuration. Hence, high Yb-ion concentrations up to nearly 5 at.% are 

achievable in LuO, and result in a high gain without impacting on the heat handling capabilities 

of the laser crystal. Together with large absorption cross sections, this allows using thinner 

crystals for an improved heat management and reduced thermal effects.  

The larger gain bandwidth and superior thermal behavior favor Yb:LuO over Yb:YAG as ideal 

gain material for high-power ultrashort pulse generation. However, the high melting point 

exceeding 2400°C makes the fabrication of lutetia very challenging. The heat exchanger 

method (HEM) has proven to be a viable technique for growing large-size high-quality single-

crystalline sesquioxyde crystals [76]. A picture of a such a crystal produced at the Institut für 

Laser-Physik (ILP) of the University of Hamburg (Germany) is shown in Figure 9. During the 

growth process, the crucible is kept at a fixed position and crystallization is performed by a 

controlled flow of cooling gas blown against the bottom of the crucible. The production of 

high-quality crystals via HEM requires the use of costly high-purity rhenium crucibles (melting  
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Figure 9. Large-size high-quality Yb:LuO crystal grown by the heat exchanger method (lower scale 
in mm). Picture taken from [2]. 

point around 3180°C), high-purity raw material and optimized atmosphere. Due to the 

technical difficulties and costs, Yb:LuO laser crystals are currently difficult to obtain. However, 

the improved growth of ceramics might change the situation [77]. 

Correspondingly, experimental results confirmed the above-mentioned advantages. Figure 

10 presents a timeline of ultrafast Yb:LuO laser performance in bulk and TDL configurations. 

Laser oscillators based on bulk Yb:LuO crystals supported high optical efficiency close to 70% 

in mode-locked operation [78]. Ceramic-Yb:LuO bulk oscillators delivered pulses as short as 

65 fs at 0.3-W output average power [79] and similar results (71 fs pulses at 1.1-W average 

power) have been obtained from single-crystalline material [80]. The power scalability of 

Yb:LuO lasers has been demonstrated in the TDL configuration, reaching 500 W of cw output 

power in multi-mode operation with record-high optical efficiency of nearly 80% and slope 

efficiency of 90%, approaching the theoretical limit [2]. Even higher average powers have been  

 

 

Figure 10. Evolution of the a) minimum pulse duration and b) maximum average output power 
from ultrafast laser oscillators based on Yb:LuO gain materials in bulk and thin-disk laser geometry. 
TDL, KLM: [69]; TDL, SESAM: [82,83,68,30]; Bulk: [78–80,84]; the results presented in this chapter 
are highlighted with star symbols. 
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achieved with up to 670 W of laser light converted from more than 1 kW of pump power [81]. 

Pump intensities above 7 kW/cm2 could be reached without crystal damage, although the 

crystal was mounted with a sub-optimal indium-tin solder onto a cooper heat sink [75]. 

Diamond heat spreaders offer a higher thermal conductivity and allow for more efficient heat 

removal from the laser crystal. Consequently, high-quality crystals mounted onto diamond 

heat sinks with state-of-the-art contacting technologies are expected to withstand even 

higher pump densities without damage.  

SESAM mode-locked Yb:LuO TDL oscillators generated an average power higher than 

140 W with sub-ps pulses and an optical efficiency exceeding 40% [68], which has held the 

record for the highest average power from any ultrafast oscillator for many years. These lasers 

supported the generation of pulses as short as 142 fs at 7-W average power [30], while 

improved SESAMs enabled power scaling up to 25-W average power in 185-fs pulses [85]. It is 

worth noting that Yb:LuO and Yb:ScO crystals have been used together in a dual-gain SESAM 

mode-locked TDL. In this way, the combination of the two separated emission spectra enabled 

the generation of 103-fs pulses at watt power level and higher power close to 10 W has been 

reached at sub-150-fs pulse duration [31]. Recently, the first KLM Yb:LuO TDL achieved 6-W 

average power in 165-fs pluses [69], making Yb:LuO the second gain material to be Kerr lens 

mode-locked in the TDL configuration. It is interesting to highlight the promising alternative 

to single-crystalline Yb:LuO offered by ceramic Yb:LuO. This gain medium can be easily 

manufactured at low temperature in large size and at relatively low cost, though it has not 

been widely studied yet. Very recent work demonstrated cw operation at more than hundred-

watt power level, and preliminary mode-locking results have been shown at a conference [77]. 

Altogether, owing to its outstanding laser properties and given the previously reported results 

demonstrating high-average power levels and short-pulse generation, Yb:LuO is very well 

suited as TDL gain material for the generation of powerful sub-100-fs pulses. 

2.2 Evaluation of the capabilities of the TDL crystal in continuous-wave 

operation 

The laser experiments have been performed with a 12-mm-diameter Yb(3 at.%):LuO TDL 

crystal. It has been cut from a crystal boule grown at the ILP Hamburg and polished to 160-μm 

thickness with a 0.1° wedge, which avoids interaction between residual reflections and the 

main beam. The front surface is AR-coated while the back surface is coated to be HR at laser 

and pump wavelengths. The laser crystal is contacted onto a diamond heat sink and exhibits 
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Figure 11. Pictures of the 12-mm-diameter 160-μm-thick Yb:LuO laser crystal mounted onto a 
diamond heat sink. The combination of the thin-disk geometry and diamond heat sink enables 
efficient heat removal from the gain medium, which is paramount for high-power laser operation.  

a concave radius of curvature (RoC) of 2.1 m. Figure 11 shows pictures of the disk mounted 

onto its cooling finger by Trumpf GmbH. Water cooling of the diamond backside allows for 

efficient dissipation of the heat generated in the active material. A 400-W fiber-coupled VBG-

wavelength-stabilized diode laser system pumps the laser crystal at the zero-phonon line at a 

wavelength of 976 nm with a spectral width below 0.5 nm FWHM. The disk is placed in a TDL 

head designed for 36 passes of the pump through the gain medium to achieve high pump 

absorption. The pump spot is set to a diameter of 2.8 mm.  

The disk was initially tested in cw operation in a linear cavity as shown in Figure 12. The 

resonator comprises the concave HR-coated backside of the thin-disk crystal and a flat 

 

 

Figure 12. Layouts of a) the multi-mode (MM) and b) fundamental-transverse-mode (FM) 
resonator cavities. OC, output coupler; CM, curved mirror; RoC, radius of curvature. c) Output 
power (solid lines) and optical-to-optical efficiency (dashed lines) as a function of the pump power 
for MM cavity (output coupler transmission TOC = 1.8%) and the FM cavity folded over the disk 
(TOC = 3.6 - 7.6%), thus experiencing twice higher gain per cavity round trip. The black solid lines 
show the linear fits used for the calculation of the slope efficiencies. Inset: Mode profile of the 
output laser beam at 122-W average power (TOC of 3.6%). 
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partially-transmissive mirror used as an output coupler (OC) with a transmission TOC of 1.8%. 

Given the cavity length of 7 cm, the beam radius of the transverse fundamental mode on the 

gain crystal was estimated to be 360 μm from ray-transfer matrix calculations. Consequently, 

the laser operation was highly multi-mode, owing to the 4-times larger pump radius. In such 

a configuration, highest optical efficiencies can be expected due to the improved overlap of 

the top-head pump profile and the multi-mode laser beam compared to a diffraction limited 

Gaussian beam. An output power of 137 W has been obtained from 209 W of incident pump 

power. The optical efficiency amounted to 66% and the slope efficiency was 81%. These values 

are close to the best reported results with this gain material in the TDL configuration [2]. To 

avoid damage, the pump intensity on the disk has been kept below 3.5 kW/cm2, even though 

no hints for the degradation of the laser efficiency were observed even at the highest pump 

powers. 

In the next step, a 3-m-long linear cavity supporting transverse fundamental mode 

operation was built, as depicted in Figure 12b). The disk and a concave curved mirror 

(RoC = 3 m) are placed between two flat end mirrors, of which one is an OC. The ratio between 

fundamental mode and pump spot was estimated to 80%. The beam quality factor 𝑀2 has 

been measured to be below 1.2 in all experiments, confirming close-to-diffraction-limited 

laser behavior. In this configuration where the disk is used as a folding mirror, the laser beam 

passes four times per round trip through the gain medium (accounting 2 passes per bounce), 

which leads to a twice higher gain and consequently a twice larger optimal output coupling 

rate compared to the above-mentioned multi-mode resonator. The lasing performance in cw 

regime has been evaluated for different output coupling rates (see Figure 12c). At TOC = 3.6%, 

the laser emits 122-W average power in fundamental transverse mode with an optical 

efficiency approaching 60% and a high slope efficiency of 70%. These results reveal that this 

particular disk features a high optical quality and is therefore very suitable for mode-locking 

experiments. 

2.3 Experimental study of the performance of Kerr lens mode-locked 

thin-disk lasers  

The performance of KLM TDLs depends on several parameters forming altogether a multi-

dimensional space. The aim of this section is to explore this parameter space to get insight 

into the coupling and influence of the different factors. This empirical study focusses on 

optimizing the laser for maximum output power at sub-100-fs pulse duration or minimum 
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pulse duration for a given laser mode size on the Kerr medium. In consequence, no attempt 

has been made to increase the output power level at longer pulse durations. 

In order to favor pulsed operation over the cw regime, a laser cavity similar to the first KLM 

TDL oscillator [26] is used and depicted in Figure 13a). An undoped YAG plate is placed under 

Brewster angle in the focal region between two HR concave mirrors (CM2 and CM3), which 

have both a 300-mm RoC. The plate ensures a linear polarization of the laser and serves as 

Kerr medium for the mode-locking mechanism. The setup for hard-aperture Kerr lens mode 

locking is completed by a water-cooled pinhole placed in front of an end mirror. The second 

end mirror is used as an OC. The laser mode radius inside the Kerr medium is estimated to be 

70 µm and 125 µm in the sagittal and tangential planes in cw operation. The intra-cavity group 

delay dispersion (GDD) is adjusted by several dispersive mirrors. Pulsed operation is initiated 

by a gentle knock on the laser table and a change of the laser mode size is observed as 

illustrated in Figure 13b). The resonator is operated in ambient air and has a compact footprint 

of 70 cm × 40 cm. 

In this study, the general cavity design is not changed such that the laser mode size on the 

Kerr medium is the same in all laser configurations. The parameters under test are the output 

coupling rate, the intra-cavity dispersion, the hard aperture size, the Kerr medium thickness 

and the repetition rate of the laser. The associated studied ranges are summarized in Table 2. 

 

 

Figure 13a) Schematic of the laser cavity used for the investigation into the performance of Kerr 
lens mode-locked lasers. OC, output coupler; CM1, highly-reflective (HR) curved mirror with a 2-m 
convex radius of curvature (RoC); CM2-CM3, HR 300-mm-RoC concave curved mirror; KM, Kerr 
medium; HA, hard aperture. All other mirrors are HR or dispersive mirrors depending on the 
configuration. The dashed line shows the extended resonator cavity used to evaluate the influence 
of the repetition rate on the mode-locking behavior. b) A difference in the size of the output beam 
profile was observed between cw and mode-locked operation. c) Typical beam quality factor (𝑀2) 
measurement of the output beam of the mode-locked laser. 
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For each configuration, the pump power was adapted to produce the shortest pulses in clean 

single-pulse operation. Increasing the pump power further introduces mode-locking 

instabilities, and typically a cw breakthrough is observed in the optical spectrum.  

For a given resonator design, the Kerr medium determines the strength of the Kerr lensing 

effect for a given laser peak power. Undoped YAG has been selected as Kerr medium material 

because of its high nonlinear refractive index 𝑛2(6.5 · 10−20 𝑚2/𝑊at 1030 nm [86], 

compared to 3 · 10−23 𝑚2/𝑊 for the ambient air [87]) and large thermal conductivity. 

However, other materials such as fused silica (SiO2) and sapphire (Al2O3) have also been used 

in KLM TDLs [26,34]. Besides affecting the Kerr lens focal length, changing the Kerr medium 

thickness contributes via 𝑛2 to a variation of the effective nonlinear coefficient 𝛾 of the laser 

resonator according to: 

𝛾 = ∫
2𝜋

𝜆

𝑛2(𝑧)

𝐴eff(𝑧)
𝑑𝑧

𝐿

0

, 

where 𝐿 denotes the resonator length, 𝜆 the laser wavelength, 𝑛2(𝑧) the nonlinear refractive 

index of the material at the position 𝑧, and 𝐴eff(𝑧) the laser mode area at the position 𝑧. In 

this resonator, a change of thickness of the Kerr medium from 1 to 2 mm increases 𝛾 by 40% 

while it provides more than 85% of the total nonlinear phase shift. Moreover, an increase of 

the repetition rate was evaluated by changing the distance between the disk and OC as shown 

by the dashed line in the cavity sketch in Figure 13a). According to ray-transfer-matrix 

calculations, this length shift does not impact on the laser mode size on the disk or inside the 

Kerr medium for the studied range. As a result of the large beam diameter in this part of the 

cavity, 𝛾 is nearly independent of this length and varies by less than 10% when changing the 

disk-OC distance by 30 cm. Consequently, the change of repetition rate influences mainly the 

pulse energy for a given average power.  

The systematic study has been limited to the aforementioned parameters which have been 

found to be the most significant. As expected from the 15-mm Rayleigh length of the 70 µm 

beam radius at the intra-cavity focus, no significant changes in the mode-locked laser 

performance were observed when shifting the Kerr medium by a few mm. In contrast, the 

distance between CM2 and CM3 affected the mode-locking conditions (mode-locking 

threshold power, tolerable aperture size), however, a thorough investigation of its influence 

was beyond the scope of this work. 
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Table 2. Studied parameter ranges for the investigation into the performance of Kerr lens mode-
locked thin-disk laser oscillators. 

 Min value Max value 

Output coupling rate (%) 0.33 6.5 

GDD per round trip (fs2) -1650 -6700 

Hard-aperture diameter (mm) 1.5 2.7 

Kerr-medium thickness (mm) 1 2 

Repetition rate (MHz) 50 66 

Pump power (W) 30 160 

 

Stable mode locking was achieved for more than 300 laser configurations and a clear trade-

off between the pulse duration, output power and laser efficiency was observed. Figure 14 

shows the laser output power and optical efficiency as a function of the achieved pulse 

duration for the full data set. The graphs highlight the influence of the output coupling rate, 

the inserted GDD per round trip and the hard-aperture diameter, respectively. For smaller 

hard-aperture diameters and lower amounts of inserted GDD per round trip, no stable mode 

locking has been obtained, while for higher values, the pulse duration increased. Besides, 

increasing both the Brewster plate thickness from 1 mm to 2 mm and the repetition rate from 

50 to 66 MHz, which corresponds to a decrease of 20% of the pulse energy at a given average 

power, did not introduce significant changes in the laser behavior. The beam quality has been 

measured for numerous configurations and resulted in a 𝑀2 value smaller than 1.05. A typical 

measurement is shown in Figure 13c). 

Several general trends for the optimization of the laser parameters can be extrapolated 

from this work. For generating the shortest pulses, the output coupling rate, GDD and hard-

aperture diameter must be reduced to the smallest value which still allows the laser to operate 

in stable fundamental cw mode-locking regime. Simultaneously, this leads to a decrease of 

the optical efficiency and to lower output power levels. To reach higher output powers, a 

compromise between these parameters should be made. Although the frontiers of the range 

for stable clean mode locking are clear, any given combination of output power and pulse 

duration within this region could be obtained by several distinct set of laser parameters. It is 

also interesting to note that even though a smaller aperture increases the resonator losses 

and decreases the laser efficiency, it simultaneously enables the generation of both shorter 

and more powerful pulses. These observation are in good agreement with previous reported 

studies on mode locking with fast saturable absorbers [34,88–90]. 
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Figure 14: Influence of the laser parameters on the (a, c, e) output power and (b, d, f) optical-to-
optical efficiency plotted as function of pulse duration. The individual influence of each specific 
parameter is highlighted with diamond symbols. In this case, only the parameter under test is 
varied, and all others are kept constant. Otherwise, (circle symbols) all parameters are varied freely 
and the value of the parameter undertest is given by the color code. The laser parameters shown 
are (a, b) the output coupling degree, (c, d) the inserted negative group delay dispersion (GDD) per 
round trip and (e, f) the hard aperture diameter.  

