(Bis)pyrazole Zinc And Copper Complexes As Catalysts For Ring Opening Polymerization **Of Lactones/Lactides**

Divambal Appavoo^a, James Darkwa^a and Ilia A. Guzei^b

^aDepartment of Chemistry, University of Johannesburg, Kingsway Campus, Auckland Park 2006, Johannesburg, South Africa;

^bDepartment of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA,

e-mail: appavood@gmail.com

ABSTRACT

A series of pyrazolyl carboxylate Zn(II) and Cu(II) complexes was synthesized and different structures were obtained for the complexes. The efficiency of these compounds towards catalysing the ring opening polymerization (ROP) of lactides and lactones was evaluated and all the compounds analysed showed catalytic activities. In-depth kinetic studies were carried out and the ROP showed living characteristics.

Scheme 2. Accepted mechanism for the effect of MeOH on the coordination-insertion polymerization of lactide [4]

for the ring opening polymerization of lactones and lactides under various conditions. The complexes gave different activities and the polymers obtained were different in terms of stereochemistry as well. Zn complexes were better catalysts than their copper analogues and *\varepsilon*-caprolactone ring opens more readily than D,L-lactide ring. The use of methanol as additive helps to speed up the polymerization process, but affects the stereochemistry of the polymers formed.

HANNESBURG

Characterization of polymers

Table 1. M_n for PCL & PLA synthesized using complexes **1-8** as catalysts

Complex	ε-Caprolactone, [M]/[I]=50, Bulk, 110°C		D,L-lactide, [M]/[I]=100, Toluene, 110°C	
	Conv (%)	M _n ^c	Conv (%)	M _n ℃
1	93	4440	97	1900
1 a	71	2053	-	-
1 ^b	-	-	62	924
2	92	3160	100	2953
3	94	4101	96	2108
4	100	2594	96	1812
5	100	5563	97	2307
6	96	3092	91	1877
7	73	3531	96	2350
8	98	4066	97	1695

^a ε-Caprolactone polymerization using [M]/[I]=3333; ^b D,L-lactide polymerization, with methanol as additive; ^c M_n determined from ¹H NMR spectra; Complexes **2**, **6** & **8** are bimetallic and **4** & **7** are polymeric.

ACKNOWLEDGMENT

Special thanks to the University of Johannesburg and the National Research Foundation for financial support.

REFERENCES

1 (a) T. Fujisato, Y. Ikada, *Macromol. Symp.* **103** (1996) 73-83, (b) B. Jeong, Y. H. Bae, D. S. Lee, S. W. Kim *Nature (London)* **388** (1997) 860-862 2 (a) R. H. Platel, L. M. Hodgson, C. K. Williams, Polymer Rev. 48 (2008) 11-63, (b) M. Labet, W. Thielemans, Chem. Soc. Rev. 38 (2009) 3484-3504 3 O. D. Cabaret, B. M. Vaca, D. Bourissou, *Chem. Rev.*, **104** (2004) 6147-6176 4 M. Ryner, K. Stridsberg, A. C. Albertsson, H. von Schenk, M. Svensson, Macromol. 34 (2001) 3877-3881

5 J. Kasperczyk, M. Bero, *Polymer* **41** (2000) 391-395