Optimization to the shortest pulses led to a duration of 64 fs at 0.7-W average output 

power. The highest power at sub-100-fs pulse durations has been achieved with 7.9 W in 94-fs 

pulses, while more than 10 W has been obtained in 132-fs pulses. Table 3 shows the detailed 

laser parameters and Figure 15 presents the pulse characterization of the three selected 

configurations. The noise characterization depicted in Figure 15c-d) has been performed with 

an intermediate cavity configuration which delivered 5-W average power in 94-fs pulses. The  
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Table 3. Mode-locked performance and laser parameters for the three selected configurations, 
which achieve the shortest pulse duration, the highest power at sub-100-fs pulse durations, and 
the shortest pulses with more than 10-W average power, respectively. IC, intra-cavity, HA, hard 
aperture. 

Configuration 64 fs 94 fs 132 fs  Configuration 64 fs 94 fs 132 fs 

Output power (W) 0.7 7.9 10.4  GDD per round trip (fs²) -2200 -2200 -3750 

Peak power (MW) 0.2 1.1 1.3  HA diameter (mm) 1.7 2.0 2.1 

Pulse energy (μJ) 0.01 0.12 0.19  Repetition rate (MHz) 56 65 65 

IC average power (W) 233 219 289  Output coupling rate (%) 0.3 3.6 3.6 

IC peak power (MW) 57 32 36  Pump power (W) 114 135 135 

Central wavelength (nm) 1033 1035 1038  Optical efficiency (%) 0.6 5.9 7.7 

FWHM bandwidth (nm) 18.0 12.7 10.0  Time-bandwidth product 0.324 0.334 0.367 

 

 

 

Figure 15. a) Optical spectra of the 64-fs, 94-fs and 132-fs laser configurations. The normalized gain 
cross section σgain of Yb:LuO is calculated for an inversion level 𝛽 of 0.3 and shown in grey color for 
reference (data taken from [2]). b) Intensity autocorrelation traces with corresponding sech2 fit. 
c) Phase and amplitude noise power spectral densities (PSD) measured at the 38th harmonic of the 
repetition rate (2.47 GHz) of an intermediate laser configuration delivering 5 W in 94-fs pulses. 
(inset) Radio-frequency spectrum of the carrier frequency at 65 MHz measured with a 1-kHz 
resolution bandwidth. d) Left y-axis: Rms timing jitter integrated from 1 Hz and (inset) from 1 kHz 
up to 1 MHz; right y-axis: rms relative intensity noise.  
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noise measurement of the 38th harmonic of the repetition rate (38 × 65 MHz = 2.47 GHz) 

resulted in a 0.1% root-mean-square (rms) relative intensity noise (RIN) (integrated from 1 Hz 

to 1 MHz) and an rms timing jitter of 50 ps (integrated from 1 Hz to 1 MHz) or 73 fs (integrated 

from 1 kHz to 1 MHz) for the unstabilized oscillator. 

2.4 Performance scaling of Kerr lens mode-locked Yb:LuO thin-disk lasers 

Following the first demonstration of a KLM TDL [26], Brons et al. demonstrated that the intra-

cavity peak power of KLM TDLs scales with the laser mode radius on the Kerr medium inside 

the resonator cavity [91]. It simultaneously results in an increased average output power of 

the laser. It is then a logical step to apply this scaling method to the lasers presented in 

Section 2.3. For this, the curved mirrors around the Kerr medium are replaced by 400-mm-RoC 

curved mirrors and their separation distance is adapted accordingly, as depicted in Figure 

16a). The laser mode radius on the Kerr medium is increased from 70 µm × 125 µm to 

90 µm × 150 µm in the sagittal and tangential planes in the cw regime. A 2-mm-thick undoped 

YAG plate is used as Kerr medium, and the cavity length is set to 2.5 m, resulting in 61-MHz 

repetition rate. The resonator is operated in ambient air and has a footprint of only 

80 cm × 40 cm. 

As observed in Section 2.3, stable mode locking is obtained for a large variety of 

parameters. The laser has been optimized following the guidelines given in the previous 

section, and Table 4 summarizes the laser characteristics for three representative 

 

 

Figure 16. a) Schematic of the cavity used for scaling the performance of Kerr lens mode-locked 
Yb:LuO thin-disk laser oscillators. CM1, highly reflective (HR) curved mirror with a 2-m convex 
radius of curvature (RoC); CM2-CM3, HR 400-mm-RoC concave curved mirror; KM, Kerr medium; 
HA, hard aperture; OC, output coupler. All other mirrors are highly reflective or dispersive mirrors 
depending on the configuration. b) A difference in size of the output-beam profile was observed 
between cw and mode-locked (ML) operations (data shown for the 35-fs laser configuration). 



Cutting-edge sub-100-fs Kerr lens mode-locked thin-disk laser oscillators 

25 

Table 4. Mode-locked performance and laser parameters for the selected configurations, which 
achieved the shortest pulses and the highest average output power at sub-50-fs and sub-100-fs 
pulse durations, respectively. IC, intra-cavity; HA, hard aperture. 

Configuration 35 fs 49 fs 88 fs  Configuration 35 fs 49 fs 88 fs 

Output power (W) 1.6 4.5 10.7  GDD per round trip (fs²) -1000 -1100 -2200 

Peak power (MW) 0.7 1.3 1.8  HA diameter (mm) 1.9 2.0 2.0 

Pulse energy (μJ) 0.03 0.07 0.18  Repetition rate (MHz) 61 61 61 

IC average power (W) 178 167 233  Output coupling rate (%) 0.9 2.7 4.6 

IC peak power (MW) 73 49 38  Pump power (W) 76 96 186 

Central wavelength (nm) 1029 1031 1038  Optical efficiency (%) 2.1 4.7 5.8 

FWHM bandwidth (nm) 33.9 24.1 14.4  Time-bandwidth product 0.336 0.333 0.353 

 

configurations. The 88-fs and 49-fs configurations achieve 10.7-W and 4.5-W average output 

power, respectively, which is the highest average power at sub-100-fs and sub-50-fs pulse 

durations. The shortest pulses of 35 fs are generated at 1.6-W output power. For each 

configuration, single-pulse operation is confirmed with a 180-ps long-range autocorrelation 

and observation of the trace of a fast 18.5-ps photodiode on a 40-GHz sampling oscilloscope. 

Figure 17a-b) show the optical spectra of the laser output and the intensity autocorrelation 

traces with the corresponding sech2 fit for the three configurations. For the measurement of 

the 35-fs pulses, an extra-cavity dispersive mirror with negative GDD of -250 fs2 has been used 

to compensate for the material dispersion of the OC mirror substrate and for the propagation 

in air. The side peaks observed in the spectra of the ultrashort pulses carry only a minor 

fraction of the power (about few percent) and are associated with dispersive waves, similar 

to the sidebands observed in previous work, e.g., [54,57,92]. Their position does not depend 

on the intra-cavity power but may vary when using distinct sets of intra-cavity mirrors. 

Moreover, their amplitude is comparably smaller inside the resonator as a result of the 2-fold 

increase of the OC transmission at the edges of the spectrum. It should be noted that the 

35-fs-pulse optical FWHM bandwidth is nearly 3 times broader than the FWHM gain cross 

section of Yb:LuO. The additional spectral components well beyond the gain limit originate 

from the SPM in the Kerr medium [63]. Such an intra-cavity spectral broadening has already 

been reported for Yb:YAG bulk and TDL oscillators [33,93].  

The radio-frequency (RF) spectrum of the 35-fs-pulse repetition rate frequency shows a 

clean spectrum without any side peak at 300-Hz resolution bandwidth (RBW) and 70-dB signal-

to-noise ratio (see Figure 17c). The long-term and short-term stability of the 35-fs  
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Figure 17. a) Optical spectra of the 35-fs, 49-fs and 88-fs laser configurations. The normalized gain 
cross section σgain of Yb:LuO is calculated for an inversion level 𝛽 of 0.3 and shown in grey color for 
reference (data taken from [2]). (inset) Optical spectrum of the 35-fs laser plotted with y-axis in 
log-scale. b) Intensity autocorrelation traces with corresponding sech2 fit. c) Radio-frequency 
spectrum of the 35-fs-pulse repetition rate frequency (𝑓rep) measured with a 300-Hz resolution 

bandwidth (RBW). d) Sampling oscilloscope trace in 1 ns and (inset) 20 ns of the 35-fs pulse train. 
The weak ringing in the signal trace at 0.5 ns is an artefact due to the electronics of the detection 
setup. 

 

 

Figure 18. Long-term and short-term stability of the 35-fs Kerr lens mode-locked Yb:LuO thin-disk 
laser. a) Normalized average output power measured over more than two hours. (inset) Same data 
plotted with different y-axis limits. b) Phase and amplitude noise power spectral densities (PSD) 
c) Left y-axis: Rms timing jitter; right y-axis: rms relative intensity noise. (inset) Radio-frequency 
spectrum of the carrier frequency at 61 MHz measured with a 50-Hz resolution bandwidth.  
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configuration are presented in Figure 18. Even though no special effort was made to improve 

the stability of the laser, it operates for hours with considerably stable output parameters. 

The laser suffers from a small thermal drift, leading to a 5%-decrease of the average output 

power after two hours of operation and a standard deviation of 1.7%. The short-term noise 

measurement of the fundamental carrier frequency at 61 MHz shows a RIN smaller than 0.2% 

(integrated from 1 Hz to 1 MHz) and a timing jitter of 35 ps for an integration from 1 Hz to 

1 MHz. 

These results demonstrate 35% higher average output power at sub-100-fs pulse durations 

owing to the ≈30%-enlargement of the laser mode radius on the Kerr medium, compared to 

the results presented in Section 2.3. The increase of the intra-cavity peak power is in good 

agreement with the scaling law demonstrated for KLM Yb:YAG TDLs [34] as shown in Figure 

19. Besides power scaling, the minimum pulse duration decreased by nearly 50%. However, 

the impact of the increase of the laser size on the Kerr medium on the pulse duration is not 

clear yet. The shortening of the pulse duration is mainly attributed to the distinct sets of 

dispersive mirrors used inside the cavity, the latter ones being more broadband. This point 

will be discussed in more details in Section 3.4.  

 

Figure 19. a) Overview of the mode-locked laser performances obtained from two cavities 
featuring different laser mode radii on the Kerr medium (KM) 𝑤Kerr. The filled circle symbols (grey 
and blue) correspond to the lasers presented in Section 2.3; the square symbols correspond to the 
results presented in this section. b) Intra-cavity peak power as a function of the laser mode radius 
on the KM. The radius of curvature (RoC) of the concave curved mirrors placed around the KM is 
given for information. Red cross symbols show the results from [34]. The presented results are 
highlighted with star symbols. 
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2.5 Towards oscillators delivering sub-100-fs pulses at hundred-watt power 

levels 

This chapter describes an extensive study on the performance of ultrashort KLM TDL 

oscillators. The maximum average output power at sub-100-fs pulse durations and the 

minimum pulse duration achievable in soliton mode locking have been investigated. The most 

influent parameters were the output coupling rate, the intra-cavity GDD, and hard aperture 

diameter. The results give important guidelines for the generation of ultrashort pulses. The 

oscillator must be driven at moderate level of inserted GDD and at low inversion of the gain 

by selecting a low degree of output coupling. A small hard aperture diameter maximizes the 

modulation depth and allows reaching the shortest pulse durations. Nevertheless, ultrashort 

pulse durations come at the expense of a low optical efficiency, which is below 10% at sub-

100-fs pulse durations in the current systems (see comparison in Table 5). Comparison of the 

experimental observations with simulations would be beneficial to predict the limits of pulse 

duration, output power and optical efficiency, especially given the gain narrowing effect and 

laser reabsorption in the case of ultrabroadband pulses. Higher optical efficiencies are 

nonetheless expected by refining the cavity design for lower non-saturable losses and using 

more suitable broadband mirrors. The standard HR-coatings of the mirrors and disk crystal 

used in these experiments are specified by the manufacturers to exhibit a high reflection 

(>99.98%) only in the range of 1000-1100 nm, which does not fully support the large pulse 

spectral bandwidth and may induce detrimental losses. Further details on the optical 

efficiency of the ultrashort pulse generation are discussed in Chapter 3, Sections 3.3 and 3.4. 

Following the suggested scaling law from Brons et al. [91], the intra-cavity peak power of 

the laser has been scaled by enlarging the spot size on the Kerr medium. This first scaling 

iteration led to the highest average power in sub-100-fs and sub-50-fs pulses directly emitted 

from a TDL oscillator with 10.7 W in 88-fs pulses and 4.5 W in 49-fs pulses. These results 

confirm the advantages of Yb:LuO as ideal gain material for KLM TDL oscillators for the 

generation of powerful sub-100-fs pulses. As a logical continuation, successive scaling 

iterations will be performed towards the generation of hundred watts of average power at 

sub-100-fs pulse durations. Scaling of the output power requires higher pump power levels 

which may lead to intensities close to the damage threshold of the laser crystal. To avoid this 

risk, the pump area can easily be scaled on the 12-mm-diameter disk by adapting the pump 

setup and cavity design. Additionally, previous work reported that the air inside the oscillator 

has a prejudicial contribution to the total nonlinear phase shift accumulated in lasers featuring 
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Table 5. Overview of sub-100-fs mode-locked thin-disk laser oscillators. 𝑃out, average output 
power; 𝐸pulse, pulse energy; Δ𝜏, pulse duration; Rep. rate, repetition rate; 𝑃peak, output peak 

power; 𝜂opt, optical-to-optical efficiency; 𝑃pump, pump power. 

Gain 

material 

𝑷𝐨𝐮𝐭 

(W) 

𝑬𝒑𝒖𝒍𝒔𝒆 

(nJ) 

𝚫𝝉 

(fs) 

Rep. 
rate 

(MHz) 

𝑷𝒑𝒆𝒂𝒌 

(MW) 

𝜼𝐨𝐩𝐭 

(%) 

𝑷𝐩𝐮𝐦𝐩 

(W) 

Reference 

Yb:LuScO 5.1 66 96 77 0.60 11 46 [32] 

Yb:CALGO 5.1 78 62 65 1.11 7 73 [33] 

Yb:CALGO 2 31 49 65 0.55 5 40 [34] 

Yb:YAG 3.5 18 49 200 0.31 3.5 100 [30] 

Yb:LuO 10.7 175 88 61 1.75 5.8 186 Chapter 2 

Yb:LuO 4.5 74 49 61 1.32 4.7 96 Chapter 2 

Yb:LuO 1.6 26 35 61 0.66 2.1 76 Chapter 2 

Yb:CALGO 0.15 1 30 124 0.04 0.1 150 Chapter 3 

 

a high intra-cavity peak power [18,20,34,94,95]. Two different approaches have been used to 

circumvent this challenge. Firstly, an efficient reduction of the intra-cavity peak power is 

realized by using a high output coupling degree. To compensate for these losses, a high gain 

is obtained with a multiple-pass arrangement of the laser beam on the low-single-pass-gain 

TDL crystal. In SESAM mode locking, 11 bounces per round trip on the disk have been 

demonstrated and resulted in energetic ps-pulses at an output coupling degree of 72% and an 

optical efficiency above 25% [94]. In case of Kerr lens mode locking, the resonator must be 

carefully designed to account for the multiple passes on the disk and the change of the beam 

size between cw and mode-locked operations. To date, up to 3 passes on the disk have been 

reported [96] but the influence on the pulse duration of an additional soft aperture or gain 

narrowing is not yet clear. Secondly, operating the laser in helium or evacuated environment 

drastically reduces the nonlinearities originating from the air [34,18,95,20]. Nevertheless, the 

complexity and cost of such a system are greatly increased by the requirements linked to the 

laser operation under vacuum.  

In this work, the key factor for ultrashort pulse generation is the combination of the 

broadband gain material Yb:LuO and the Kerr lens mode-locking scheme. The 35-fs KLM 

Yb:LuO TDL achieves 4-times shorter pulses than previously reported from this gain material 

in TDL configuration [30] and nearly 2-times shorter pulses than generated in the bulk 

geometry [79]. This is the first demonstration of a TDL oscillator delivering shorter pulses than 

oscillators based on bulk crystals of the same material. Notably, the 35-fs-pulse FWHM optical 
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spectrum is 3 times larger than the Yb:LuO gain bandwidth. The pulse duration is currently 

limited by the optical properties of the intra-cavity components. Further detailed discussion 

on the limits of the pulse durations are presented in Chapter 3, Section 3.4.  

Finally, decisive laser characteristics to drive efficient nonlinear processes are typically the 

wavelength, the spatio-temporal pulse quality, the pulse duration and the pulse energy (i.e., 

the peak power). The repetition rate of the driving laser determines in most cases the average 

power of the generated signal influencing the acquisition time and SNR for a given detection 

scheme. Ultrafast TDL oscillators based on Yb-doped crystals operate at around 1 µm and 

deliver trains of ideal soliton pulses at megahertz repetition rates in diffraction-limited laser 

beams. Therefore, strong effort is given to increase the peak power of these lasers to directly 

drive experiments. Recently, 500-fs pulses with 10-MW peak power have been reported from 

a SESAM mode-locked TDL based on Yb:LuO operating at 11-MHz repetition rate in an 

evacuated environment [97]. Operating the KLM TDLs described in Section 2.4 at 10-MHz 

repetition rate can easily be achieved by increasing the resonator length to 15 m using a 

simple telescope in a 4-f arrangement. Assuming similar output power level and pulse 

duration, the laser would deliver pulses with 10-MW peak power at sub-100-fs pulse durations 

and exhibit intra-cavity peak power larger than 200 MW. Given the high repetition rate, high 

peak power and short pulses, this KLM TDL oscillator based on Yb:LuO gain material would be 

an ideal compact source to efficiently drive both intra-cavity and extra-cavity experiments in 

the fields of high harmonic generation [23], high-field science [21], THz spectroscopy [98], 

mid-infrared frequency conversion [22,99] and frequency comb generation [100]. 
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 New pulse-duration limits of 

ultrafast thin-disk laser oscillators 

During the last decade, Yb-based ultrafast laser oscillators have successfully been replacing 

conventional Ti:sapphire oscillators in many industrial and scientific areas, especially for 

applications requiring hundreds of femtosecond long pulses [73,101,102]. However, for 

operation in the few-cycle regime, Ti:sapphire lasers remain the leading technology. Yet, 

alternative laser sources delivering few-cycle laser pulses are highly attractive, e.g., ultrafast 

diode-pumped Yb-doped solid-state laser oscillators feature a high efficiency, compact size, 

low complexity and relatively low cost. Yb-based bulk oscillators already generated pulses as 

short as 30 fs, i.e., 10 optical-cycles [49]. However, the graphene-mode-locked laser based on 

Yb:CaYAlO4 (Yb:CYA) gain crystal delivered only 26 mW of average power at this pulse 

duration. Thermal effects and large nonlinearities in the gain medium are severe challenges 

for significant power increase in the bulk geometry, though it can be solved by reducing the 

gain medium thickness, i.e., using the thin-disk geometry. In this case, the nonlinearities can 

be tailored independently from the gain crystal. Nevertheless, as introduced in the previous 

chapters, the generation of ultrashort pulses at high-power levels is challenging. Chapter 2 

demonstrated cutting-edge ultrafast TDL oscillators operating at sub-50-fs pulse duration. 

These KLM TDL oscillators based on the broadband gain material Yb:LuO emit up to 5-W 

average power and reach pulse durations down to 35 fs. 

This chapter continues to explore the possibilities offered by KLM TDL oscillators based on 

Yb-doped broadband gain media and reports on new pulse duration limits for these lasers. 

Record-short pulses from Yb-doped bulk and TDL oscillators are obtained by the 

unprecedented combination of KLM TDL oscillators with the ultra-broadband gain material 

Yb:CALGO. Section 3.1 describes the main thermo-mechanical characteristics and the 

spectroscopic properties of Yb:CALGO. In parallel with a summary of previously reported 
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results, the advantages and challenges linked to this gain material are highlighted. Section 3.2 

presents the initial evaluation of the performance in cw regime of the specific thin-disk mirror 

later used for mode-locking experiments. Section 3.3 focusses on the first demonstration of a 

KLM TDL oscillator based on Yb:CALGO. The laser delivers 30-fs pulses which is equally short 

to the shortest pulses generated by ultrafast Yb-doped bulk oscillators. Section 3.4 discusses 

the main limitations of the current result. It appears that the dispersion compensation 

required for soliton mode locking in negative dispersion regime has hindered so far the 

formation of pulses with a wider optical bandwidth. Finally, Section 3.5 concludes and gives 

an outlook towards the direct generation of few cycle pulses from Yb-based laser oscillators. 

3.1 Yb:CALGO: an ultra-broadband gain material for record-short-pulse 

generation 

Yb:CaGdAlO4 (Yb:CALGO) offers a nearly-flat extremely-broad smooth gain due to its 

disordered crystalline structure (see Chapter 1, Figure 8). Its gain bandwidth exceeds 60 nm 

FWHM at 30% inversion level in both σ- and π-polarizations, which is eight times larger than 

for Yb:YAG. Such a broad gain profile directly supports the generation of sub-20-fs pulses. 

Table 1 (in Chapter 1) presents a comparison of the main spectroscopic and thermo-

mechanical properties of Yb:CALGO, Yb:YAG and Yb:LuO gain materials. It is interesting to note 

that the shape and central wavelength of the gain cross section is influenced more 

consequently by the inversion level in the case of Yb:CALGO than for Yb:YAG and Yb:LuO. 

Yb:CALGO features a thermal conductivity of 6.3 W∙m-1∙K-1 along the c-axis at 2-at.% doping 

concentration, which is comparably high with respect to other Yb-doped broadband gain 

materials [47,71]. At this doping concentration, the thermal conductivity is nearly half 

compared to undoped CALGO crystal. A similar behavior is observed in Yb:YAG crystals where 

the large mass difference amounting to 55% between Y3+ and Yb3+ ions strongly affects the 

thermal properties of the crystal. In Yb:CALGO, the Yb3+ doping ions substitute either Gd3+ or 

Ca2+ ions, which feature respectively a 10% and 70% mass difference with Yb3+ ions. Even 

though Ga3+ and Ca2+ occupy the same crystallographic site, substitution of Gd3+ is greatly 

predominant since it has the same valence as Yb3+ ions. This is beneficial for the thermal 

conductivity which stays above 5 W∙m-1∙K-1 even at 5 at.% doping concentration [103]. 

Moreover, pumping at the ZPL at around 979 nm offers large absorption cross sections and a 

quantum defect smaller than 10%, similar to garnet and sesquioxyde crystals. Moreover, 

Yb:CALGO is easily grown at less than 2000°C using the Czochralski growth method [61] and 

 



New pulse-duration limits of ultrafast thin-disk laser oscillators 

33 

 

Figure 20. Large-size Yb:CALGO crystals grown by the Czochralski method. a) Crystal boule and b) 
bulk Yb:CALGO crystal. Picture courtesy of C. Kränkel.  

processing of laser crystals (cutting, polishing) is not particularly demanding [71]. 

Nevertheless, the production of high-quality crystals with low scattering losses remains 

challenging. Figure 20 shows pictures of Yb:CALGO crystals. 

The attractive spectroscopic properties of this gain material have been successfully 

explored in the bulk geometry. In cw regime, 60% optical efficiency and a slope efficiency 

larger than 70% have been obtained at output powers higher than 3 W [67,104]. An overview 

of the ultrafast performance (shortest pulse duration and highest average power) obtained by 

bulk and TDL oscillators is shown in Figure 21. The first mode-locked Yb:CALGO bulk oscillator 

led to 47-fs pulses at 38-mW average power, which was the shortest pulses from any Yb-based 

bulk laser at the time in 2006 [54]. Later, the average power has been increased to 12.5 W in 

94-fs pulses using SESAM mode locking [105]. KLM oscillators led to the generation of 37-fs 

pulses in 1.5-W average power and of pulses as short as 32 fs in 90 mW [57]. In the TDL 

configuration, high optical and slope efficiencies of 56% and 70%, respectively, have been 

obtained in cw operation at 30-W power level [106]. Mounting the crystals onto diamond heat 

sinks allowed for pump densities higher than 4 kW/cm2 without significant astigmatism, 

leading to 150 W of average power converted from more than 400 W of incident pump 

power [107]. In transverse fundamental mode operation the performance are slightly 

reduced, nevertheless 50-W average power has been obtained with an optical efficiency of 

25% and excellent beam quality (𝑀2=1.1) [28]. SESAM mode-locked Yb:CALGO TDLs delivered 

up to 28-W average power in 300-fs pulses with 13% optical efficiency [28]. With the use of 

optimized SESAMs, the pulse duration was decreased to 62 fs at 5-W average power and 7% 

optical efficiency [25]. Improvement of the dispersion compensation enabled the generation 

of 49-fs pulses at 2-W power, realizing the shortest pulses from any TDL oscillator prior to this 

work [32].  
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Figure 21. Evolution of the a) minimum pulse duration and b) maximum average output power 
from ultrafast oscillators based on Yb:CALGO gain material in bulk and thin-disk geometries. TDL, 
SESAM: [25,32,57]; Bulk: [28,54,72,105,108,109]; the result reported in this chapter is highlighted 
with a star symbol. 

A previous attempt of KLM Yb:CALGO TDL has been reported, but stable mode locking could 

not be demonstrated [110]. This might have been due to the difficulties to start the mode 

locking as already observed with other inhomogenously broadened gain materials [111]. More 

generally, the use of Yb:CALGO as gain material is challenging due to the strong anisotropy in 

the lattice, which induces different thermo-mechanical coefficients in the two principal crystal 

axes [103]. These atypical properties lead to undesirable effects such as astigmatism [28] and 

polarization switching under high pumping, i.e., under high thermal load [112]. Achieving 

robust fundamental-mode laser operation at high average power represents a key challenge 

in the development of high-power diode-pumped solid-state lasers based on Yb:CALGO. 

Despite these challenges, owing to the demonstration of mode-locked operation at several-

ten watts of average power and the ultra-broad gain bandwidth supporting sub-20-fs pulse 

formation, Yb:CALGO is one of the most promising Yb-doped gain material for the generation 

of powerful extremely-short pulses. 

3.2 Evaluation of the performance of the disk crystal in continuous-wave 

operation 

The laser is based on a wedged, 150-μm-thick Yb(3.8 at.%):CALGO disk with a c-cut crystal 

orientation (FEE GmbH). The disk has a 6-mm diameter and 2-m concave RoC. It is contacted 

on a diamond heat sink (Trumpf GmbH) and pumped at the zero-phonon line at 979 nm by a 

400-W fiber-coupled VBG-wavelength-stabilized diode laser system. The pump light passes 36 

times through the disk crystal to achieve high pump absorption. The pump spot is set to 2-mm 

diameter. Initial tests in cw regime were performed both in transverse multi-mode and 

fundamental-mode regimes in simple V-cavities (see Figure 22).  
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Figure 22. Laser cavity for operation in transverse (a) multi-mode (MM), (b) fundamental 
mode (FM). OC, output coupler; CM, curved mirror; HA, hard aperture; HR, highly reflective mirror. 
c) (top) picture of the disk with the pump spot and depletion from the laser operating in FM. 
(bottom) corresponding mode profile. d) Average output power (solid lines, left y-axis) and 
corresponding optical-to-optical efficiency (dashed lines, right y-axis) of the disk in MM and FM 
operations for different output coupler transmissions (TOC). The black solid lines show the linear 
fits used for the calculation of the slope efficiencies.  

In highly-multi-mode operation (ratio between the pump and the fundamental laser mode 

sizes of 4), the laser emits up to 60-W average power with 30% optical efficiency and 37% 

slope efficiency at 0.8% output coupling rate. Increasing the output coupling rate to 2.7% 

degraded the optical efficiency to 6% and the slope efficiency to 11%. This indicates a strong 

limitation of the highest output coupling degree for efficient laser operation, which results 

from the combination of doping concentration and disk thickness. Moreover, moving the 

pump spot across the disk showed variations of the extracted power, indicating 

inhomogeneities in the crystalline structure of the disk. Increasing the overlap ratio between 

the fundamental laser mode and the pump to 80% did not lead to fundamental mode 

operation as usually expected for TDLs. Transverse fundamental mode operation (𝑀2 < 1.05) 

was only achieved when inserting a hard aperture in the cavity to suppress the onset of higher 

order modes. For an overlap ratio of 60% and a 1.8-mm hard-aperture diameter, the laser 

delivers up to 7-W average power with 5% optical efficiency and 5% slope efficiency at 0.8% 

output coupling rate. The output power clamps at pump powers higher than 150 W, which 

probably indicates thermal effects in the disk. It is worth noting that the disk mounted onto a 

diamond heat sink stood pump power densities of 6.5 kW/cm2 without damage. The strong 

drop of performance from multi-mode to fundamental mode laser operation is attributed to 

low disk quality which prevents robust transverse fundamental mode operation and 

extraction of the power over the full pumped area. Due to these difficulties, a multiple-pass 

of the laser beam on the disk was not attempted. The cw performance of this particular disk 



Chapter 3 

36 

is comparably poor in terms of average output power [107,110], efficiency [106] and 

gain [113], however further mode-locking experiments have been conducted with this disk.  

3.3 Kerr lens mode-locked Yb:CALGO thin-disk laser oscillator  

For mode locking experiments, the cavity was extended with two 0.25-m-RoC concave mirrors 

(CM1 and CM2) as shown in Figure 23. A 4-mm-thick undoped YAG plate placed under 

Brewster angle between CM1 and CM2 serves as Kerr medium for the mode-locking 

mechanism. The beam radii at this position are estimated from ray-transfer-matrix 

calculations to be 80 μm and 140 μm in the tangential and sagittal planes, respectively, in cw 

regime. The setup also comprises a 1.6-mm-diameter pinhole placed near an end mirror. The 

second end mirror serves as an output coupler with 0.3% transmission. Two dispersive mirrors 

introduce -900-fs2 GDD per round trip. Mode locking is initiated by shifting the position of the 

mirror CM2, then the pump power is adjusted to produce the shortest pulses in clean 

fundamental mode-locking operation. Increasing the pump power further introduces mode-

locking instabilities, and typically a cw breakthrough is observed in the optical spectrum. The 

footprint of the overall oscillator operating in air is 90 cm × 30 cm. 

The laser generates 30-fs pulses as shown by the autocorrelation trace in Figure 24a). Extra-

cavity GDD amounting to -440 fs2 (obtained by two dispersive mirrors and a 3-mm thick fused 

silica plate) was inserted before the autocorrelator to compensate for the material dispersion 

of the output coupler mirror substrate and for the propagation in air. Single-pulse operation 

was ensured by a 180-ps long scan autocorrelation and observation of the trace of a fast 18.5-

ps photodiode on a 40-GHz sampling oscilloscope (Figure 24b). The small fluctuations 

appearing at 0.5 ns are an artefact from the detection electronics. The optical spectrum of the  

 

 

Figure 23. Schematic of the KLM Yb:CALGO TDL cavity. (inset) Output-beam profile of the mode-
locked (ML) laser. OC, output coupler; DM, dispersive mirror; CM1-2, curved mirror, 0.25-m RoC; 
KM, Kerr medium; HA, hard aperture; HR, highly reflective mirror. 
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laser output is centered around 1048 nm and features a 45-nm FWHM bandwidth. It is shown 

in Figure 24c) together with the Yb:CALGO gain cross section calculated for an inversion level 

of 11%. This value is chosen to match the inversion-dependent gain peak with the laser central 

wavelength, owing to the minor wavelength-dependence of the intra-cavity mirror reflectivity 

in this wavelength range. At this inversion level, the gain profile presents a 45-nm FWHM 

bandwidth and sharp edges. The additional peaks in the laser optical spectrum around 950 nm 

and 1150 nm carry only a minor fraction of the power (less than 5%) and are associated with 

dispersive waves as already observed in various oscillators, e.g., [54,57,92]. They appear 

comparably higher in the output spectrum than inside the laser cavity because of the larger 

output coupler transmission at the edges of the spectrum, e.g., 𝑇(𝜆=953 nm) = 2.4% compared 

to 𝑇(𝜆=1046 nm) = 0.3%, which is 8 times smaller. Additionally, this non-uniform transmission 

might have a detrimental effect limiting the laser optical spectrum, and consequently, output 

coupler optimized for a flat transmission over a larger spectral might be beneficial for the 

generation of shorter pulses.  

The laser delivers the 30-fs pulses with an excellent beam quality factor (𝑀2 < 1.05) at an 

average power of 150 mW with an optical efficiency of 0.1%. Stable soliton mode-locking is 

illustrated by the clean radio-frequency spectra presented in Figure 25a,b). The fundamental 

repetition rate signal is centered at 123.9 MHz and features no side peak, measured with an 

80-dB SNR at 100-Hz resolution bandwidth. Additionally, the harmonic spectrum measured 

up to 2.9 GHz shows no amplitude modulation. While the laser operates reliably over hours, 

the short-term stability is confirmed by the amplitude and phase noise measurements (see  

 

 

Figure 24. Characterization of the Kerr lens mode-locked Yb:CALGO thin-disk laser oscillator. a) 
Measured autocorrelation trace of the 30-fs pulses and corresponding sech2 fit. b) 1-ns and (inset) 
9-ns sampling oscilloscope traces. c) Left y-axis: Optical spectra of (blue) laser and (red) pump; right 
y-axis: Output coupler (OC) transmission (green). The gain calculated for an inversion level 𝛽 of 
0.11 is shown in grey for reference (data from [67]). 
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Figure 25). The rms RIN amounts to less than 0.2% (integrated from 1 Hz to 1 MHz) which 

is lower compared to previous ultrafast TDLs [23,34]. The rms timing jitter is < 2 ps (from 

100 Hz to 1 MHz, corresponding to an integrated phase noise of 1.5 mrad) and < 150 fs (from 

1 kHz to 1 MHz, integrated phase noise of 117 μrad). The phase noise in the lower Fourier 

frequency range is comparably high for a TDL, which though operates at an order of magnitude 

higher repetition rate. Moreover, it is not actively stabilized, directly mounted onto a laser 

table, and not built in mechanically stable laser housing. It is expected that the rather high 

phase noise at Fourier frequencies < 1 kHz can be strongly reduced by active stabilization of 

the repetition rate. 

As for the broadband 35-fs KLM Yb:LuO TDL presented in Chapter 2, the laser optical 

spectrum contains energy beyond the gain limits (see Figure 24c). These wavelengths are not 

amplified by the gain medium but generated via SPM inside the laser cavity [63]. In the steady 

state, the SPM counteracts the reabsorption in the gain medium and other losses (e.g. on the 

 

Figure 25. Long-term and short-term stabilities of the Kerr lens mode-locked Yb:CALGO thin-disk 
laser oscillator. a) Radio-frequency (RF) spectrum of the laser fundamental repetition-rate 
frequency (𝑓rep) measured with a 100-Hz resolution bandwidth (RBW) and 90-kHz span. b) RF 

spectrum with a 100-kHz RBW and 2.9-GHz span. c) Average output power measured over more 
than two hours. d) Phase and amplitude noise power spectral densities (PSD) measured at the 
fundamental repetition frequency. e) Left y-axis: Rms timing jitter integrated from 1 Hz and (inset) 
from 1 kHz up to 1 MHz; right y-axis: rms relative intensity noise.  
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mirrors) for the wavelengths which are not supported by the gain. These additional losses 

contribute to lower the laser efficiency given the limited available gain. The cw experiments 

reported in Section 3.2 already demonstrated a strong drop of the laser efficiency at intra-

cavity losses of a few percent and showed similar optical efficiency at comparable output 

power. Therefore, the output power in this result seems to be mainly limited by the available 

laser gain. Higher gain should lead to substantially higher optical efficiencies and higher output 

power levels at comparable pulse durations.  

Moreover, the laser optical spectrum extends even below the pump wavelength (see Figure 

24c). This atypical behavior is enabled by the TDL pumping geometry as depicted in Figure 26. 

In standard end-pumping geometries for oscillators based on bulk crystals, a resonator mirror 

has a high transmission at the pump wavelength to inject the pump into the cavity as well as 

a high reflectivity for the laser wavelength spectrum, which in general is at slightly longer 

wavelengths. Dichroic mirrors with such properties at closely lying wavelengths are 

challenging to manufacture, but, most of all, they set a lower limit for the laser optical 

spectrum, owing to the high transmission at the pump wavelength. Although bulk oscillators 

already delivered similar pulses durations [49,57], they operated at a slightly longer central 

wavelength (above 1060 nm) for which the large laser optical spectrum could be supported 

by the dichroic pump mirror. The generation of significantly shorter pulses appears out of 

reach in standard end-pumping bulk laser configurations. In contrast, in TDL oscillators, the 

pump is not delivered colinearly to the laser beam but with a slight angle. In this case, the disk 

is used in reflection for both pump and laser beams and therefore, it is coated for broadband 

high reflectance. As a result, the pumping scheme is not limiting the optical spectrum of the 

intra-cavity pulse and, therefore, allows the generation of even shorter pulses. 

 

Figure 26. Comparison of a) the standard end-pumping configuration for bulk oscillator with b) the 
thin-disk laser pumping scheme. For bulk oscillators, a resonator mirror is highly transmissive (HT) 
at the pump wavelength to inject the pump collinearly to the laser beam. On the contrary, the 
pump beam is delivered to the thin-disk laser crystal at an angle with respect to the laser beam. 
Therefore, the disk is coated to be highly reflective (HR) for both laser and pump wavelengths.  
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3.4 Dispersion compensation for ultra-broadband laser pulses 

The laser presented in the previous section generates slightly chirped pulses. The time-

bandwidth product of 0.368 (ideal sech2: 0.315) indicates that the pulses are 17% longer than 

their Fourier transform limit of 26 fs. Unfortunately, at the time of the experiment, no 

diagnostic tool was available to measure the phase of the pulses, which would have been a 

useful information to confirm the origin of the chirp. Yet, external dispersion compensation 

has been inserted to correct for the second order dispersion (GDD) for the pulse duration 

measurement with the intensity autocorrelator. Therefore, the remaining chirp originates 

most probably from higher-order dispersion. Similar time-bandwidth product has been 

measured for the 62-fs pulses from a SESAM mode-locked Yb:CALGO TDL [25]. The observed 

chirp was attributed to uncompensated higher-order dispersion in the laser cavity originating 

from the spectrally-irregular dispersion profile introduced by the dispersive mirrors. 

Optimization of the mirrors for a flat dispersion profile led to the generation of 49-fs pulses 

with a close-to-ideal time-bandwidth product of 0.324 (1.03× the ideal sech2 value of 

0.315) [32].  

To illustrate the influence of the dispersion compensation, four laser configurations have 

been investigated. Table 6 summarizes their parameters while Figure 27 shows the optical 

spectra of the laser outputs together with dispersion profile introduced by the intra-cavity 

dispersive mirrors. In the case of the KLM Yb:LuO TDL, the two configurations that delivered 

the shortest pulses for each mode size on the Kerr medium (see Chapter 2, Sections 2.3 and 

2.4) are compared. For the KLM Yb:CALGO TDL, the configuration with the shortest pulses is 

compared to an intermediate configuration with similar settings, where the main difference 

is the profile of the introduced dispersion.  

Table 6. Laser parameters for the selected laser configurations that are used to illustrate the impact 
of the dispersion compensation on the pulse duration. Δ𝜏, pulse duration; 𝑃out, output power; Δ𝜆, 
FWHM optical bandwidth; TBP, time-bandwidth product (ideal sech2: 0.315); GDD, inserted group 
delay dispersion per round trip; OC, output coupling rate; 𝜂opt, optical-to-optical efficiency. 

Configura-
tion 

Material 𝚫𝝉 
(fs) 

Pout 
(W) 

𝚫𝝀 
(nm) 

TBP GDD 
(fs2) 

OC 
(%) 

𝜼𝐨𝐩𝐭 
(%) 

(a) Yb:LuO  64 0.7 18 0.324 -2200 0.3 0.6 

(b) Yb:LuO 35 1.6 34 0.336 -1000 0.8 2.1 

(c) Yb:CALGO  62 0.24 20 0.342 -1300 0.3 0.3 

(d) Yb:CALGO 30 0.15 45 0.368 -1000 0.3 0.1 
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Two key effects can be appreciated from the curves presented in Figure 27. First, for a large 

variation of the dispersion profile within the main part of the pulse spectrum, the pulses are 

chirped, most probably due the introduced higher-order dispersion. This effect has a stronger 

impact for lower absolute values of the inserted GDD. Second, the rising edges of the 

dispersion limits the spectral bandwidth of the mirror and prevents the pulse spectrum to 

extend further. This effect limited the pulse duration to 64 fs in the configuration (a) for 

example.  

As a result, the pulse durations of the two KLM TDL oscillators based on Yb:LuO and 

Yb:CALGO, respectively, are mainly limited by the dispersion properties of the intra-cavity 

components which operate at the edge of their bandwidth and introduce higher-order 

dispersion. Both lasers demonstrate 10-optical-cycle pulses and further shortening demands 

for a flat dispersion spanning a wavelength range considerably larger than 100 nm. In TDL 

oscillators, disperion compensation for soliton mode locking is generally obtained by 

intracavity dispersive mirrors because of the reduced thermal aberration compared to prisms. 

Unfortunately, standard dispersive mirrors operating at around 1 µm exhibit a limited optical 

 

Figure 27. Comparison of four different laser configurations which parameters are given in Table 
6. The dispersion profile is plotted as a function of the wavelength (red, left y-axis). The optical 
spectrum of the laser output is shown in blue (right y-axis). They illustrate the impact of the intra-
cavity dispersion profile on the pulse duration. GDD: group delay dispersion.  
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bandwidth of typically few tens of nm. Optimized non-standard solutions can be designed and 

manufactured in-house using an ion-beam-sputtering coating machine (Navigator 1100, CEC 

GmbH). However, processing accurately such complex coatings with very thin layers is 

challenging due to the sensitivity on growth errors, which is at the limits of the coating-

machine accuracy. Figure 28 presents the design and characterization of a broadband 

dielectric dispersive mirrors recently produced. It also includes an analysis of the influence of 

growth errors on the reflectivity and dispersion of the mirror. For this, the characteristics of 

the mirror are computed a hundred times with different growth errors chosen randomly 

within the growth accuracy of the coating machine (standard deviation of 0.2 nm plus 0.5% of 

relartive error per layer). These mirrors are designed to exhibit a flat GDD and high reflectivity 

over a broad spectrum ranging from 990 nm up to 1150 nm. As shown in Figure 28d), such a 

mirror should allow for the generation of unchirped and shorter pulses than in the presented 

result.  

 

Figure 28. a) Design of new broadband dispersive mirrors, which are grown in-house using an ion-
beam-sputtering coating machine. b) Corresponding designed parameters (dark blue), growth 
error analysis (light blue) and measurements (red) of mirror transmission. c) Group delay 
dispersion. d) Comparison of the design (dotted red line) and measured (solid red line) dispersion 
inserted by six bounces on these new dispersive mirrors with the inserted dispersion in the current 
30-fs result (green) (left y-axis). The optical spectrum of the 30-fs laser is shown in blue for 
reference (right y-axis). 
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Figure 29. Reflectivity of p-polarized light from (a) fused silica and (b) undoped YAG around their 
respective Brewster angle. The material properties offer intrinsically a high transmission around 
the Brewster angle with an extremely broad spectral bandwidth.  

Until now, the dispersion introduced by the dispersive mirrors has been exclusively 

investigated, however all intra-cavity optical components should be considered. The highly-

reflective coatings in these lasers are typically specified for a reflectivity larger than 99.98% 

and zero dispersion from 1000 nm to 1100 nm. In most cases, the reflectivity and dispersion 

are not controlled outside this range and may give rise to the side peaks observed in the laser 

optical spectra. Apart from all reflective elements, the Kerr medium used in transmission in 

KLM TDLs is typically placed under Brewster angle near an intra-cavity focus. The material 

properties intrinsically induce an extremely broadband high transmission, as shown in Figure 

29. Consequently, the losses arising from the parasitic reflections at the Kerr medium surfaces 

are negligible even for ultrashort pulses. 

3.5 Towards few-cycles pulses directly generated by Yb-based laser oscillators 

In conclusion, this chapter presents the first KLM TDL oscillator based on the Yb:CALGO gain 

medium. The broadband nature of this gain material combined with the Kerr lens mode-

locking scheme enabled the generation of the shortest pulses from any TDL oscillator, being 

equal to the shortest pulses obtained from Yb-doped bulk oscillators [49].  

This work presents the benefits of the thin-disk pumping scheme for the generation of 

powerful ultrashort pulses. It essentially allows the laser optical spectrum to extend beyond 

the pump wavelength. The achieved output power of 150 mW and optical efficiency below 

1% are unusually small compared to most reported TDLs, yet, the output power is comparably 

high at this short pulse durations as shown in Figure 30. The laser performance is limited by 

three main factors. First, the low disk quality makes laser operation in fundamental transverse  
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Figure 30. Overview of state-of-the-art ultrafast Yb-doped oscillators based on the bulk and thin-
disk laser geometry delivering sub-50-fs pulses. The crystal geometry is indicated with the symbol 
code and the gain material with the color code. (a) [49]; (b) [57]; (c) [32]; (d) [33]; the results 
reported in this thesis are highlighted with star symbols. 

mode at high average power very challenging. Second, the combination of doping 

concentration and disk thickness offers a limited single-pass gain and prevents efficient lasing 

operation at output coupling degrees larger than a few percent for a single bounce on the 

disk. Third, the losses linked to the ultrashort pulse duration that are due to reabsorption in 

the gain medium and limited mirror bandwidth contribute to lower the optical efficiency of 

the laser. It is important to note that even the standard HR coatings for the disk and mirrors 

are operating at the limit of their bandwidth since the coatings are typically specified for a 

reflectivity larger than 99.98% from 1000 nm to 1100 nm. Therefore, high-optical-quality high-

gain Yb:CALGO disks and ultra-broadband optics should allow the generation of several-ten 

watts of average power with reasonable optical efficiencies and similar pulse durations.  

While KLM TDL oscillators already delivered optical spectra three times larger than their 

respective gain bandwidth, the presented KLM Yb:CALGO TDL oscillator exploits about 70% of 

the gain bandwidth. Therefore, further decrease of the pulse duration should be feasible. Next 

steps require the optimization of the optical properties of all intracavity components towards 

ultra-broadband high reflectivity and ultra-broadband flat dispersion. Appropriate dispersion 

engineering should allow the generation of optical bandwidths well beyond the gain limits and 

thus ultimately outperform the current sub-10-cycle pulses towards the direct generation of 

few-cycle pulses from Yb-based diode-pumped solid-state lasers. 
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 Optical frequency combs based 

on ultrafast thin-disk laser oscillators  

The optical frequency comb technology offers a phase-stable coherent link between optical 

and microwave frequencies [114–116]. It enabled tremendous progress in various areas [117], 

e.g., broadband high-resolution spectroscopy [118,119], precision optical-frequency 

metrology [120], and optical clocks [121,122]. In 2005, the Nobel Prize in Physics was awarded 

to John L. Hall and Theodor W. Hänsch for their contributions to the development of laser-

based precision spectroscopy, which includes the optical frequency comb 

technique [123,124]. Besides, optical frequency combs with a high average power are 

attractive for spectroscopy experiments since they offer a high power per comb line and 

enable performing measurements with high signal-to-noise ratio (SNR).  

Any mode-locked laser exhibits a frequency spectrum with a comb structure which has two 

degrees of freedom: the repetition rate that corresponds to the spacing between the comb 

modes, and the carrier-envelope-offset (CEO) frequency that is a global frequency shift of the 

comb modes from exact harmonics of the repetition rate. If both degrees of freedom are 

stabilized so that all optical lines have an accurately-known frequency, the laser is referred to 

as an optical frequency comb. This chapter presents the first full stabilization of a high-power 

ultrafast thin-disk laser oscillator. The frequency-comb generation is based on a KLM Yb:LuO 

TDL oscillator developed during the framework of this thesis and presented in Chapter 2. 

Section 4.1 introduces the frequency comb technology and previous work based on TDL 

oscillators. It also highlights the potential of high-power optical frequency combs for XUV 

frequency comb generation. Section 4.2 details the detection and stabilization of the CEO 

frequency. Section 4.3 reports on the stabilization of the repetition rate of the TDL oscillator, 

leading to the full stabilization of the laser. Section 4.4 concludes and gives an outlook towards 

future applications.  
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4.1 High-average-power optical frequency combs for XUV-spectroscopy 

Mode-locked lasers deliver trains of pulses, which are temporally separated by the cavity 

round-trip time. Equally said, the lines of the optical spectrum are separated by the repetition 

rate frequency (frep). The overall offset of the comb spectrum is given by the CEO frequency 

(fCEO), which originates from the difference between the phase and group velocities inside the 

laser cavity, i.e., from the cavity dispersion. If these two frequencies are phase-locked to stable 

microwave references, then the optical frequency of each comb tooth is accurately known 

and stable. Figure 31 depicts an optical frequency comb both in the time and frequency 

domains. The detection of the laser repetition rate is usually straightforward and achieved 

with a standard photodetector with a sufficient bandwidth. However, measuring the CEO 

frequency is more challenging. The standard scheme for CEO detection is based on self-

referencing using the 𝑓-to-2𝑓 interferometry technique [114–116]. It requires a coherent 

octave-spanning spectrum which is usually generated by spectral broadening in a highly-

nonlinear fiber such as a photonic crystal fiber. Yet, the coherence properties of the 

supercontinuum critically depend on the input pulse parameters (duration typically shorter 

than 150 fs and high peak power) and the dispersion properties of the nonlinear fiber [126]. 

The CEO frequency emerges from the beating of the frequency-doubled lower-frequency end 

of the comb spectrum with the higher-frequency end and can be detected using a 

photodetector. 

On the other hand, a prominent field of research which benefits from the development of 

high-power Yb-based ultrafast TDL oscillators is the generation of high-order harmonics for 

attosecond science [127,128] and extreme-ultraviolet (XUV) spectroscopy [129–131]. A 

crucial aspect for these applications is the accurate control of the comb properties of the XUV 

train of pulses. Since high-harmonic generation is a coherent process, XUV pulses inherit the 

comb characteristics of the driving source. Complex high-power CEO-stable laser systems 

based on amplifier architectures have been intensively developed to seed enhancement 

cavities for intra-cavity high-harmonic generation at MHz repetition rates [132–134]. 

However, the necessary input matching of the femtosecond pulses into the cavity is 

experimentally complex to implement [135]. In contrast TDL oscillators are well suited for the 

generation of XUV pulses in single-pass configurations [23] or directly inside the cavity of the 

mode-locked thin-disk oscillator as presented in Chapter 5. Yet, their potential for frequency 

comb generation has not been entirely exploited. Part of the challenge is the detection of the  
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Figure 31. Pulse train emitted from a mode-locked laser a) in the time domain and b) in the 
frequency domain. The carrier-envelope-offset frequency fCEO is at the extrapolated origin of the 

spectrum and results from the pulse-to-pulse carrier-envelope phase shift CEO. Figure taken 
from [125]. 

CEO frequency in an 𝑓-to-2𝑓 interferometer, which requires an octave-spanning coherent 

pulse spectrum generated from pulses with a duration typically shorter than 150 fs.  

The first CEO detection of a TDL oscillator has been realized in 2012 with a SESAM mode-

locked Yb:LuO TDL delivering 142 fs [30] and shortly after, CEO-stabilization has been achieved 

concurrently in both KLM and SESAM mode-locked TDLs [136,137]. The stabilization of a 2-W 

90-fs-pulse SESAM mode-locked TDL by active feedback to the pump current resulted in an in-

loop phase noise of 120 mrad (integrated from 1 Hz to 1 MHz). The CEO frequency of 100-W-

class SESAM mode-locked TDL oscillators has been detected after pulse compression from 

750 fs down to 60 fs duration, nevertheless the cavity dynamics have prevented its 

stabilization [138]. Prior to this work, CEO detection of KLM TDLs exclusively relied on an initial 

pulse compression stage before supercontinuum generation. Subsequent stabilization has 

been realized either with gain modulation via the pump power of the main diode [136] or of 

an auxiliary low-power pump diode at a slightly different wavelength [139], or using an intra-

cavity acousto-optic modulator [100]. Intra-cavity loss modulator (e.g., acousto-optic) allow 

for a higher bandwidth of the stabilization loop compared to pump-current modulation which 

bandwidth is limited by the cavity dynamics of the mode-locked laser, which is largely 

determined by the long upper-state lifetime of Yb-ions. Although intra-cavity acousto-optic 

modulators might lead to detrimental thermal effect or nonlinear phase shift hindering the 

scaling of the average power, the CEO frequency of a KLM oscillator delivering 27 W in 250-fs 

pulses has been stabilized and featured a phase noise of 180 mrad in-loop and 270 mrad out-

of-loop (integrated from 1 Hz to 0.5 MHz). In brief, CEO-detection and stabilization of TDL 
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oscillators have already been explored, however, no fully-stabilized TDL-based frequency 

comb has been reported to date. 

4.2 Carrier-envelope-offset frequency detection and stabilization 

4.2.1 Supercontinuum generation and detection of the CEO frequency 

The experiments are based on a sub-50-fs KLM Yb:LuO TDL presented in Chapter 2, 

Section 2.4, which delivers among the shortest pulses reported from TDLs. The ultrafast 

oscillator generates 4.5-W average power in 49-fs pulses at 61-MHz repetition rate, which 

leads to a pulse energy of 70 nJ and a peak power of 1.3 MW. The laser optical spectrum is 

centered around 1031 nm and features a 24-nm FHWM bandwidth. This proves nearly 

transform-limited pulses with a time-bandwidth product of 0.333 (ideal sech2: 0.315). 

The short pulse duration enables direct supercontinuum generation in a highly nonlinear 

fiber for CEO-frequency detection. An external mirror with 2% transmission is placed after the 

oscillator to extract a small part of the laser power for CEO detection. This power is further 

reduced with a variable attenuator before being launched into a commercial 2-m-long 

photonic-crystal fiber (NKT Photonics, SC-3.7-975). The highly nonlinear fiber features a 

3.7-µm core diameter leading to a nonlinear parameter 𝛾 = 18 W-1km-1 (at 1060 nm) and a 

zero-dispersion wavelength of 975 nm. It is seeded with 90 mW of incident average power 

and a coupling efficiency higher than 50%. Further optimization of the mode matching should 

result in a higher coupling efficiency. An octave-spanning supercontinuum spectrum is 

detected at the output of the fiber as shown in Figure 33a). It is launched into a quasi-  

 

 

Figure 32. Experimental setup for the detection of the CEO frequency. Only a minor part of the 
output power is necessary to generate a coherent octave-spanning spectrum in a PCF. The CEO 
frequency is detected in a quasi-common-path 𝑓-to-2𝑓 interferometer. 𝑇, power transmission; 
PCF, photonic crystal fiber; 𝜆/4, quarter waveplate; 𝜆/2, half waveplate; PPLN, periodically-poled 
lithium niobate crystal. 
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common-path 𝑓-to-2𝑓 interferometer similar to the one used in Ref. [140]. A long-pass 

dichroic mirror separates the Raman soliton at around 1360 nm and the dispersive waves at 

680 nm and a delay stage controls the relative timing of the two signals in the two distinct 

optical paths. After their recombination by the same dichroic mirror, both beams are 

collinearly propagated through an MgO-doped periodically-poled lithium niobate (PPLN) 

crystal, inside which the long wavelengths are frequency-doubled. By controlling the temporal 

overlap between the long and short wavelengths, a radio-frequency beat signal can be 

detected using an avalanche photodiode. The coherence properties of the octave-spanning 

spectrum are confirmed by the >30 dB SNR of the CEO beat detected at 5 MHz (at 10-kHz 

resolution bandwidth). The CEO frequency jitter is typically in the order of 200 kHz over a sub-

second timescale (see Figure 33c). 

 

Figure 33. a) Supercontinuum spectrum at the output of the highly nonlinear photonic crystal fiber. 
b) CEO frequency (𝑓CEO) beat signals are detected with >30-dB SNR at 10-kHz resolution bandwidth 
(RBW). c) Free-running CEO frequency at 10-kHz RBW. 𝑓rep, laser repetition rate frequency.  

4.2.2 CEO frequency stabilization  

The oscillator is pumped at 100-W average power by a fiber-coupled diode laser system that 

typically operate at high current (16 A) and voltage (17 V). Because a fast modulation cannot 

be applied directly to the high current source of the diodes, a high-bandwidth voltage-to-

current converter developed in-house is used and enables a fast modulation of the pump 

power. It is connected in parallel to the high DC driver. A low-pass electrical RC filter inserted 

between the DC driver and the diode was used to prevent any cross-talk between the two 

current sources. Additionally, it reduces the current noise induced by the DC source. The 

transfer functions of the voltage-to-current converter, of the pump power and of the mode-

locked laser output power are shown in Figure 34 for a modulation signal applied at the input  
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Figure 34. Transfer functions, i.e., (a) relative amplitude and (b) phase, of the current modulation 
source (blue), pump diode without electrical (RC) filter (red) and laser intensity without (black) and 
with (green) an RC filter placed between the high DC current driver and the pump diode.  

of the modulator. A modulation bandwidth of 2 kHz (cutoff frequency at -10 dB or -90° phase 

shift) is measured for the laser intensity modulated by the pump power. This value is limited 

by the laser cavity dynamics and neither by the modulation bandwidth of the electronics nor 

by the pump diode. 

The frequency noise power spectral density (FN-PSD) of the free-running CEO beat is 

measured using a phase noise analyzer (Rohde–Schwarz FSWP26) and is shown in Figure 35. 

The linewidth of the free-running CEO frequency calculated using the approximation of the 

𝛽-separation line [141] is 90 kHz (at 1-s observation time) which is in good agreement with 

the CEO frequency fluctuations observed in Figure 33b). The required feedback bandwidth for 

a tight-phase lock of the CEO frequency is estimated to 3 kHz from the crossing point of the 

CEO FN-PSD with the 𝛽-separation line. Stabilization of the CEO beat frequency is achieved 

with a standard phase-locked loop with feedback applied to the pump current of the ultrafast 

oscillator. The full setup of the stabilization is depicted in Figure 36. The CEO beat signal from 

the photodetector is band-pass filtered, amplified and then compared in a digital phase 

detector to a reference signal from a waveform generator referenced to an H-maser. The error 

signal is sent to a proportional-double-integrator-derivative (PI2D) servo-controller (Vescent 

Photonics D2-125) and used as a feedback signal to the voltage-to-current converter to 

modulate the pump power. The FN-PSD of the stabilized CEO beat shows a significant noise 

reduction compared to the free-running CEO beat signal even at Fourier frequencies higher 

than few kHz, up to the servo bump at 20 kHz. The frequency noise is reduced below the 

𝛽-separation line at all frequencies and notably, a 140-dB reduction is achieved at 1-Hz offset 

frequency. Consequently, and despite the highly-multimode operation of the pump diode (𝑀2 

> 200), a tight phase-lock of the CEO beat is achieved, and a coherent peak is observed in the 
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radio-frequency spectrum with a width limited by the resolution of the RF spectrum analyzer 

even at the highest resolution of 1 Hz (see Figure 37). The residual in-loop phase noise of the 

CEO beat note amounts to less than 200 mrad integrated from 1 Hz to 1 MHz. No out-of-loop 

measurement was realized because no other 𝑓-to-2𝑓 interferometer was available at the time 

of the experiment.  

 

Figure 35. Left axis: Frequency noise power spectral density (FN-PSD) of the CEO beat in free-
running mode (blue) and phase-locked to 5-MHz (red). The 𝛽-separation line is relevant for the 
determination of the linewidth [141] and gives an estimation of the necessary feedback bandwidth 
of the stabilization loop. Right axis: Integrated phase noise of the stabilized CEO signal as a function 
of the upper cut-off frequency (dashed red line). 

 

 

Figure 36. Experimental setup for the stabilization of the CEO frequency (𝑓CEO) and repetition rate 
frequency (𝑓rep) of the KLM TDL frequency comb. A high DC current source, a 976-nm pump diode 
system, an RC filter and a V-I modulator are used to pump the TDL oscillator and to stabilize fCEO 
via gain modulation. The generation of the error signal for fCEO stabilization is shown in the lower 
part of the scheme. frep is stabilized by cavity-length control with a piezoelectric transducer (PZT) 
(upper part). PCF, photonic crystal fiber; PI2D, proportional-double-integrator-derivative servo-
controller; PI, proportional-integral servo-controller; LP, low pass filter; DBM, double balanced 
mixer; red lines, free-space optical beams; yellow/blue lines, optical fibers (multimode/PCF); black 
lines, electrical connections. 
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Figure 37. a) Radio-frequency spectrum of the locked CEO beat note. b) Zoom on the coherent 
peak over a total span of 500 kHz. The large noise originating from the servo bump can be observed 
at 20kHz. 

4.3 Fully-stabilized optical frequency comb 

For repetition rate stabilization, the fundamental frequency was detected using a photodiode. 

The signal was filtered and compared in a double-balanced mixer to a reference signal from a 

waveform generator, which was referenced to an H-maser for long-term stability (see       

Figure 36). The resulting phase error signal was low-pass filtered and processed by a 

proportional-integral (PI) servo-controller (New Focus LB1005) to produce the correction 

signal to control the cavity length of the laser. This signal was amplified by a high-voltage 

amplifier (Falco Systems WMA-300, gain of 50) and applied to the piezoelectric transducer 

supporting an intra-cavity mirror. The resulting FN-PSD of frep is shown by the red curve in 

Figure 38b), together with the noise spectrum of the free-running repetition rate. 

 

Figure 38. Left y-axis: Noise performance of the fully-stabilized TDL comb. a) Frequency noise 
power spectral density (FN-PSD) of the CEO beat in free-running (blue) and stabilized (red, green) 
conditions; Right y-axis: Corresponding integrated phase noise as a function of the upper cut-off 
frequency. b) Left y-axis: FN-PSD of the free-running (blue, green) and phase-locked (red) 
repetition rate frequency; Right y-axis: corresponding integrated timing jitter as a function of the 
lower cut-off frequency.  
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In this configuration, the noise of frep was reduced at Fourier frequencies up to 20 Hz. This 

bandwidth might be limited by both the high-voltage amplifier and the piezoelectric actuator 

combined with the half-inch-diameter 6-mm-thick mirror. Higher stabilization bandwidths 

should be feasible by reducing the weight of the mirror by using a thin substrate and mounting 

it on a suitable actuator driven by a high-bandwidth voltage amplifier. The timing jitter was 

7 ps in this case (integrated from 1 Hz to 1 MHz). However, this stabilization degraded the CEO 

noise mainly at around 20 kHz, increasing its integrated phase noise to 745 mrad.  

4.4 Towards applications driven by fully-stabilized thin-disk laser oscillators 

This chapter describes the first self-referenced full stabilization of an optical frequency comb 

based on a TDL oscillator. For this, a coherent octave-spanning supercontinuum was 

generated after the oscillator using a minor part of the laser output power, without any 

external pulse compression. Subsequent detection of the CEO frequency was realized in a 

standard self-referencing 𝑓-to-2𝑓 interferometer. The CEO beat signal was phase-locked to an 

external reference via pump current feedback using home-built modulation electronics. A 

loop bandwidth of 20 kHz was achieved and resulted in a tight CEO lock with a residual phase 

noise less than 200 mrad (integrated from 1 Hz to 1 MHz). The repetition rate is controlled via 

an intra-cavity mirror mounted onto a piezoelectric actuator. It was stabilized to a reference 

synthesizer with a residual timing jitter of 7 ps (integrated from 1 Hz to 1 MHz).  

In this preliminary investigation, the repetition rate stabilization loop achieved a small 

stabilization bandwidth of 20 Hz. To further improve the performance, the transfer function 

of the loop will be evaluated as well as the static and dynamic tuning rates of the piezoelectric 

actuator and optimization of the servo-controller will follow. A low-pass filter inserted 

between the PI servo-controller and the high-voltage amplifier before the piezoelectric 

transducer could help reducing the parasitic influence of the 𝑓rep stabilization loop onto the 

CEO frequency noise. Moreover, non-optimal components will be replaced. Using a thin light-

weight mirror will allow the use of faster piezoelectric transducers with a suitable high 

bandwidth voltage amplifier, which should increase the stabilization bandwidth of 𝑓rep. 

Besides, improvement of the performance will rely on the reduction of the intrinsic laser noise. 

In this experiment, the laser was directly mounted onto the laser table. Building the laser with 

highly-stable opto-mechanical components in a mechanically-stable laser housing, isolated 

from the mechanical noise (including decreasing the impact of the water cooling of the 

disk [100]) will help reducing the laser free-running noise. Moreover, it has been reported 
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in [100] that the position of the Kerr medium inside the cavity has a strong impact on the CEO 

behavior, which parameter has not been investigated yet in this experiment.  

This approach of TDL-based optical-frequency comb could benefit from the power-

scalability capabilities of TDL oscillators since the system requires only a low-current 

modulator in parallel to a high DC current source to modulate the pump power and retro-act 

on the CEO frequency. In the case of a high-power (> 100 W) SESAM mode-locked TDL, the 

CEO frequency could not be stabilized due to cavity dynamics probably linked to the 

SESAM [138]. In the present experiment, the laser is Kerr lens mode-locked and might not 

suffer from this issue. This approach in combination with the development of the performance 

of the KLM TDLs based on broadband gain materials could lead to the generation of optical 

frequency combs with hundreds of watts and sub-100-fs pulse duration. Nevertheless, 

stabilization with active feedback to the pump power has a cut-off frequency of 20 kHz due 

to the cavity dynamics of the laser. In case higher bandwidths for CEO-frequency stabilization 

are required, other techniques compatible with high-power operation could be implemented 

and should result in even lower noise operation. They include the promising opto-optical 

modulation of a semi-conductor mirror which combines a fast modulation with power-

scalability [142,143]. 

Finally, the fully-stabilized TDL oscillator delivers more than 4-W average power in 

sub-50-fs pulses at 61-MHz repetition rate and central wavelength of 1031 nm. This initial 

experiment proves the suitability of KLM TDLs to be used for CEO-sensitive experiments. This 

high-power optical-frequency comb will benefit to XUV frequency comb generation but also 

to various application areas such as high-field and attosecond science [128], optical frequency 

metrology [120], atomic clocks [121], or broadband high-resolution spectroscopy [118,119].  
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 XUV light source based on HHG 

inside an ultrafast TDL oscillator 

Coherent extreme-ultraviolet (XUV) light sources offer numerous new inspiring opportunities 

for science and technology [127,128]. Femtosecond-laser-driven high-harmonic generation 

(HHG) in gases is the most successful method for table-top coherent XUV-pulse generation. 

While initial HHG laser systems were limited to low repetition rates, the last years have seen 

the rapid development of MHz-repetition-rate XUV light sources providing a high photon flux. 

Such apparatus can strongly reduce the measurement time, improve the signal-to-noise ratio, 

and enable XUV frequency-comb metrology. However, current MHz XUV sources rely on 

complex and costly multi-stage laser systems.  

This chapter presents a promising alternative to directly produce MHz-repetition-rate XUV-

pulse trains from simple ultrafast TDL oscillators. Section 5.1 describes the benefits and 

challenges of HHG at high repetition rates. Section 5.2 details the development of a SESAM 

mode-locked TDL oscillator with suitable performance to drive intra-cavity highly-nonlinear 

processes. Section 5.3 focuses on HHG experiments unprecedentedly performed inside the 

cavity of a mode-locked TDL oscillator. Section 5.4 discusses enhanced XUV output coupling 

techniques for increased XUV-extraction efficiency. Finally, Section 5.5 concludes and gives an 

outlook towards an increased photon flux for future applications.  

5.1 High-repetition-rate high-harmonic generation enabling applications  

Focusing intense femtosecond pulses into a gas target enables the generation of high-order 

harmonics of the fundamental laser frequency [144,145] (see Figure 39). This highly-nonlinear 

process occurs at optical peak intensities above 1013 W/cm2 and results in a highly inefficient  
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Figure 39. Focusing intense femtosecond pulses into a gas target enables the generation of high-
order harmonics of the fundamental laser frequency. The high-harmonic spectrum typically 
extends down to the XUV-wavelength range. Figure courtesy of Martin Saraceno [4]. 

 

Figure 40. Electromagnetic spectrum. The wavelength range accessible via high-harmonic 
generation is highlighted with the green area. In this highly-nonlinear process, photons are 
upconverted from the driving laser frequency to higher energy levels (10-103 eV), into the vacuum 
and extreme ultraviolet (VUV and XUV) regions, and up to the soft X-ray domain.  

photon conversion [146,147] (7×10–5 at maximum for a single harmonic [148]). The high-

harmonic spectrum typically covers the vacuum and extreme ultraviolet (VUV and XUV) 

regions (10-200 nm) but can also extend to soft X-ray (0.1-10 nm), corresponding to photon 

energies ranging from 10 eV to a few keV, as illustrated in Figure 40. Such table-top high-

harmonic sources can be used for applications instead of synchrotron radiations [127]. 

Standard HHG systems are based on a Ti:sapphire CPA laser, which usually operates at kHz 

repetition rate and average power of a few watts (e.g., [149]) and consequently, limits XUV 

photon flux and XUV pulse repetition rate. However, a high photon flux enables shorter 

measurement time and enhanced resolution for high resolution imaging [150,151]. 

Furthermore, the low repetition rate is a challenge for experiments in which the energy or 

momentum of photoelectrons must be precisely measured [21]. A prominent example is 

photoelectron emission microscopy [152], which can be used to explore ultrafast dynamics in 

nanostructured surfaces with simultaneous hundred-attosecond temporal and nanometer 

spatial resolution. Since low-pulse-energy operation is required to mitigate space charge 
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effects, high-repetition-rate sources are required to achieve a realistic acquisition time. 

Similarly, for coincidence detection, integration over a large number of shots is necessary to 

achieve sufficient signal-to-noise ratio and high-quality statistical data [153,154]. Moreover, a 

kHz-spaced comb is too dense for direct frequency comb spectroscopy which requires mode 

separation. In contrast, MHz frequency combs allow for the identification of the exact mode 

number and offer more power per single comb line. Therefore, MHz XUV frequency combs 

are highly attractive for high-resolution spectroscopy [129–131].  

Given the large scientific potential, the last years have seen a tremendous increase in 

research efforts to optimize HHG sources for high photon flux and MHz repetition 

rate [155,156]. It has been shown that HHG is possible even with relatively low pulse energies 

in the micro-joule level and conditions for efficient generation in tight-focus geometries have 

been derived [157]. 

One straightforward approach to improve the current XUV sources has been to increase 

simultaneously the pulse energy and repetition rate of the driving laser system, i.e., to use 

high-average-power lasers as driving sources [156]. As already presented in Chapter 1, three 

laser architectures allow for high-power operation. They are based on the fiber, slab and TDL 

geometries. Due to their distinct benefits and challenges, each type of technology has been 

used to drive single-pass HHG. In 2009, a fiber-CPA laser system enabled the first single-pass 

HHG at MHz repetition rate, generating harmonics up to the 15th order (68.7 nm, 18 eV) [158]. 

Recent results based on fiber amplifiers include photon flux at 25-eV photon energy of 

50 µW and up to the milliwatt level at 0.1-MHz and 10-MHz repetition rate, 

respectively [148,156]. However, these systems feature a high degree of complexity owing to 

the multi-stage amplification and necessary pulse compression. In 2011, the temporally-

compressed output of a slab-amplifier achieved HHG at 20.8-MHz repetition rate in a chirp-

free pulse amplification system [159]. Harmonics up to the 17th order (60.6 nm, 20.5 eV) have 

been generated at nW average power level. Amplification-free ultrafast oscillators offer a 

simpler way to generate high harmonics. The proof-of-concept has been demonstrated by a 

commercial Ti:sapphire oscillator delivering only 2.6-W average power at 4-MHz repetition 

rate [160]. In contrast, Yb-based ultrafast TDL oscillators operate at much higher average 

power and achieved single-pass HHG at 2.4-MHz repetition rate from the compressed laser 

output [23]. 46-W average power of the TDL oscillator enabled HHG up to the 25th order 

(41.3 nm, 30 eV) with 0.18-nW average power in the 19th harmonic (53.9 nm, 23 eV). 
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Figure 41. a) Enhancement cavities operate at enhanced field strength inside the cavity. When 
seeded with energetic femtosecond laser pulses, passive enhancement cavities enable high 
harmonic generation at MHz repetition rate with an improved overall efficiency since the 
unconverted photons are “recycled” inside the cavity. b) Placing the HHG interaction inside a 
mode-locked oscillator results in a simple approach to operate at enhanced field strength without 
the need for input matching of fs-pulses. Figure courtesy of Martin Saraceno [4].  

The second approach to increase both photon flux and repetition rate of the XUV light is 

based on intra-cavity HHG (see Figure 41) [135,161,162]. The operation at enhanced field 

strength inside the cavity reduces the constraints on the driving-laser performance and 

increases the overall conversion efficiency by “recycling” the unconverted light. In the case of 

passive enhancement cavities, ultrashort pulses are coherently superimposed in the resonator 

and the effective peak power is enhanced by a factor ranging from ten to thousands. 

Therefore, high peak intensities at high repetition rate can be achieved from a moderate laser 

average power in the order of 1-10 W. Stable coupling of the driving field requires careful 

control of both the repetition rate and the CEO frequency. The comb properties of the driving 

laser are transferred to the high harmonics and lead inherently to XUV-frequency-comb 

generation. 

Enhancement cavities enabled the first HHG at MHz repetition rates already in 2005, 

demonstrated concurrently in two distinct research groups [163,164]. In both systems, the 

cavity was seeded by a standard low-power (< 1 W) Ti:sapphire laser oscillator. The 

development of powerful frequency combs based on fiber-CPA systems pushed this method 

further by combining state-of-the-art high-power lasers with enhancement 

cavities [132,133,165]. It resulted in the generation of XUV photon fluxes up to several 

hundred µW in a given harmonic up to 150-MHz repetition rate [166–168]. In 2012, the first 

direct frequency comb spectroscopy in the XUV region was demonstrated [130]. One year 

later, it was shown that such systems can generate XUV light with a coherence time longer 

than 1 second for sub-hertz-precision spectroscopy [169]. Recently, intra-cavity HHG allowed 

for the generation of photon energies exceeding 100 eV at a repetition rate of 250 MHz from 
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10 kW of intra-cavity average power and 30-fs pulses [170]. Efforts are currently made to push 

the performance of femtosecond enhancement cavities even further: increasing the tolerable 

intra-cavity average power using robust cavity designs and large mode size on the 

mirrors [171–173]; increasing the bandwidth of high-finesse enhancement cavities to support 

few cycle pulses [174], which should allow for efficient generation of MHz-repetition-rate 

isolated extreme ultraviolet attosecond pulses via intra-cavity HHG [175]. However, the 

experimental realization of enhancement cavities is highly complex. The requirements on the 

phase stability of the driving laser system are stringent. Stable coupling of fs-pulses from an 

amplified frequency comb into a high-finesse resonator containing the HHG interaction is very 

demanding and maintaining a high enhancement disregarding the linear and nonlinear phase 

shifts is challenging [176–178].  

To avoid the need for the input matching of ultrashort pulse trains, the HHG process can 

be realized directly inside a high-power ultrafast oscillator. This results in a simple approach 

for which the complexity is reduced to only one stage, namely the oscillator, as shown in 

Figure 41. Yet, this approach shares several challenges with passive enhancement cavities, 

which are linked to the resonator stability under the high-pressure gas jet, the intra-cavity 

plasma and the XUV output coupling element. In contrast to passive cavities where input 

matching is critical for a high enhancement factor, the circulating femtosecond pulse inside a 

mode-locked oscillator can adapt to the nonlinearities and the dispersion originating from the 

HHG, the extraction method and the propagation inside the cavity. In 2012, HHG inside a 

mode-locked oscillator has been demonstrated in a Ti:sapphire laser [179], though the intra-

cavity average power was limited to 10 W due to thermal effects and nonlinearities in the bulk 

crystal, limiting the XUV photon flux.  

In contrast, ultrafast TDL oscillators are power-scalable. They operate at megahertz 

repetition rate (currently 2-260 MHz) [20,180] and achieve the highest average power and 

pulse energy from any mode-locked oscillator with intra-cavity performance reaching kWs 

average power and tens to hundreds µJ of pulse energy [18,20,34]. State-of-the-art ultrafast 

TDLs generate perfect soliton pulses with durations typically ranging from 30 fs to 1 ps and 

intra-cavity peak powers up the GW level have been reported with 500-fs pulses [66]. In this 

case, a tight focus inside the resonator allows reaching sufficiently high peak intensities to 

drive HHG processes [157]. Furthermore, TDL oscillators can run with low noise and the 

stabilization of the CEO and repetition-rate frequencies has been demonstrated in Chapter 4, 

showing the suitability of TDL oscillators for XUV-frequency-comb applications.  
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5.2 SESAM mode-locked thin-disk laser oscillators for intra-cavity HHG 

This section describes the development of an ultrafast TDL oscillator with the required 

performance to drive intra-cavity HHG. To reach high optical intensity of 3×1013 W/cm2 in a 

reasonable focus (> 10 µm radius), an intra-cavity peak power higher than 50 MW is 

necessary. One of the main challenge is to operate the laser at high power level under a 

vacuum level well below 10-3 mbar, which creates thermal issues due to the lack of convective 

air [34] but is necessary to avoid the reabsorption of the XUV light in the ambient 

environment.  

Owing to the fact that short pulse durations are extremely advantageous for HHG since 

they increase both the conversion efficiency and the saturation intensity [156,181], Yb:LuO 

was selected as gain medium for the oscillator given the previously demonstrated results of 

high average power operation [68] and ultrashort pulse duration [30]. At the time of this work, 

ultrafast Yb:LuO TDLs were exclusively mode-locked with SESAMs, and therefore SESAM mode 

locking was a more reasonable approach for a proof-of-principle experiment. First, the laser 

has been developed and tested in ambient air and later transferred to a vacuum chamber. 

Building the laser in air was more convenient than in vacuum environment since it allows for 

a lot of flexibility, rapid changes and tests of the different laser configurations. On the 

contrary, the evacuation time of the chamber (10 minutes) prevents extensive study and 

optimization of the laser parameters such as the one presented in Section 2.3.  

5.2.1 Sub-400-fs SESAM mode-locked Yb:LuO TDL at 27-W output power  

The laser oscillator is based on the Yb:LuO TDL crystal used for the Kerr lens mode-locking 

experiments presented in Chapter 2. The cw performance has been presented in Section 2.2. 

The 12-mm-diameter 160-µm-thick Yb(3 at.%):LuO disk delivers up to 122 W of average power 

at 3.6% output coupling rate with an optical efficiency approaching 60% and an excellent 

beam quality. During the optimization of the mode-locking parameters, numerous damages 

of the mirrors and of the SESAM have been observed (see Figure 42). The damages are 

attributed to Q-switched pulses or Q-switch mode-locking and to the high optical intensity and 

potential contamination on the mirrors [16]. Consequently, the resonator design has been 

tailored to prevent damage from Q-switched pulses and from large intensity due to small spot 

sizes on the optics, especially dispersive mirrors which are more prone to damage due to the 

field enhancement inside the dielectric structure. The cavity is optimized to operate at the 

center of the stability zone, to be robust against the thermal lens of the disk and SESAM and 
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to consider the Kerr lens effect inside the Brewster plate (see Figure 43a). The beam diameter 

of the transverse fundamental mode on the disk is set to about 2.2 mm to optimize the overlap 

with the 2.8-mm-diameter flat-top pump profile. The large-scale high-power SESAM used for 

mode locking has been manufactured at the FIRST cleanroom facilities at ETH Zürich (picture 

shown in Figure 42b and Figure 43b). It was manufactured using the standard fabrication 

technique [182] and was glued to a copper heat sink using a thermally-conducting adhesive. 

The SESAM comprises three quantum wells and three pairs of dielectric top-coating. Due to 

the top- coating, a very high saturation fluence larger than 100 μJ/cm2 is achieved, together 

with a modulation depth of around 1% and non-saturable losses smaller than 0.2% 

(characterized with 1-ps laser with central wavelength around 1030 nm). In this result, the 

SESAM is operated at a fluence about 20 times its saturation value. A 4-mm-thick undoped 

YAG plate is inserted under Brewster angle near the output coupler. It induces SPM that is 

balanced by two dispersive mirrors, resulting in an inserted GDD of -4000 fs2 per round 

 

 

Figure 42. Pictures of typical damage spots on (a) a highly reflective mirror and (b) a SESAM.  

 

Figure 43. a) Schematic of the SESAM mode-locked laser oscillator. BP, Brewster plate; OC, output 
coupler; CM1, concave mirror with a 3-m radius of curvature (RoC); CM2, 0.4-m-RoC convex mirror; 
CM3, 0.75-m-RoC concave mirror. Other mirrors are dispersive mirrors. b) Picture of the large-size 
high-power SESAM. c) Output-beam profile of the mode-locked laser at 27-W average power. 
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trip. Self-starting stable passive soliton mode locking is achieved for several combinations of 

laser parameters. At 5.7% output-coupling rate and 98-W pump power, 27 W of average 

output power are obtained in 380 fs pulses at 43.4-MHz repetition rate.  

The autocorrelation trace, optical spectrum and radio-frequency spectrum measurements 

are shown in Figure 44. The optical spectrum is centered at 1035 nm and has a FWHM of 

3.4 nm, leading to a close to ideal time-bandwidth product of 0.362 (ideal sech2: 0.315). The 

laser generates pulses with more than half a microjoule of pulse energy leading to 1.4-MW 

peak power and 25-MW intra-cavity peak power with a high optical efficiency amounting to 

28%. Stable operation of the laser is achieved daily for more than two months with nearly no 

realignment. This result proves the suitability of the here-presented oscillator to drive 

experiments.  

 

Figure 44. Characterization of the SESAM mode-locked Yb:LuO laser. a) Measured autocorrelation 
trace and corresponding sech2 fit. b) Laser optical spectrum. c) Radio-frequency spectrum of the 
fundamental repetition-rate frequency measured with a 1-kHz resolution bandwidth (RBW) and 
90-kHz span. 

5.2.2 Sub-300-fs pulses from a SESAM mode-locked Yb:LuO TDL in air 

In a second step, the focus was given on the realization of a laser source operating in ambient 

air with shorter pulse durations. This laser is based on a different disk crystal shown in       

Figure 45a). In this case, the wedged Yb:LuO disk has a 7-mm diameter and a 200-µm 

thickness. It is mounted onto a water-cooled diamond heat sink and exhibits a 2.15-m concave 

RoC with no measurable astigmatism. A 600-W fiber-coupled VBG-wavelength-stabilized 

diode laser system pumps the gain material at the zero-phonon line at a wavelength of 976 nm 

with a spectral width below 0.5 nm FWHM. High absorption of the pump power is achieved 

via 36 passes of the pump light through the gain crystal with a 2.8-mm diameter (Figure 45b). 

The resonator design is very similar to the one presented in the previous section, however a  
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Figure 45. a) Picture of the 200-µm Yb:LuO thin-disk laser crystal. b) Picture of the (top) unpumped 
disk and (bottom) disk fluorescence at 13-W pump power. c) Picture of the SESAM used in the 
mode-locking experiments.  

different SESAM with higher modulation depth was used to generate shorter pulses. 

Processed with two dielectric top-coatings, it features a saturation fluence of 38 μJ/cm2, a 

modulation depth of 1.8% and non-saturable losses smaller than 0.4% (characterized with a 

1-ps laser at a central wavelength around 1030 nm). Stable passive soliton mode locking is 

self-starting. At 4.6% output coupling rate and 100-W pump power, an average output power 

of 19.5 W is obtained in 284-fs pulses at 44.8-MHz repetition rate and a high SESAM saturation 

parameter of 50. The autocorrelation trace, optical spectrum and radio-frequency spectrum 

measurements are shown in Figure 46. The optical spectrum is centered at 1035.5 nm and has 

a FWHM of 5.1 nm, leading to a time-bandwidth product of 0.405. The laser operating in 

ambient air generates sub-300-fs pulses with close to 30-MW intra-cavity peak power. This 

result shows the potential of this laser to reach the required performances to drive intra-cavity 

HHG when operating in evacuated environment at a lower repetition rate.  

 

Figure 46. Characterization of the SESAM mode-locked Yb:LuO laser oscillator. a) Measured 
autocorrelation trace with corresponding sech2 fit. b) Laser optical spectrum. c) Radio-frequency 
spectrum of the fundamental repetition rate frequency at a 1-kHz resolution bandwidth (RBW). 
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5.2.3 Vacuum-environment sub-300-fs SESAM mode-locked Yb:LuO TDL  

Following the success of the preliminary study on the SESAM mode-locked Yb:LuO TDL 

operating in ambient air, the full resonator including the TDL head was transferred to a 

compact vacuum chamber with dimensions of 80 cm × 150 cm (see Figure 47b). The laser 

oscillator is built onto an inner breadboard, which is independent from the laser housing. The 

vacuum chamber is evacuated to a pressure of 10-4 mbar using two turbomolecular pumps 

directly connected to the chamber with standard ISO-K flanges. The modified laser cavity is 

shown in Figure 47a). The beam radius of the transverse fundamental mode is estimated to 

be 1.15 mm on the disk. A 4-mm-thick undoped-YAG plate is used at Brewster angle to enforce 

linear p-polarization and to introduce SPM for soliton mode locking. The SPM is balanced by 

three dispersive mirrors inserting -3000-fs2 of GDD per round trip. An output coupler with 

0.7% transmission is used as a folding mirror. The SESAM was replaced by a another sample 

containing four InGaAs quantum wells, placed in pairs into two subsequent antinodes of the 

electric field. An embedment of the quantum wells in AlAs layers ensures full strain 

compensation of the epitaxial structure [183]. A dielectric top-coating is added to reduce the 

field enhancement and multi-photon absorption related effects [182]. The SESAM has a 1.6% 

modulation depth, 0.3% nonsaturable losses and a 47-µJ/cm2 saturation fluence (measured 

with 100-fs pulses centered at 1030 nm). The laser mode radius is adjusted to 0.95 mm on the 

SESAM for an operation with a saturation parameter of the absorber around 30 in mode-

locked regime.  

A simple extension consisting of two concave mirrors of 1 m and 3 m RoC is inserted after 

the output coupler to lower the repetition rate, i.e., to increase the pulse energy for a given 

average power. An intra-cavity focus is created between two curved mirrors of 100-mm and 

150-mm RoC (the latter one is used as an end mirror). The waist size is estimated from ray-

transfer-matrix calculations to be 12 µm in radius. The calculations are calibrated with the 

measurement of multiple transmitted beams through the cavity mirrors and the error is 

estimated to be in the order of 10%. To extract the generated XUV light, a wedged 250-µm 

sapphire plate is placed 2 cm behind the focus under Brewster angle for the laser wavelength. 

This outcoupling method has often been used in cavity-enhanced HHG 

experiments [163,164,169]. While the Brewster plate reflection is negligible at the laser 

wavelength, the refractive-index difference between the infrared and the XUV allows for 

about 7% reflection at 100-nm wavelength and up to 15% at 60 nm. 
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observed, most likely due to operation close to the roll-over of the SESAM reflectivity in 

combination with the finite gain bandwidth of the gain material [97]. The laser autocorrelation 

trace, optical spectrum, radio-frequency spectrum and 𝑀2 measurements are shown in  

Figure 50. With 63-MW intra-cavity peak power, this laser realizes state-of-the-art intra-cavity 

average- and peak-power performance from SESAM mode-locked TDL oscillators operating at 

sub-500-fs pulse durations, as depicted in Figure 48. It is to be noticed that other oscillators 

which operate in vacuum environment are evacuated to a pressure of about 1-100 mbar, while 

the presented laser operates at 10-4 mbar. The high intra-cavity peak power leads to a peak 

intensity of 2.8×1013 W/cm2 at the focus, which is sufficient for first HHG experiments inside 

a mode-locked TDL oscillator. 

 

Figure 47. a) Schematic of the resonator cavity and experimental setup used for intra-cavity high-
harmonic generation. OC, output coupler; DM, dispersive mirror. All other mirrors are coated for 
high reflectivity. b) Picture of the vacuum chamber in which the entire laser resonator was built. 

 

Figure 48. Overview of SESAM mode-locked thin-disk laser oscillators. The intra-cavity (a) average 
and (b) peak powers are plotted as a function of the pulse duration. The laser environment is 
indicated as reference in the legend. Vacuum: [18,20,97]; Helium: [40,95];  
Air: [14,23,24,27–31,39,57,63,65,68,82,95,161]; the results reported in this chapter are 
highlighted with star symbols. 



Chapter 5 

66 

5.3 HHG at megahertz repetition rate inside an ultrafast TDL oscillator 

A quartz nozzle with 100-µm opening diameter is inserted and delivers the gas into the focus 

inside the laser resonator. To maintain the chamber pressure below 5×10-3 mbar while a high-

pressure gas jet is used, a gas-jet dump is placed below the nozzle [73]. Figure 49 shows a 

schematic view of the generation setup. When the xenon gas jet is emitted into the focus, 

HHG is observed and detected with a channel electron multiplier (Photonis Magnum 5900). 

The XUV light is directed by an unprotected gold mirror to a wavelength-calibrated 

monochromator (Acton VM-502) equipped with a 1200-g/mm iridium-coated grating. The slit 

width was set for a 3.4-nm spectral resolution.  

Using 3.4 bar of backing pressure in the nozzle leads to a pressure estimated to 400 mbar 

at the laser focus. At this gas pressure, the average output power of the laser slightly drops, 

and increasing the pump power from 49 W to 51 W achieves the same intra-cavity average 

power of 320 W as without gas jet. The TDL oscillator with HHG operates with slightly shorter 

255-fs pulses. Its intra-cavity peak power is 65 MW, which leads to a peak intensity of 

2.9×1013 W/cm2 at the focus. The corresponding autocorrelation trace, optical spectrum, 

radio-frequency spectrum, and 𝑀2measurements are shown in Figure 50 with and without 

gas jet for comparison. 

High harmonics up to the 17th order (60.8 nm, 20.4 eV) are detected in accordance with the 

prediction from the cutoff formula (𝜆cutoff = 58 nm) [186]. XUV spectra are acquired with and 

without a 0.2 µm thick aluminum filter to check the validity of the measurement (see  

 

 

Figure 49. Experimental setup for high-harmonic generation inside the cavity of a mode-locked 
thin-disk laser oscillator. This new approach is a simple and compact way to provide MHz-
repetition-rate XUV sources. For clarity, two intra-cavity telescopes were omitted in this sketch. 
DM, dispersive mirror; CM, curved mirror; RoC, radius of curvature; OC, output coupler. Figure 
created by Martin Saraceno [4]. 
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Figure 50. Comparison of the SESAM mode-locked TDL oscillator output parameters (a-d) without 
gas jet and (e-h) with high pressure gas jet. (a,e) Measured autocorrelation trace and 
corresponding sech2 fit, (b,f) laser optical spectra, (c,g) radio-frequency spectra of the fundamental 
repetition rate frequency at a 300-Hz resolution bandwidth (RBW) and 50-kHz span, (d,h) 𝑀2 
measurements and (insets) output beam profiles. 

Figure 51). Both curves where taken with similar gas pressure, pulse duration and pulse 

energy. However, to insert the aluminium filter, the system had to be put to atmospheric 

pressure and then to vacuum again, and the laser was slightly realigned. Therefore, the nozzle 

position had to be re-optimized. Yet, the aluminum cuts the 11th harmonics, so the 

optimization was done while seeing only the 15th and 17th harmonics. Therefore, for that 

second measurement, the nozzle was placed in such way that phase matching was optimized 

for those orders, leading to a stronger flux at these harmonics. Harmonics below the 11th order 

(94 nm, 13.2 eV) were not detected, most likely due to reabsorption in xenon for the 9th 

harmonic [167] and to the low quantum efficiency of the detector for wavelengths longer than 

140 nm.  

Using the measured spectra and an additional measurement of the total XUV flux in all the 

detected harmonics with the channel electron multiplier placed before the monochromator 

and without aluminum filter, the average power and photon flux generated at the 11th 

harmonic are estimated with a similar method as described in [23]. A very conservative 

estimation results in a generated flux ≳2.6×108 photons/s. This corresponds to an average 
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power ≳0.55 nW and a conversion efficiency ≳1.7×10-12 with respect to the intracavity 

average power and ≳1.1×10-11 with respect to the diode pump power.  

To evaluate the influence of the gas jet and plasma on the operation of the ultrafast laser 

oscillator, the transverse beam quality and laser noise were compared with and without HHG. 

The laser operates in both cases in a fundamental transverse mode with an 𝑀2 factor smaller 

than 1.02 (Figure 50.d,h). The noise of the TDL oscillator output was measured in free-running 

operation on the passively filtered 4th harmonic of the repetition rate using a phase noise 

analyzer (Rohde & Schwarz FSWP26). The measured power spectral densities of the amplitude 

and phase noise are shown in Figure 52. Although the vacuum chamber is connected to two 

turbomolecular pumps and the opto-mechanical components were not optimized for high 

stability, the laser features a RIN of only 0.78% and 0.76% (integrated from 1 Hz to 1 MHz) 

with and without gas, respectively. The phase noise integrated in the same frequency range 

amounts to less than 1.5 mrad (1.33 mrad with gas and 1.25 mrad without gas). Both 

turbomolecular pumps were running at their maximum speed during these measurements 

and the nozzle backing pressure during the measurement with gas was 3.4 bar as during the 

XUV light spectra acquisition. The laser noise is comparable to the typical values of free-

running ultrafast TDL oscillators [23,138]. Therefore, CEO stabilization of this system should 

be feasible and would lead, together with the intra-cavity HHG process, to the generation of 

an XUV frequency comb directly from a mode-locked oscillator. The measurements of the 

laser stability confirm that in the current conversion regime, the phase distortion caused by 

plasma inside the cavity does not degrade the oscillator stability.  

 

Figure 51. Left y-axis: Measured spectrum of the generated XUV light (blue). The vertical dashed 
line shows the calculated cutoff wavelength [186]. Placing a 0.2-µm-thick aluminum foil in the 
beam enables removing the uncertainty of the harmonic number (red). Right y-axis: The theoretical 
transmission of the aluminum filter is shown for reference (grey dashed line). 
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Figure 52. a) Amplitude and (b) phase noise power spectral density (PSD), (c) rms relative intensity 
noise, (d) rms timing jitter measurements of the TDL oscillator output in free-running operation 
with and without gas. Nearly no difference of the noise performance is observed with and without 
intra-cavity high-pressure gas jet. 

5.4 Enhanced extreme-ultraviolet output coupling methods  

The previous section proposed a proof-of-concept for XUV generation inside an ultrafast TDL 

oscillator. The XUV light was coupled out with an efficiency below 20% using a sapphire plate 

placed under Brewster angle for the driving laser. However, in many XUV experiments, the 

photon flux is a decisive performance [135,156]. Therefore, the separation of the XUV from 

the driving IR field is a critical step since the harmonics are generated collinearly with the 

fundamental light in this presented experiment. The output coupling of the high harmonics 

from the laser cavity should be as efficient and broadband as possible. Since materials typically 

exhibit strong absorption at XUV wavelengths, the XUV light cannot pass through a cavity 

mirror substrate to be extracted without being absorbed. For single-pass HHG, the 

unconverted light from the high-average-power driving laser can conveniently be dumped and 

extraction through a pinhole or using a plate under a large angle of incidence (>60°) is 

commonly done. In the case of XUV generation inside a passive or active resonator cavity, the 

separation should result in low losses, low nonlinearities and limited perturbation of the 

driving laser. Different approaches were explored for femtosecond enhancement cavities. 
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Extraction of the XUV beam can be achieved from a plate placed under Brewster angle for the 

p-polarized IR laser light. It results in negligible losses for the driving laser while the Fresnel 

reflection due to the index difference at the vacuum/plate interface offers a reflection of a 

few percent for the XUV as shown in Figure 53. Due to the simplicity of this technique and the 

intrinsic broadband properties at the driving wavelength, it was chosen for the proof-of-

principle demonstrations of HHG inside an enhancement cavity and a mode-locked 

oscillator [163,164,179]. However, the efficiency and XUV bandwidth are rather limited. 

Other techniques include the use of an intra-cavity small-period diffraction grating etched 

directly onto the surface of a dielectric mirror [130,189]. This component is highly reflective 

for the fundamental light and acts as a diffracting grating for the higher harmonics with an 

efficiency up to 20% [190]. Unfortunately, nonlinear effect originating from the nanostructure 

might be detrimental. Moreover, HHG in a noncolinear geometry using two colliding pulses 

has also been proposed [191,192]. It results in IR and XUV beams propagating in different 

directions but temporal and spatial overlapping of two pulses in a tight focus configuration 

are stringent requirements. Therefore, this approach is extremely challenging to apply for 

HHG inside an ultrafast oscillator. 

For most materials, the reflection of XUV wavelengths increases with the angle of incidence 

and it is greater for s-polarized light than for p-polarized light (see Figure 54). Therefore, a 

higher XUV reflectivity is observed for angle of incidence larger than the Brewster angle 

though the reflectivity is simultaneously increased at the driving laser wavelength. Deposition  

 

 

Figure 53. a) Reflectivity of fused silica (SiO2) at 1030 nm with respect to the angle of incidence of 
the light. At Brewster angle, the p-polarized light undergoes no reflection as depicted by the 
vertical black line. On the contrary, the s-polarized light always experiences a larger reflection than 
the p-polarized light. b) Reflectivity of SiO2 near the Brewster angle. c) Reflectivity of SiO2, sapphire 
(Al2O3) and magnesium oxide (MgO) at XUV wavelengths for an incident 1030-nm p-polarized light 
at Brewster angle (55° for SiO2, 61° for Al2O3 and 60° for MgO). Data taken from [188].  
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of a broadband anti-reflection coating on a substrate enables to drastically reduce the losses 

for the driving laser field [193,194]. As the plate must be placed after the focus, the entire 

spatial beam profile hits the plate under different angles of incidence. Consequently, the 

coating must exhibit low losses over a certain range of incidence angles and support the entire 

driving pulse spectrum. These criteria make the design and manufacturing of broadband 

coatings with low sensitivity to growth errors very challenging. Besides, a compromise for the 

substrate thickness should be realized. While a thin substrate might bend due to the stress 

induced by the coating, a thick substrate could lead to excessive peak-power-dependent 

nonlinear phase shift and thermal effects under the vacuum environment. The design and 

simulated reflectivity of coatings operating around 60° and 70° of incidence angle are shown 

in Figure 55. As a next step, substrates will be processed with such AR-coatings using our ion-

beam-sputtering coating machine. Once placed inside the cavity under grazing incidence, no 

significant loss for the laser and high extraction efficiencies above 30% at around 90 nm are 

expected. Owing to the material properties, this extraction method is limited to photon 

energies up to about a few hundred eV, which is sufficient for the targeted experiments. 

An efficient approach to extract high harmonics from the cavity is realized with an HR-

mirror with a clear aperture of a few-ten to hundred microns [191] (see Figure 56). This 

method takes advantage of the fact that higher harmonics have a smaller divergence than the 

driving field. The high harmonics are extracted through a hole inside the mirror while the large 

IR beam is reflected on the mirror with only minor losses (<1%). This technique was 

successfully implemented in enhancement cavities operating with either transverse 

fundamental mode [170,195] or higher-order modes in combination with a slotted mirror (slit 

opening) [196]. Since the XUV light travels undisturbed, efficient outcoupling of the low 

wavelengths is possible (theoretically > 80% below 10 nm). Harmonics with wavelengths down 

to 11 nm have already been coupled out from an enhancement cavity through a hole in the 

mirror following the HHG focus demonstrating the most broadband XUV output coupling 

method to date [170]. Key parameters for low loss and good extraction efficiency are the 

laser-to-hole radius ratio, the amount of lost area due to chipping of the dielectric coating and 

surface deformation near the edge of the hole. Even though the drilling process of such a 

dielectric mirror is not straightforward, it is possible to obtain good quality holes, e.g., by using 

inverse laser drilling technique and post-processing with tempering the substrates [197]. To 

date, operation of a mode-locked laser with a pierced mirror has not been demonstrated and 

mode-locking might be prevented by the onset of higher order modes due to the losses at the 
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center of the mirror. However, this recent development of intra-cavity HHG might motivate 

efforts in this direction.  

 

Figure 54. Fused silica (SiO2) exhibits a broadband high reflectivity for the XUV s-polarized light 
under a large angle of incidence (AoI).  

 

 

Figure 55. a,c) Coating design and (b,d) simulated IR-reflectivity of broadband anti-reflection 
coatings operating at (a,c) 60° and (b,d) 70° of incidence angle. Centered at 1030 nm, the coatings 
exhibit less than 0.1% of reflection over a bandwidth larger than 50 nm supporting sub-100-fs 
pulses. At these angles of incidence, the reflection of the top layer (SiO2) is above 30% for the XUV. 
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Figure 56. a) Picture of a 1-inch mirror substrate with a hole manufactured by the inverse laser 
drilling method [197]. The free aperture has a diameter of about 110 μm in the front surface. It 
was drilled with an undercut of a few degrees, resulting in an opening larger than 1 mm in the back 
surface. b) Magnified picture of the hole in the center of the mirror. The chipping of the hole is 
very small, and the lost area has a diameter only 10 μm larger than the clear aperture. 

5.5 Towards experiments directly driven by simple XUV laser sources 

This chapter described HHG experiments realized directly inside the cavity of a SESAM mode-

locked TDL oscillator. The XUV light was generated down to a wavelength of 61 nm 

(17th harmonic, 20.4 eV) at 17-MHz repetition rate from a compact and simple setup. HHG is 

driven in a high-pressure xenon gas jet with an intra-cavity peak intensity of 2.9×1013 W/cm2 

and 320 W of intra-cavity average power. The system is driven with only 51 W of pump power 

and generates an estimated average power of 0.5 nW in the 11th harmonic (94 nm, 13.2 eV), 

i.e., a photon flux of 2.6×108 photons/s.  

The conversion efficiency of 10-11 with respect to the pump power and the photon flux are 

limited in this proof-of-concept experiment by the long pulse duration (> 250 fs) and the 

moderate peak power (< 70 MW). However, TDL oscillators already operated at GW intra-

cavity peak-power levels [66] and sub-100-fs pulse durations [25]. Chapter 2 demonstrated 

the generation of 35-fs pulses with 73-MW intra-cavity peak power from a cutting-edge KLM 

Yb:LuO TDL oscillator operating in air. Operation with shorter pulse durations should lead to 

a substantial increase of the conversion efficiency and saturation intensity. Therefore, further 

optimization of the laser parameters to reach performances similar to state-of-the-art HHG 

systems at the MHz repetition rate [170,198] appears feasible. In combination with phase 

matching optimization of the HHG process [147,155,157], this should significantly increase the 

conversion efficiency and allow for generating higher-energy photons. Furthermore, more 

efficient extraction schemes [191,193,195] should significantly increase the XUV flux available 

in future experiments. The implementation of a grazing incidence plate seems straightforward 

and should lead to a 5-fold increase of the extraction efficiency. In case a larger XUV 
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bandwidth is required, a pierced output-coupler mirror can be inserted in the cavity instead. 

However, operation of a mode-locked oscillator with a hollow mirror has not yet been 

demonstrated. 

In addition, the CEO and repetition frequencies can be stabilized as already presented in 

Chapter 4. Because HHG is a coherent process, the comb properties of the driving source are 

transferred to the XUV pulses. This fully-stabilized XUV frequency comb will enable performing 

various XUV spectroscopy experiments.  

Since the HHG process does not affect the laser behavior, multiple ports for HHG can be 

inserted inside the laser cavity to obtain multiple high-harmonic beams with different 

wavelengths or to simultaneously run multiple experiments. It might also be possible to insert 

a second output coupler on the other side of the gas target to get a second XUV beam from 

the backward propagating pulse, though phase matching conditions are not optimal. A recent 

result presented at a conference reported on HHG inside a TDL oscillator with two HHG 

ports [199]. Though, insertion of more gas targets and output couplers inside the laser 

resonator might lead to challenges of the spatial arrangement, the source might be suitable 

for 1- and 2-D pump-probe spectroscopic measurements in the IR, VUV and XUV domains.  

This new approach of HHG inside a TDL oscillator can lead to a novel class of coherent XUV 

light sources driven by only few-tens- to hundreds-watt pump diode systems, and which 

combine efficient MHz-repetition-rate operation at high XUV flux with a compact design. Such 

simple systems will be highly attractive versatile tools to drive many applications ranging from 

high-resolution imaging and structural analysis of matter to XUV spectroscopy and attosecond 

science. 
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 Conclusion and future research 

In this thesis, novel achievements in the field of high-power ultrashort Yb-based oscillators 

were reported and discussed. Most of the results presented in this manuscript are based on 

three key ingredients: the thin-disk laser (TDL) technology, the Kerr lens mode locking scheme 

and broadband gain materials. Using this highly promising combination, new frontiers in laser 

performance are reached. Record average power levels from TDL oscillators are achieved in 

pulses with sub-100-fs and sub-50-fs durations. In addition, 30-fs pulses are generated from a 

Kerr lens mode-locked (KLM) TDL for which the duration is 60% shorter than previously 

reported ultrafast TDL oscillators. The results achieved in this thesis and the recommendations 

for further steps are important milestones for the development of a compact simple laser 

technology that is suitable to directly drive applications demanding ultrashort pulses, with 

multi-ten to hundred watts average power levels and excellent spatio-temporal properties. 

These cutting-edge laser sources have the potential to become a versatile tool for scientific 

research, enabling measurements with high signal-to-noise ratios and short acquisition times. 

The attractiveness of ultrafast TDLs delivering ultrashort pulses is confirmed with two proof-

of-concept experiments: the full-stabilization of an optical frequency comb based on TDLs, 

and the generation of extreme ultraviolet (XUV) light inside the cavity of an ultrafast TDL 

oscillator. 

While state-of-the-art ultrafast Yb-based TDL oscillators emit up to 300-W average power 

in pulses with hundreds of femtoseconds duration, a maximum of only 5 W has been achieved 

in pulses with sub-100-fs duration prior to this work. To date, Yb:YAG crystals are the standard 

gain element for ultrafast TDLs because they are commercially available in high quality and 

large disk diameters, but their gain bandwidth is a limit for the achievable pulse duration. 

Yb:LuO is one of the most promising gain material for high-power ultrashort-pulse operation 

since it features favorable thermo-mechanical properties and a 30% broader gain bandwidth 
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that directly supports sub-100-fs pulse formation. In this thesis, KLM TDLs based on Yb:LuO 

crystals are thoroughly investigated. The key laser parameters for the generation of sub-100-fs 

pulses have been investigated with more than 300 distinct laser configurations experimentally 

evaluated. The results highlight that operating at a small output coupling degree, with a low 

amount of inserted group delay dispersion and a small intra-cavity hard aperture allows for 

the shortest pulses. This extensive study is supplemented by a power scaling iteration, which 

is achieved by increasing the laser mode size on the Kerr medium. As a result, the laser delivers 

more than 10 W of average power in 90-fs pulses, which represents a two-fold increase of the 

average power emitted by ultrafast TDL oscillators at sub-100-fs pulses durations. Given the 

repetition rate of 60 MHz, the laser operating at 1040-nm central wavelength produces 0.2-

µJ pulse energy and a peak power close to 2 MW. Additionally, by decreasing the output 

coupling rate and the amount of inserted group delay dispersion, up to 4.5 W of average 

power are emitted in 49-fs pulses. Further average- and peak-power scaling was discussed. It 

should lead to the direct generation of hundred-watt average power and tens of MW peak-

power levels directly from simple and compact sub-100-fs TDL oscillators, without the need 

for external amplification and temporal compression, thus preserving an excellent spatio-

temporal pulse profile. This outstanding performance hold great promises for ultrafast TDL 

oscillators to enable ground-breaking research in various areas such as nonlinear optics, high 

field science and high-precision spectroscopy. 

Furthermore, KLM TDLs based on broadband gain materials strike new limits for the 

minimum pulse duration generated by TDL oscillators. A KLM Yb:LuO TDL delivers 1.6-W 

average power in 35-fs pulses, which is four times shorter than previously obtained from a 

SESAM mode-locked Yb:LuO TDLs and two times shorter than obtained in bulk Yb:LuO 

oscillators. Besides, the first KLM TDL based on an Yb:CALGO crystal is demonstrated. 

Beneficiating from the ultra-broad gain bandwidth offered by the gain material, the laser 

emits 150-mW in 30-fs pulses at 124-MHz repetition rate and 1050-nm central wavelength 

and achieves record-short pulse durations from TDL oscillators, which is equal to the shortest 

pulses produced by Yb-doped bulk lasers. It appears that in contrast to the standard end-

pumping of bulk oscillators, the TDL pumping geometry does not limit the pulse spectrum on 

the short wavelength side. Yb-based TDLs combine advantages for ultrashort pulse generation 

and high-power operation, owing to the pumping geometry, low quantum defect and efficient 

heat removal from the gain material. Scaling the average power to several tens of watts with 

reasonable optical efficiencies and similar pulse durations was discussed. It will rely on high-

optical-quality high-gain broadband disks and ultra-broadband optics. Indeed, the current 
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limitations mainly originate from the low laser gain and from the insufficient bandwidth of the 

intra-cavity components. Optimization of the optical coatings for a broadband high reflectivity 

and a flat dispersion is necessary to outperform the current results. While the 34-nm-FWHM 

optical spectrum of the 35-fs Yb:LuO TDL is nearly three times broader than the crystal gain 

bandwidth, the Yb:CALGO laser features a 45-nm FHWM optical spectrum that does not 

exploit the full ultra-broad gain bandwidth of Yb:CALGO. Consequently, further decreasing the 

pulse duration should be feasible and could result in few-cycle pulses directly emitted from 

diode-pumped Yb-based TDL oscillators. 

Moreover, this thesis presents the first fully-stabilized optical frequency comb based on a 

TDL. The self-referenced fully-stabilized laser delivers more than 4-W output power in 50-fs 

pulses at a central wavelength of 1030 nm and a repetition rate of 61 MHz. A coherent octave-

spanning supercontinuum is generated in a photonic crystal fiber using only few mW average 

power picked up from the laser output. The carrier-envelope offset (CEO) frequency is 

detected in a standard f-to-2f interferometer and stabilized to an external radio-frequency 

reference by active feedback applied to the current driving the laser diode pump system. The 

repetition rate is detected with a photodetector and stabilized via a mirror mounted onto an 

intra-cavity piezo-electric actuator. A tight phase lock of the CEO frequency is achieved at 

5 MHz leading to a residual in-loop phase noise of less than 200 mrad (integrated from 1 Hz 

to 1 MHz). The stabilization of the repetition rate leads to residual timing jitter of 7 ps 

(integrated from 1 Hz to 1 MHz) and was limited by the sub-optimal components used in this 

proof-of-concept experiment. Due to cross talks of the two stabilization loops, the phase noise 

of the CEO frequency was increased to 745 mrad for the fully-stabilized optical frequency 

comb. This initial experiment exploits the remarkable performance of the above-mentioned 

lasers that allow for CEO detection without any external compression and validates the 

suitability of sub-100-fs KLM TDL oscillators for metrology applications and high-precision 

spectroscopy. 

Although state-of-the-art femtosecond TDL oscillators operate with up to GW intra-cavity 

peak power levels, their potential to drive intra-cavity nonlinear experiments has remained 

unexplored until now. A prominent application is the generation of coherent XUV light via 

high-harmonic generation (HHG) at megahertz repetition rate. In case of intra-cavity HHG, the 

unconverted photons are recycled inside the cavity, which increases the overall efficiency of 

the process, and high photon fluxes can be produced owing to the high intra-cavity driving-

laser average power. The last part of the manuscript describes HHG driven inside a mode-
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locked TDL oscillator. The XUV light is extracted with a sapphire plate placed under Brewster 

angle for the driving laser wavelength and harmonics up to the 17th order (60.8 nm, 20.4 eV) 

are detected. The photon flux is estimated to be 2.6×108 photons/s for the 11th harmonic 

(94 nm, 13.2 eV). The TDL oscillator and the HHG setup are housed in a single vacuum 

chamber, resulting in a simple and compact system. Remarkably, the system is pumped with 

only 51 W of laser diode power. The driving SESAM mode-locked laser produces 250-fs pulses 

at a wavelength of 1034 nm and a repetition rate of 17 MHz in an environment evacuated 

down to 10-4 mbar. HHG is driven in a high-pressure xenon gas jet with an intra-cavity peak 

intensity of 2.9×1013 W/cm2 and an average power of 320 W, which leads to an intra-cavity 

peak power of about 60 MW. The noise properties of the near-infrared driving laser have been 

evaluated and no disturbance from the intra-cavity high-pressure gas jet and subsequent HHG 

was detected. Further scaling of the performance was discussed and will rely on improved 

laser parameters, better phase matching conditions and enhanced XUV output-coupling 

efficiency obtained from an AR-coated plate under a large angle of incidence. Since HHG is an 

extremely nonlinear process, several orders of magnitude higher photon fluxes and higher 

photon energies can be expected by upgrading the driving oscillator to, e.g., the KLM TDLs 

developed in the framework of this thesis, which already demonstrated substantially shorter 

pulse duration of 35-fs with an intra-cavity peak power of 70 MW in air. Owing to the fact that 

HHG is a coherent process, the full frequency stabilization of the driving laser should lead to 

the generation of an XUV frequency comb from a simple and compact setup. This experiment 

confirms the benefits of using an ultrafast TDL oscillator for intra-cavity HHG at megahertz 

repetition rates. Such a class of compact and simple coherent-XUV-light sources will be highly 

attractive for driving numerous applications ranging from high-precision spectroscopy to 

attosecond science and high-resolution imaging.  
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In this work, recent achievements in the field of ultrafast thin-disk lasers (TDLs) are discussed. 

The novel ultrafast Yb-based TDL oscillators presented in this thesis show improved 

performance at sub-100-fs pulse duration. Benefiting from the fruitful combination of the Kerr 

lens mode locking scheme and the broad emission of the gain materials, TDL oscillators reach 

new pulse duration limits as well as record-high average powers from any TDL oscillator in 

both sub-100-fs and sub-50-fs pulse duration regimes. The influence of key laser parameters 

is investigated for the generation of powerful ultrashort laser pulses. This proof-of-principle 

study opens avenues for average- and peak-power scaling towards the generation of 

sub-100-fs pulses from simple one-box lasers with hundred watts of average power and multi-

ten microjoules of pulse energy. These results confirm the potential for compact ultrafast Yb-

based TDL oscillators to replace complex amplifier systems and Ti:sapphire-based lasers for 

an extensive range of applications. 

These innovative sources aim at directly driving exciting new applications in the fields of 

spectroscopy and high-field physics. An initial experiment has been realized to highlight the 

potential and reliability of these lasers and demonstrates the first fully-stabilized optical 

frequency comb based on a TDL. Additionally, this thesis reports on the proof-of-principle 

realization of intra-cavity HHG inside a SESAM mode-locked TDL oscillator as a table-top 

pulsed source of XUV laser light.  
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